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Abstract

Type II solar radio bursts have proven to be a useful tool for gaining insights into the
behaviour of complex solar events and for forecasting and mitigating their damages on
Earth. In this work, we detect and segment the occurrence of type II bursts in solar radio
spectrograms, thereby facilitating the extraction of parameters needed to gain insight into
solar events. We utilise prior knowledge of how type II bursts drift through frequencies
over time to assist with these tasks of detection and segmentation. A new adaptive Re-
gion of Interest (ROI) is proposed, to constrain the search to regions that follow the burst
curvature at a given frequency. It comes with an implicit data normalisation that reduces
the variance of burst appearance in the data, hence simplifying the learning process from
small datasets. We demonstrate the effectiveness of our methodology using a simple and
popular HOG and logistic regression detector and basic segmentation based on voting
and background subtraction. On a custom dataset representative of different levels of
solar activity, at a wavelength range where no other detection algorithm currently oper-
ates, our adaptive ROI significantly improves over traditional sliding windows. In future
work, it may be applied to other, state-of-the-art, machine learning algorithms.

1 Introduction
Solar radio bursts have become an increasingly important topic of study due to their relation
with events of space weather that threaten society, including solar flares, Solar Energetic
Particle (SEP) events, and Coronal Mass Ejections (CMEs). Type II bursts in particular
are often good indicators of CMEs and SEPs. Their physical properties (e.g. frequency
range, duration (both total and per frequency channel), intensity, presence of a harmonic
(secondary signal approx. parallel to the main one as in Fig. 1 left), speed of frequency drift
(usually called drift rate) which translates as the curvature of the signal when visualised in
a spectrogram, see Fig. 1) can give important insights into the physics of these events and
mechanisms that produced them. Their automated detection also permits the forecasting
of terrestrial arrival times of space weather events [6], thereby allowing the initiation of
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Figure 1: Detection and segmentation (yellow: ground-truth, red: predicted) of type II solar
radio bursts, in the presence of type III bursts (green arrows) and background noise (inc. RFI
as bright horizontal lines). Note the different shapes/curvatures of the type II bursts at dif-
ferent frequency ranges. We show contrast enhanced spectrograms for ease of visualisation.

precautionary measures for damage mitigation. This is because radio bursts reach Earth
within ∼8 minutes at light speed, whereas the slower particles of SEPs and CMEs take a
few tens of minutes to a few days, respectively. In this work, we are concerned with the
detection and segmentation of type II solar radio bursts. Segmentation is a preliminary step
towards their future physical characterisation. Type III bursts are more frequent than type IIs,
and they present similar features (strong signal against noisy background). They may come
individually or in groups, which sometimes overlap with a type II. Thus, we also consider
these in our study to help with disambiguation.

Of the various burst types pertinent to space weather, type II bursts are arguably the
most difficult to detect. While individual type III bursts have consistent appearances as
thin vertical lines (see Fig. 1), type II bursts have more complex and varying shapes. Their
curvature is a result of their characteristic frequency drift, with a continuously decreasing
rate which can be modeled by a function of (the decreasing) frequency [1]:

d f/dt =−α f ψ , (1)

where α and ψ are a scaling factor and power index on the frequency f , respectively. Type
II bursts may appear at different ranges of frequency, and have different parameters, hence
a wide range of curvatures are possible. This complicates the learning process for pat-
tern recognition techniques and imposes the use of larger training sets. Furthermore, their
low rate of occurrence coupled with the requirement of expert knowledge during annotation
makes the production of large and representative datasets challenging. To overcome these
issues, we propose to integrate knowledge of the drift model into the machine learning based
detector to implicitly reduce the variance within the data. In Section 3, following (1), we
define a curved ROI that adapts its curvature based on the frequency being searched. In do-
ing so, we ensure that any detections are constrained to the possible physics. In addition, the
curved ROI’s data is normalised across all frequencies, which inherently reduces the shape
variation of type II bursts across the dataset. We demonstrate in Section 5 that these two
effects simplify the learning over our small dataset.

