
MICHALKIEWICZ, BELILOVSKY, BAKTASHMOTLAGH, ERIKSSON: EIGENSDF 1

A Simple and Scalable Shape
Representation for 3D Reconstruction

Mateusz Michalkiewicz1

m.michalkiewicz@uq.net.au

Eugene Belilovsky2

eugene.belilovsky@umontreal.ca

Mahsa Baktashmotlagh1

m.baktashmotlagh@uq.edu.au

Anders Eriksson1

a.eriksson@uq.edu.au

1 University of Queensland
Brisbane, Australia

2 Mila, University of Montreal
Montreal, Canada

Abstract

Deep learning applied to the reconstruction of 3D shapes has seen growing interest.
A popular approach to 3D reconstruction and generation in recent years has been the
CNN encoder-decoder model usually applied in voxel space. However, this often scales
very poorly with the resolution limiting the effectiveness of these models. Several so-
phisticated alternatives for decoding to 3D shapes have been proposed typically relying
on complex deep learning architectures for the decoder model. In this work, we show that
this additional complexity is not necessary, and that we can actually obtain high quality
3D reconstruction using a linear decoder, obtained from principal component analysis on
the signed distance function (SDF) of the surface. This approach allows easily scaling
to larger resolutions. We show in multiple experiments that our approach is competitive
with state-of-the-art methods. It also allows the decoder to be fine-tuned on the target
task using a loss designed specifically for SDF transforms, obtaining further gains.

1 Introduction
In recent years, we have witnessed an increased interest in extending the successes of deep
learning to the analysis and representation of 3D shapes. This includes long standing prob-
lems, such as 3D shape reconstruction from single or multiple views [8, 32], shape from
silhouettes [7], shape from contours [2], and shape completion [21]. Solutions to these
problems can have a significant impact to applications in robotics [3], surgery [20], and
augmented reality [14].

One of the preferred categories of models for tackling these problems is the CNN encoder-
decoder architecture [8], popularized originally in the context of segmentation [5, 19]. For
example, in the single view reconstruction task a 2D CNN will encode the 2-D image and a
3D CNN decoder model will produce the final representation in voxels. Standard decoders,
however, are ineffective in larger resolutions and do not make full use of the structure of the
object. Similar problems arise in more general attempts to learn latent variable models of 3D
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shapes [11, 33]. Here, one may be interested in tasks such as unconditional generation and
reconstruction.

More recently authors have considered alternative representations of shapes to a standard
3D discretized set of voxels [8, 12, 32, 34, 35], one that can permit more efficient learning
and generation. These include point clouds [10], meshes [13, 31], and signed distance trans-
form based representations [22, 23]. To date there is not an agreed upon canonical 3-D shape
representation for use with deep learning models nor a canonical decoder architecture for use
with any of the described shape representations. Indeed, many complex alternative decoder
architectures have been used [25, 29]. In this work, we ask whether a very simple decoder
architecture matched with the right shape representation can yield strong results. Building
on the recent use of the Signed Distance Function (SDF) in shape representation we demon-
strate a simple latent shape representation that can be used in downstream tasks and easily
decoded. More specifically, in this work, we consider a latent shape representation obtained
by applying PCA on the SDF transformed shape. We show this leads to a latent shape repre-
sentation that can be used directly in downstream tasks like 3D shape reconstruction from a
single view and 3D shape completion from a point cloud.

Our work a) reinforces the relevance of SDF as a representation for 3D deep learning;
and b) demonstrates that a simple representation obtained by applying PCA on the SDF
transform can lead to an effective latent shape representation. This representation allows
for results competitive to state of the art in standard benchmarks. Our work also suggests
more complex benchmarks than the current ones may be needed to push forward the study
of learned 3D shape reconstruction.

The paper is structured as follows. In Sec. 2 we discuss the related work. We outline
the basic methods used in the experiments in Sec. 3. We show extensive quantitative and
experimental results comparing our approach to existing methods in Sec. 4.