Only few works [3, 7, 9] have addressed the detection of type II bursts due to their com-
plexities, and none have attempted their segmentation or physical characterisation. [9] pre-
sented a general detector for radio bursts of types II, III and IV, but only presented results for
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type III bursts. [7, 9] used classical image processing methods (e.g. thresholding, morpho-
logical operations), while, in a recent unpublished work, [3] used an off-the-shelf YOLO [8]
deep learning detector trained from simulated types II and III bursts. The only method that
we know of, that used information on the physics of the type II burst signal, is that of Lobzin
et al. [7] who proposed a first exploitation of the drift model to simplify the task of detection.
They found that ψ ≈ 1 for their dataset (ψ ∈ [0.6,1.3]), which allowed the rearrangement
of frequencies from f to 1/ f to significantly reduce their curvature. The problem of burst
detection thus became greatly simplified to the problem of detecting straight lines, solved
with a Hough transform. However, this data transform drastically reduces the resolution for
the high frequencies because many of these frequencies are mapped to the same (rounded)
1/ f values. Lobzin et al. [7] resolved that situation by discarding full (now overlapping)
rows of the spectrogram. This results in a significant degree of information loss: 33.5% of
discarded channels for their dataset that covers the 25–180 MHz frequency range with their
instrument conveniently sampling the 75–180 MHz high frequencies at a resolution twice
lower than the 25–75 MHz low frequencies, and 56.3% for ours in the 1.075–13.825 MHz
range because of uniform sampling of frequencies.

In summary, the main contributions of this work are: 1) a new strategy for integrating
knowledge on the physics of a signal into a detector. This integration allows better constrain-
ing the detection and segmentation problems, while implicitly reducing the variance in the
appearance of the data. We demonstrate that these effects result in a simplification of learn-
ing that requires fewer training samples. The knowledge integration is done through 2) a new
curved ROI that is demonstrated within a classical HOG-based sliding window detector, and
may be more generally applied within other algorithms. 3) A new dataset of type II and type
III radio bursts with detection and type II segmentation annotations. 4) A new method for
detecting and segmenting type II radio bursts. It is demonstrated on the 1.075–13.825 MHz
range, but its reliance on machine learning would allow re-training it at other frequencies.

In the rest of this article, we introduce our new dataset in Section 2, and our curved
ROI in Section 3. The detection and segmentation pipeline is presented in Section 4, and
evaluated in Section 5. Concluding remarks and future works are provided in Section 6.

2 Type II/III solar radio bursts dataset

We utilise data from the instrument Wind/WAVES [2] and its radio receiver RAD2. The re-
ceiver contains 256 frequency channels linearly spaced from 1.075–13.825 MHz, and a tem-
poral resolution of 16 sec averaged to 1 min. 244 type II bursts are sampled from NASA’s
catalogue of 511 radio-loud (i.e. generating type II bursts) CMEs [5] over 1997–2016 in-
clusive. These bursts, when occurring at high frequency, are often preceded by intense type
III bursts. In general, type III bursts happen frequently with an intensity and vertical shape
that match that of high frequency type II bursts, and may cause confusions for a detector.
Therefore, for our negative samples, we consider both the ‘empty’ (but generally noisy)
background as well as 242 type III bursts randomly sampled from the HFC catalogue1. The
Sun’s level of activity (i.e. the occurrence rate of solar events) follows an 11-year cycle,
commonly illustrated by the varying number of sunspots that may be observed at its surface
over time. We consider three levels of activity in our experiments (high, low, and medium),
with corresponding periods of time defined from the central 40%, outer 20%, and remaining

1http://voparis-helio.obspm.fr/hfc-gui/
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Type II Type III Background

# windows 244 : 49 / 89 / 106 242 : 47 / 89 / 106 245 : 48 / 88 / 109

Table 1: Class distribution of the dataset’s event windows. A breakdown of the numbers per
solar activity level is given as: total : low / med / high.

Duration (mins) Frequency range (MHz) Burst size (px) # sub-bursts # harmonics # lone events

48.30 (40.56) 7.07 (3.66) 929 (687) 4.52 (3.62) 1.72 (0.70) 54

Table 2: Statistics on our 244 type II bursts in ‘mean (std)’ format. Only annotated (i.e.
visible) parts of the bursts are considered in calculating the metrics. ‘Lone event’ are bursts
with no strong noisy signals (e.g. type III, calibration, RFI) in the close (∼30 pixels) vicinity.

40% of Gaussian distributions fitted on the sunspot numbers of each cycle.