2 Related Work
Several shape representations have been studied in the literature. Point cloud based repre-
sentation requires a tedious step of sampling points from the surface and to generate shape
subsequently inferring the continuous shape from a sample of points. Meshes present a chal-
lenge in that no clear way to generate valid meshes is available. Proposals have consisted
of starting with template shapes and progressively deforming them Wang et al. [31]. This,
however, can be problematic as it never explicitly represents the shape and may suffer issues
with local coherence.

Deep Level Sets [22] and DeepSDF [23] also use the SDF representation as in our work.
Unlike our method, Deep Level Sets still relies on an encoder-decoder CNN architecture thus
not removing the desired computational constraints associated with the 3D shape modeling.
DeepSDF attempts to directly fit a continuous function to each shape which gives the SDF
representations. Despite avoiding discretization, this function can lead to a complex decoder
model, e.g. an 8 layer network is used to fit the SDF. Another recent work [21], similar in
spirit to Park et al. [23], learns a classifier to predict whether a point is inside or outside of the
boundary, using this classifier as the shape representation. Different from our proposal, these
methods cannot easily learn a latent shape representation to be applied on downstream task,
since the shape is represented by the weights of the classifier or regression model. On the
other hand, our latent representation can easily encode an unseen shape and be conveniently
used as a prediction target for deep learning models.
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Our work can also be seen as complementary to the very recent observations in Tatar-
chenko et al. [30] which highlights that good 3D single view reconstruction performance can
be achieved by using retrieval or clustering methods. We note, however, that the descriptors
used in that work are more complex.

PCA has been classically used to represent shapes in a variety of contexts. For example,
classical methods in computer vision such as the active appearance model Edwards et al.
[9] and the 3D morphable model used in face analysis Blanz et al. [1] are based on PCA
shape representations. However, these typically are applied in a different context requiring
transforming the shape to a reference set of points and applying PCA on the coordinates.
Leventon et al. [17] used signed distance functions to embed 2D curves applying PCA to ob-
tain statistical models. To the best of our knowledge it has not been combined with the SDF
representing a surface in 3D. We note that level set methods and the SDF have only recently
been revisited as an effective representation that can be combined with 3D deep learning
[6, 22, 23]. Moreover, it is enlightening that this classic approach to shape representation
can be competitive with deep learning methods on standard benchmarks.

3 Methods

In this section, we start with reviewing the SDF transform and then describe our simple yet
effective approach to shape representation.

3.1 Signed Distance Functions

Consider a 3D shape and its closed surface Γ⊂R3. The Signed Distance Function (SDF) of
Γ is a mapping φ : R3 7→ R from any point x ∈ R3 to the surface:

φ(x) =± inf
y∈Γ
‖x− y‖, (1)

with the convention that φ(x) is positive on the interior and negative on the exterior of Γ.
In Michalkiewicz et al. [22] a CNN decoder model is used to predict the SDF repre-

sentation from a latent space as well as to learn autoencoders. We note, however, that this
representation is well structured and objects are often grouped by category, we thus ask if a
much simpler linear and non-convolutional decoder model can be effective at capturing its
variability, leading to the eigenSDF representation described in the next section.

The above paper [22] further considers a loss function for the SDF representation that
approximately minimizes the point-wise distance:

Lε(θ) =

(
∑
x∈Ω

δε(φ̃
j(x))d j(x)p

)1/p

+α ∑
x∈Ω

(‖∇φ̃
j(x)‖−1)2 (2)

with θ being parameters of the network, α a weighting factor, Ω an equidistant grid on which
φ is evaluated, δε approximated Dirac delta, φ̃ inferred Signed Distance Function, and d(x)
the closest distance between grid point x and the ground truth shape. We will use this loss
function to fine-tune our decoder model in the sequel.
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Figure 1: Overview of our experiments. We first apply PCA to all ShapeNet categories in
order to retrieve eigenvectors (A). We encode every shape by applying eigenvectors to the
signed distance function that is representing it (B). Our network for various experiments,
eigenSDF, consists of an input encoder (2D CNN or PointNet) and a linear layer (C). It uses
an `2 loss between its output and shape encodings from (B). We can directly decode predic-
tions from the 2D CNN or PointNet using the eigenvectors. We can also further enhance
performance, eigenSDF (finetuned), by finetuning the eigenvectors with the loss function
in Eq. 2 that is designed for SDF representation (D). Here, the weights of the decoder are
initialized from eigenvectors obtained in (B).