Our dataset contains different levels of annotation. Firstly, 3-hour windows are annotated
as containing either ‘Type II’, ‘Type III’, or ‘Background’. The Type II and Type III windows
start 15 min prior to their associated burst. Some Type II windows may also contain type III
bursts (noisy signals), as they sometimes occur concurrently. On the other hand, since our
focus is on detecting type II events, Type III windows are considered as negative samples
and we ensure that they do not contain any type II bursts. Furthermore, we ensure that our
selection of negative windows (Type III and Background) does not overlap with positive Type
II windows to avoid information leaks. The distribution of windows per class and activity
level are provided in Table 1. Secondly, within the Type II windows, the associated burst has
been manually segmented with expert validation. Some statistics over the annotated bursts
are presented in Table 2. Type III bursts have not been segmented due to their very short
duration and known occurrence time. Thirdly, multiple ROIs have been sampled from each
3-hour window to generate a training set for our classifier. For the Type II and Type III
windows, the ROIs of corresponding class focused on the known location of the burst. More
details on the ROI selection will be provided in the Experiment section.

The signal of type II bursts often appears sporadically as a collection of smaller segments,
denoted as sub-bursts. In our dataset, individual sub-bursts are contoured, as seen in Fig. 1.
Some sub-bursts, such as the lower frequency tails, may be difficult to identify due to either
drifting below the frequency covered by a given sensor or dipping below the intensity of the
background. This makes it challenging to recover a burst’s full frequency range and duration.
However, for the purpose of space weather forecasting, detecting and characterising only the
visible parts of the burst is generally satisfactory. Thus, we focus on this task both in the
preparation of our dataset and in the design of our detector, without addressing the challenge
of detecting the fainter or missing tail sub-bursts.

There is a hierarchy of sub-bursts forming harmonics of a burst event. However, for our
purpose of semantic segmentation, considering sub-bursts is enough and we did not group
them into harmonics and bursts in our method, although harmonics are annotated in the
dataset. Including this hierarchy in the method may be done in future works when retrieving
a burst’s parameters (including the number of harmonics).
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Figure 2: Definition of the adaptive curved ROI based on the drift trajectory curve (1) (black
dotted-line), and re-shaping into a normalised version.

3 Adaptive curved ROI

We propose to use the drift rate model presented in (1) to constrain the extraction of ROIs
that better match the physics of the signal. A straightforward approach would be to adapt
the aspect ratio of the (rectangular) ROI to the range of frequencies that it covers. However,
given the curvature of the signal, rectangular ROIs are ill-suited and may enclose a large
part of background. In addition, their rescaling to a fixed aspect ratio before analysis by a
classifier may not effectively normalise the appearance of bursts.

To overcome these issues, we propose a curved ROI that matches the drift trajectory of
the burst. As illustrated in Fig. 2, a 2D curved region is constructed from the 1D curve de-
fined by (1) by restricting it to a specified frequency range and adding thickness to it. Based
on (1), the shape (i.e. curvature) of the ROI will adapt to its starting and end frequencies.
Overall, the adaptive curved ROI is defined by 5 parameters: α , ψ , starting frequency, length
along the curve, and thickness. By construction, when centred on a type II burst, the ROI
contains mostly useful signal without enclosing as much background as a rectangular ROI.

Since the ROI adapts to and follows closely the shape of the type II bursts, it may be
used to normalise it, hence greatly reducing the variance caused by the frequency-drift de-
pendency. This may be done simply by straightening out the ROI into a rectangular region,
as illustrated in Fig. 2. This straightening is performed by sampling along regularly spaced
normals of the drift trajectory curve, using nearest neighbour interpolation as a proof of
concept (although other interpolation methods are usable). The rate of normal sampling is
chosen to match the resolution of the data, i.e. 1 pixel of distance along the curve between
samplings, hence minimising the information loss from the ROI transformation. This lim-
ited information loss is an advantage over the normalisation of [7]. The resulting rectangular
window is suitable for classical computer vision algorithms, including learning-based ones.
In addition, the reduction of variance from curvature normalisation allows the learning task
to be greatly simplified, even for simple machine learning models paired with our limited
number of training samples.

4 Type II burst localisation

We demonstrate our adaptive curved ROI using a popular detector and simple segmentation
procedure. As illustrated in Fig. 3, the localisation pipeline includes preprocessing of the
spectrogram to improve contrast and signal to noise ratio (Section 4.1), followed by a sliding
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Figure 3: Overview of the type II burst detection pipeline. Col. 4 shows the result of pixel
voting (white) overlaid on the log counts of detection candidates (see Section 4.3).

window detector that implements our adaptive curved ROI (Section 4.2). The candidate
detections are finally aggregated into a segmentation using a pixel-wise voting procedure
(Section 4.3). In our proof-of-concept, we apply our detector to 3-hour windows.