3.2 EigenSDF
We apply the PCA transform to φall = {φi}i=1..N , with N being the number of training ex-
amples. The eigenvectors E have the shape of (k,M3) with M being the grid resolution and
k being the number of used eigenvectors. We project each SDF φ to the latent representa-
tion φc using the eigenvectors E: φc = φET . Here, φc has a shape of (1,k). In the sequel,
we will denote this representation as the eigenSDF. Note that applying PCA to the naive
voxel representation would be inappropriate as the data is binary and therefore ill-suited for
linear subspace methods such as PCA. For downstream tasks we predict directly the latent
representation φc. We will also consider using E as an initialization which is finetuned by
training on the SDF shape representation directly using Eq. 2. A high level overview of our
framework is given in Figure 1.

4 Experiments
We evaluate the proposed representations on 3 tasks: i) 3D reconstruction; ii) 3D reconstruc-
tion from point cloud; and iii) 3D reconstruction with autoencoders. These applications are
evaluated on 13 categories from the ShapeNet repository [4].

Preprocessing. In order to work on SDFs, we need to have a well defined interior and
exterior of an object. We first preprocess the meshes to make them watertight using the
method proposed in [27]. Following common practice, we render each ground truth mesh
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into 24 2D views using equally spaced azimuth angles. For each ground truth mesh, we
compute a corresponding SDF in a 128×128×128 discretized voxel grid.

Metrics. Following the [21] experimental setup, we report 3 metrics. The first one is In-
tersection over Union (IoU), also known as Jaccard Index, between ground truth shape S and
prediction S̃:

IoU =
|S∩ S̃|
|S∪ S̃|

.

The second metric measures point-wise distance between ground truth point set SP and pre-
diction S̃Q using the symmetric Chamfer distance:

chamfer(SP, S̃Q) =
1

2|P| ∑p∈P
min
q∈Q
|p−q|+ 1

2|Q| ∑q∈Q
min
p∈P
|p−q|.

Finally, we measure the angular distance using normal consistency (nc) metric:

nc(SP, S̃Q) =
1

2|P| ∑p∈P
|NSP(p) ·NS̃Q

(nS̃Q
(p))|+ 1

2|Q| ∑q∈Q
|NS̃Q

(q) ·NSP(nSP(q))|,

where NS(p) denotes normal of point p lying on surface S and nS(q) denotes nearest neigh-
bour of point q lying on surface S.

4.1 3D Reconstruction from Single 2D View
In this set of experiments, we evaluate the eigenSDF approach described in Sec 3. We
perform PCA jointly on all categories using a starting resolution of 128× 128× 128. For
memory efficiency, we use incremental PCA [26]. k eigenvectors were chosen to capture
at least 99.5% of the variance within the dataset. The image encoder is a 2D CNN whose
architecture is taken from [25]. We minimize the `2 loss between the SDF projected into
the latent space φc, and the prediction of the 2D CNN. This network is trained for 100
epochs using an ADAM [15] optimizer. Initial learning rate was set to 10−3 and dropped at
epoch 30 to 10−4. Furthermore, we consider finetuning the representation starting with the
eigenvectors from PCA and using Eq 2. This baseline is referred to as eigenSDF (finetuned).

In order to demonstrate that a gain is made by PCA versus just architecture, we also train
a linear autoencoder of the same size (M× k) and finetune it with Eq 2. This baseline is
referred to as linearSDF and linearSDF(finetuned).

Finally, we compare to a set of standard benchmarks from the recent literature includ-
ing voxel based CNN encoder-decoder [8], point cloud based methods [10], a mesh based
method [31], and the recently introduced ONet [21].

Complete results are given in Table 1. First, we observe that simply using a same sized
linear model linearSDF (finetuned) is outperformed by using the eigenSDF. Compared to
alternatives, our method gives more significant gains in Chamfer metric than all competi-
tors and can be further improved with the finetuning. We also observe improvements in
the normal consistency metric. For the IoU metric, we observe that eigenSDF outperforms
all methods except Mescheder et al. [21]. Note that according to Sun et al. [28] Chamfer
distance is a far better metric for shape comparison than IoU.
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Chamfer↓
Cat name 3D R2N2 PSGN Pix2Mesh AtlasNet ONet linearSDF linearSDF (ft) eigenSDF eigenSDF (ft)
airplane 0.227 0.137 0.187 0.104 0.147 0.262 0.253 0.093 0.078
bench 0.194 0.181 0.201 0.138 0.155 0.255 0.243 0.091 0.076
cabinet 0.217 0.215 0.196 0.175 0.167 0.229 0.222 0.077 0.062
car 0.213 0.169 0.180 0.141 0.159 0.233 0.230 0.068 0.055
chair 0.270 0.247 0.265 0.209 0.228 0.269 0.262 0.113 0.095
display 0.314 0.284 0.239 0.198 0.278 0.285 0.278 0.112 0.110
lamp 0.778 0.314 0.308 0.305 0.479 0.642 0.627 0.469 0.388
loudspeaker 0.318 0.316 0.285 0.245 0.300 0.261 0.255 0.101 0.095
rifle 0.183 0.134 0.164 0.115 0.141 0.291 0.271 0.141 0.139
sofa 0.229 0.224 0.212 0.177 0.194 0.275 0.268 0.192 0.137
table 0.239 0.222 0.218 0.190 0.189 0.207 0.196 0.124 0.111
telephone 0.195 0.161 0.149 0.128 0.140 0.175 0.170 0.051 0.047
vessel 0.238 0.188 0.212 0.151 0.218 0.425 0.414 0.351 0.339
mean 0.278 0.215 0.216 0.175 0.215 0.292 0.283 0.152 0.133

IoU↑
Cat name 3D R2N2 PSGN Pix2Mesh AtlasNet ONet linearSDF linearSDF (ft) eigenSDF eigenSDF (ft)
airplane 0.426 - 0.420 - 0.571 0.421 0.432 0.524 0.541
bench 0.373 - 0.323 - 0.485 0.368 0.378 0.372 0.393
cabinet 0.667 - 0.664 - 0.733 0.655 0.667 0.688 0.703
car 0.661 - 0.552 - 0.737 0.666 0.679 0.716 0.732
chair 0.439 - 0.396 - 0.501 0.382 0.401 0.401 0.412
display 0.440 - 0.490 - 0.471 0.385 0.397 0.431 0.439
lamp 0.281 - 0.323 - 0.371 0.208 0.215 0.234 0.275
loudspeaker 0.611 - 0.599 - 0.647 0.558 0.566 0.596 0.606
rifle 0.375 - 0.402 - 0.474 0.259 0.265 0.392 0.395
sofa 0.626 - 0.613 - 0.680 0.606 0.621 0.624 0.639
table 0.420 - 0.395 - 0.506 0.393 0.399 0.419 0.430
telephone 0.611 - 0.661 - 0.720 0.588 0.611 0.680 0.714
vessel 0.482 - 0.397 - 0.530 0.447 0.451 0.476 0.501
mean 0.493 - 0.480 - 0.571 0.456 0.467 0.504 0.521