4.1 Preprocessing

As can be seen in Fig. 3 left, our spectrograms suffer from a very low contrast. However,
they also contain some speckle noise, coming from various sources including non-solar (e.g.
the galaxy), which hinders the direct application of contrast enhancement techniques. There-
fore, we aim to subtract away the speckle background while preserving the type II signal.
We approximate it by a Gaussian fitted on a 12-hour window for each frequency channel.
We first clip each frequency channel to a minimum of µ +λσ of its Gaussian distribution
(with λ a tunable parameter, optimised to 0.5 in our experiments), thus only keeping the
highest values where bursts may be visible. Second, we remove isolated objects with low
connectivity i.e. non-clipped areas smaller than a threshold (we found that 5 px works well in
our experiments). This step is motivated by the random nature of the speckle noise making
it unlikely for large clumps of signal to form, whereas the spatially correlated nature of burst
signal makes it much more likely, and hence will be preserved. RFI noise and calibration
signals appear as strong horizontal and vertical lines, respectively, with similar distribution
to that of the signal of interest. We choose not to target these for noise removal, and instead
rely on the classifier’s ability to learn about their typical shapes. After noise removal, any
missing samples (from instrument errors) are replaced using a mean filter on 3x5 px win-
dows, and we augment the contrast using a sigmoid transform with gain 10, followed by
histogram equalisation. The result of preprocessing is illustrated in Fig. 3.

4.2 Sliding window detection

The adaptive curved ROI defined in Section 3 may be used within a sliding window detector
just like any traditional rectangular ROI. Indeed, it may be slid across the image, both along
the horizontal axis (time) and the vertical one (frequency), with its shape and curvature auto-
matically adapting to its frequency (i.e. vertical location). The straightened and normalised
(rectangular) region that the ROI defines may be provided as input to a classifier in the same
straightforward way as for a classical rectangular ROI.

Regardless of its location in the image, our ROI can be described by three properties:
length and thickness as defined in Section 3 and Fig. 2, and drift trajectory decided by α

and ψ (i.e. the curve obtained for our spectrogram’s range of frequencies for given values of
its parameters). We find empirically that combinations of 3 different thicknesses, 4 lengths,
and 4 drift trajectories (illustrated in Fig. 4 left), as reported in Table 3, provide a reasonable
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Figure 4: Optimised sliding procedure for our adaptive curved ROI: temporal scanning for
all 4 choices of drift trajectory (left) followed by ROI straightening (see Fig. 2) and scanning
along the drift trajectory curve for different ROI lengths and thicknesses (right).

Drift trajectory α 1.47×10−4 6.19×10−5 9.54×10−5 1.21×10−4

ψ 0.25 0.58 0.82 0.5
Length (px) 42 74 132 164

Thickness (px) 12 18 24 -

Table 3: Choice of discrete parameters for the ROI.

coverage of the burst shapes in our dataset. This provides 48 anchor ROIs (with adaptive
shape based on vertical location) to be slid over the spectrogram.

It is worth noting that, for a given temporal position and drift trajectory, pixels within
overlapping sliding regions would undergo the same ROI straightening operation multiple
times. Therefore, for efficiency, we apply the straightening procedure to the full-lengthed
drift curve (i.e. across all frequencies) rather than to its individual ROIs. Our sliding window
algorithm is the following: for each of the 4 choices of drift trajectory (spanning the entire
frequency range), we first scan the temporal axis (Fig. 4 left). Second, using the maximum
thickness parameter, each maximum 2D curved region is straightened into a rectangular grid.
In this transformed space, the different choices of thickness and length result in rectangular
2D ROIs that may scan the space along the axis corresponding to the 1D curve (i.e. drift
trajectory), as illustrated in Fig. 4 right.

The sliding ROIs are passed to a HOG [4] and logistic regression classifier. Parameters
of HOG are listed in Table 4. Given the sporadic appearance of type II bursts as a collection
of smaller sub-bursts (see Section 2 and illustrations in Fig. 1), the classifier is trained on
various combinations of neighbouring sub-bursts rather than full bursts. This naturally aug-
ments the size of the training data. Consequently, the sliding window procedure results in a
set of candidate curved detections covering various sub-bursts, as illustrated in Fig. 3.