Normal Consistency↑
Cat name 3D R2N2 PSGN Pix2Mesh AtlasNet ONet linearSDF linearSDF (ft) eigenSDF eigenSDF (ft)
airplane 0.629 - 0.759 0.836 0.840 0.707 0.715 0.819 0.822
bench 0.678 - 0.732 0.779 0.813 0.748 0.763 0.817 0.828
cabinet 0.782 - 0.834 0.850 0.879 0.773 0.777 0.885 0.889
car 0.714 - 0.756 0.836 0.852 0.781 0.799 0.874 0.878
chair 0.663 - 0.746 0.791 0.823 0.751 0.772 0.815 0.827
display 0.720 - 0.830 0.858 0.854 0.750 0.781 0.870 0.877
lamp 0.560 - 0.666 0.694 0.731 0.579 0.585 0.783 0.792
loudspeaker 0.711 - 0.782 0.825 0.832 0.733 0.749 0.855 0.862
rifle 0.670 - 0.718 0.725 0.766 0.661 0.669 0.816 0.819
sofa 0.731 - 0.820 0.840 0.863 0.738 0.740 0.855 0.861
table 0.732 - 0.784 0.832 0.858 0.722 0.729 0.804 0.811
telephone 0.817 - 0.907 0.923 0.935 0.830 0.852 0.921 0.936
vessel 0.629 - 0.699 0.756 0.794 0.700 0.733 0.815 0.817
mean 0.695 - 0.772 0.811 0.834 0.728 0.743 0.840 0.847

Table 1: Single View 3D Reconstruction Results on ShapeNet. We observe that our
eigenSDF approach outperforms other state-of-the-art learning based methods in normal
consistency and Chamfer distance. Finetuning can further improve this result. Compared
to training a linear autoencoder or just finetuning the performance is substantially better,
showing that eigen decomposition obtains the best results.

4.2 3D Shape Completion from Point Clouds

We next consider shape completion from a point cloud. This task has been studied in [18, 21].
Similar to experimental setup of [21], we use 13 categories from ShapeNet repository and
we pre-process the meshes to make them watertight. We randomly sample 300 points from
ground truth meshes and add a Gaussian noise with 0 mean and 0.05 standard deviation. The
same metrics have been used as described in section 4.1.
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We have encoded the input point cloud with PointNet encoder with a bottleneck di-
mension of 512 [24] and decoded it with linear decoder from section 4.1. A similar set of
baselines has been used as in the previous section and compared to eigenSDF. We observe
similar large gains in the Chamfer metric and competitive performance in other metrics. Re-
sults in Table 2 show that, similar to 3D reconstruction task, our performance is much better
in Chamfer distance, similar in normal consistency, and the second best in IoU.

method IoU↑ Chamfer ↓ nc ↑
eigenSDF (ours) 0.568 0.077 0.852
3D-R2N2 ([8]) 0.565 0.169 0.719
PSGN ([10]) - 0.144 -
DMC ([18]) 0.674 0.117 0.848
ONet ([21]) 0.778 0.079 0.895

Table 2: Results on 3D shape completion

4.3 3D Reconstruction from Latents

Finally, we consider a simple 3D reconstruction task [12]. This can also be viewed as mea-
suring the representational power of the model [21]. We evaluate reconstruction quality of
eigenSDF versus other methods, particularly CNN-based autoencoders. The goal is to re-
construct test set shapes. An initial resolution of 128× 128× 128 was used and reduced to
k = 512 as done in other works [21]. We use cars category from ShapeNet repository and
evaluate reconstruction on unseen data. For the evaluations, in addition to the metrics used
in section 4.1, we further analyse the decoders using F-score [16]. Results are shown in
Table 3.

method IoU↑ Chamfer↓ NC↑ F-score↑
eigenSDF 0.746 0.0425 0.869 0.484
eigenSDF (ft) 0.758 0.0325 0.896 0.529
Linear (φ ) (chamfer) 0.582 0.050 0.773 0.315
Linear(voxels) 0.637 0.067 0.737 0.384
DLS ([22]) 0.681 0.047 0.858 0.103
TL ([12]) 0.656 0.082 0.847 0.081

Table 3: We compare eigenSDF to the state-of-the-art methods in terms of reconstruction.
We find that eigenSDF performs better than linear autoencoders trained on voxels or SDFs.

4.4 Comparison with Deep Level Sets

In this section, we compare our method to the other recent approach relying on the signed
distance transform [22] and learning with the chamfer loss Lε . This one, however, uses the
CNN decoder model and does not learn a latent shape representation. We have chosen a sim-
ilar experimental setup of 3 subsets each having 2 000 examples from ShapeNet repository:
cars, sofas, chairs. We observed that remaining 2 categories, bottles and phones, are too
simple to allow for a difference in higher resolution.

We compare the training time for both methods for various resolutions. The results
shown in Figure 2 demonstrate that, as opposed to eigenSDF, it is not feasible to use the
CNN-based decoder in higher resolutions. It is consistent with the findings of [25]. Note
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that eigenSDF (ft) is first trained in latent space and then shortly finetuned which also signif-
icantly shortens convergence time. Quantitative comparison between eigenSDF (ft) and DLS
is shown in Table 4.

Figure 2: Training time of eigenSDF (finetuned) and dense convnets (TL [12], DLS [22]).
Figure shows on a logscale amount of seconds a network needs for forward and backward
pass of 1 iteration using a batchsize of 32. A single linear fully-connected layer scales much
better in the output size compared to a 3D CNN decoder. Note that on single GPU standard
CNN-based decoders can take weeks or even months to train using a higher resolution if they
can fit into memory. Resolution 256 not shown due to clarity.

4.5 Reconstruction and Generation
Finally, we evaluate the performance on the single view reconstruction qualitatively. In
Figure 5, we can see that reconstructions (on unseen data) can be effective capturing more
complex structures ignored by [22]. We further compare reconstructions when limiting the
output resolution of proposed method to the one used in DLS (see Figure 4).

Multiple authors have also consider generating unconditionally shapes, typically using
sophisticated non-linear deep learning models like GANs and VAEs. We compare some
of these to sampling a gaussian in the latent space of the eigenSDF. Qualitative results are
shown in Figure 3. As it can be seen, our simple approach yields comparable shape repre-
sentation to the complex non-linear models.

5 Conclusion
We have shown that using a simple linear decoder coupled with the SDF representation yields
competitive results. The SDF lends itself effectively to the application of PCA yielding a
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Figure 3: We compare unconditional generations of cars category. Generations from a gaus-
sian fit to eigenSDF is shown in the top row (blue). Second row are generations from [21]
and the third row is from a 3D GAN [33].

2D view GT Deep Level Sets eigenSDF

Figure 4: We compare reconstructions of eigenSDF and the CNN decoder based Deep Level
Sets [22], which also uses SDF representation, at low resolution (323).

strong but simple baseline for future work in learned 3D shape analysis. Moreover, our
work suggests that more complex baseline datasets may be needed to further evaluate deep
learning methods on 3D shape inference.
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2D view GT Deep Level Sets eigenSDF

Figure 5: We compare reconstructions of eigenSDF and the CNN decoder based Deep Level
Sets [22] without limiting eigenSDF to low resolution as it allows us to operate at a higher
resolution and generally produces more locally coherent results.

category DLS eigenSDF(ft)
IoU↑ Chamf↓ NC↑ F-score↑ IoU↑ Chamf↓ NC↑ F-score↑

cars 0.784 0.055 0.804 0.148 0.821 0.040 0.909 0.432
chairs 0.434 0.360 0.743 0.066 0.553 0.125 0.820 0.168
sofas 0.581 0.132 0.779 0.089 0.647 0.082 0.867 0.248

Table 4: Comparison to the SDF based method [22] in single view reconstruction. There is
marked improvement due to the ability to model higher resolution.
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