4.3 Post-processing and segmentation
The candidate detections focusing on sub-bursts are ill-suited for a classical non-maximum
suppression procedure. However, we may use them as a basis for a semantic segmentation
of burst signal. Indeed, their shape is designed to mostly contain burst signal and little
background. Thus, we may assume that a pixel that belongs to multiple detections and
multiple sub-bursts is likely to be part of the burst. The final segmentation may be refined
using knowledge on the background from the preprocessing stage.

We tally up the number of detections for each pixel and retain the pixels with a high
(log) total (i.e. pixel voting) using an empirical threshold, as illustrated in Fig. 3. An optimal
value for this threshold may be difficult to find, since a too high value may exclude large
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Cell size 3×3 pixels
Block size 4×4 cells
Block stride 3×3 pixels
Block overlap (due to stride) 3/4

Number of bins 10
Gamma correction No
Signed gradients Yes
Padding 12 pixels along the length dimension of the ROI

Table 4: Parameter values of our HOG descriptors.

parts of the signal, while a too low threshold would introduce false positives. To overcome
this difficulty, we use a two-stage process which first selects the core parts of the burst using
a high threshold, followed by a refinement of these parts only using a lower threshold. We
finally discard any pixels that overlap with the background known from preprocessing to
obtain the final segmentation in Fig. 3 right.

5 Experiments
Since no previous works attempted to localise type II bursts from the frequency range of our
data, we cannot compare against existing burst detection methods. Instead, we first evaluate
the advantages of our proposed ROI over the classical rectangular ROI. Second, we present
the performance of our type II localisation, including both detection and segmentation, when
considering all and individual solar activity levels.

For detection purposes, we consider that any intersection of the segmentation mask with
the contoured groundtruth results in a successful detection. This choice may result in the
number of false positives to inflate substantially whenever the segmentations are fragmented.
Therefore, we group neighbouring pixels (with a proximity of 10 px) into a single event prior
to checking for an intersection. Type II bursts being rare events, this grouping is unlikely to
merge individual bursts.

Table 5 presents precision, recall and F-score for detection, as well as global IoU consid-
ering all pixels of the testing set, and average IoU per detected event to examine how well
individual (successfully detected) events are contoured i.e. how many sub-bursts are found
or missed. Results are averaged over 25 folds, and std are omitted due to lack of space.
The methods’ parameters are tuned individually for each tested scenario using grid search.
They are also tuned separately for evaluating the detection and segmentation performances.
Indeed, given our definition of true detection, a stricter (sub-optimal) segmentation, that
misses more parts of the bursts, but produces fewer false positives, favours better detection
metrics.

Training set – The logistic regression classifier is trained from straightened ROIs using
25-fold cross validation. As explained in Section 4.2, we train on various combinations of
neighbouring type II sub-bursts. This exploits the bursts’ sporadic appearance to augment
the number of positive samples. Further augmentation is obtained by considering multiple
ROIs using the parameter combinations of Table 3 (see Section 4.2). For each sub-burst,
we retain as positive sample any of the 48 anchor ROI that matches the signal with an IoU
greater than 30%. Across our 244 Type II windows, we extract 982 positive samples.

The same distribution of anchor ROIs are used to generate random negative samples from
242 Type III and 245 Background windows, with samples focusing on the know location of
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Classical ROI Proposed ROI
General classifier Specialised classifier

Precision 0.436 – 0.467 / 0.483 / 0.388 0.694 – 0.700 / 0.747 / 0.653 0.685 – 0.815 / 0.770 / 0.603
Recall 0.730 – 0.714 / 0.787 / 0.689 0.725 – 0.714 / 0.730 / 0.726 0.623 – 0.449 / 0.640 / 0.689
F-score 0.546 – 0.565 / 0.599 / 0.496 0.709 – 0.707 / 0.738 / 0.688 0.653 – 0.579 / 0.699 / 0.643

IoU per det. event 0.248 – 0.267 / 0.232 / 0.255 0.387 – 0.369 / 0.389 / 0.393 0.358 – 0.337 / 0.347 / 0.376
Global IoU 0.134 – 0.136 / 0.146 / 0.124 0.282 – 0.249 / 0.312 / 0.272 0.254 – 0.229 / 0.264 / 0.255

Table 5: Type II burst localisation performance using a rectangular (col. 1) and proposed
(cols. 2-3) ROI. Cols. 1-2: general classifier trained on all solar activity levels; Col. 3: clas-
sifiers specialised to each activity level. Results are in the format: tested on ‘all levels –
low / med. / high activity’. Bold highlights the best performance for an activity period.

type III bursts in the Type III windows, and keeping the numbers of samples from each
window class equal. A single iteration of hard negative mining is further used to increase
the size of the negative set by 25%. In total, across both negative classes, we sample 2435
negative samples. During training, stratified sampling is used to get an equal number of
positive and negative samples, before hard negative mining takes the ratio to 4:10. The 25-
fold cross validation is implemented based on the 3-hour windows from which ROIs are
extracted. Thus, different folds cannot contain (possibly overlapping) samples coming from
a same window.

Evaluation of the adaptive curved ROI – We demonstrate the added value of our adap-
tive curved ROI by comparing it to traditional rectangular ROI within a sliding window
detector. Table 5 presents detection and segmentation2 metrics for our detector implemented
with both ROIs (cols. 1-2). We can see that the traditional non-adaptive ROI matches the
recall of our adaptive ROI, but falls behind significantly for precision and IoU metrics. A
first explanation comes from the observation that the increased background content within
the rectangular ROI tends to result in the final segmentation to contain much more negative
signal (e.g. RFI). Second, thanks to the integration of (1), our adaptive ROI constrains the
shape of detection candidates to be in compliance with the known physics. We find that this
significantly reduces false positives and increases the quality of segmentation.

Evaluation of the type II burst localisation – Col. 2 of Table 5 details the detection
and segmentation performance of our method on different levels of solar activity, when the
classifier is trained on all activity levels. When examining the segmentations of detected
events, we note that the method focuses mostly on the main and stronger parts of the signal,
which happen during the bursts’ early lifetime, while the drifting tail is often missed (see
illustration in Fig. 1 left). This results in a rather low IoU per detected event. As explained
above, this focus on early bursts is perfectly acceptable for space weather forecasting, as it
does not prevent the detection of the events. Future works will examine whether this IoU
is sufficient to support the fitting of models on the detected bursts in order to regress their
physical parameters (e.g. drift rate and thickness per frequency channel).

By nature, low activity periods contain few events, while type II bursts are more frequent
at high activity levels (see Table 1). On the other hand, low activity levels produce less noise
(e.g. type III bursts), while high activity periods tend to be more noisy making the detection

2Although our segmentation procedure, especially the pixel voting, relies on the curved ROI not containing
much background, we find that it applies reasonably well (but with more confusions with background signals such
as type III bursts, RFI, and random noise) to the rectangular ROI thanks to the final background removal step that
compensates for the more important presence of background in the ROI.
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and segmentation tasks harder. These effects of activity level on sampling and noise rates
result in a trade-off that seems to be reached at medium activity level, where recall, F-score
and IoU metrics are at their maximum. Furthermore, when evaluating the IoU per detected
event, we typically see performance increasing with the level of activity. Higher solar activity
may correspond to an increase in the intensity of burst signal, allowing for a larger portion
of each event to be detected.

These observations prompt us to evaluate a second scenario where three specialised clas-
sifiers are trained and tested on activity level–based subsets. We can see in col. 3 of Table
5 that specialised training always results in a significantly lower recall, especially at low ac-
tivity level. This may be due to the smaller specialised training sets (see Table 1) not being
representative enough of the different bursts that may occur during these periods. This hy-
pothesis is supported by an improved precision for low and medium activity periods, which
may indicate an over-fitting of the classifier for these particularly under-sampled periods.
The high activity level period contains more samples and more diversity from spurious events
(such as type III bursts), which limited the decrease in recall of the detector. However, the
same sampling rate / noise rate trade-off as before still favours medium activity levels with
better overall F-score and segmentation metrics. In future work, it may be interesting to
further explore the use of specialised classifiers using larger datasets.

6 Conclusion
We present a novel curved ROI that integrates knowledge on the physics of signals and adapts
its shape depending on the frequency (vertical location) being evaluated. When compared
with a traditional rectangular ROI, we demonstrate that our adaptive ROI allows for detec-
tions to be better constrained to the possible shapes, resulting in a reduction of false positives,
and for segmentation quality to be improved through the decreased proportion of non-burst
signal within the ROI. We demonstrated our ROI using a simple classifier and segmentation
procedure. However, its general formulation would allow it to be used within more advanced
algorithms in future works. We also evaluate the influence that solar activity has on the per-
formance of our detector. We show that the different occurrence rates of events at different
activity levels (and thus availability of training data), as well as the varying levels of noise,
both impact the performance of the classifier. More work is needed to explore specialised
classifiers from larger and more representative datasets for each solar activity level.
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