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Abstract

3D indoor semantic scene reconstruction from 2D images is challenging as it requires
both scene understanding and object reconstruction. Compared to perspective images,
panoramas provide larger field of view and carry more scene information. In this paper,
to reconstruct the 3D indoor semantic scene from a single panorama image, we propose
a pipeline that jointly learns to predict the 3D scene layout, complete the object shapes
and reconstruct the full scene point cloud. Experiments on the Stanford 2D-3D dataset
demonstrate the generality and suitability of the proposed method.

1 Introduction
3D indoor semantic scene reconstruction from 2D images is important for different computer
vision applications such as robot-environment interaction and interior design. At the same
time, panorama images are currently enjoying a surge in popularity and witnessing increased
adoption in robotic applications and marketing productions. In this paper, we focus on the
reconstruction of a full 3D indoor semantic scene point cloud from a single panorama image.

Most of the previous works on semantic scene reconstruction are dealing with perspec-
tive images. Tulsiani et al. [24] propose a voxel-based representation to reconstruct the 3D
structure of the scene, but the resolution is limited and the computational cost for scene-level
voxel reconstruction yields considerable amount of overhead during training and inference.
Izadinia et al. [16] reconstruct a scene by retrieving similar meshes from a large database of
furniture CAD models. However, the method requires many iterations of model rendering
and the accuracy is highly dependent on the similarity of the CAD models in the database.
Recently, [21] proposes a method to jointly reconstruct the room layout, object bounding
boxes and meshes from a single perspective image. However, the method requires dense and
clean meshes for proper object mesh reconstruction, which is tedious and labor-consuming
for real scenes. Furthermore, previous methods can only partially reconstruct indoor scenes
as the perspective images have limiting effects on the field of view. In contrast to previous
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methods, our approach reconstructs the full 3D indoor semantic scene point cloud from a
single 2D panorama image. The proposed pipeline jointly learns to predict the 3D scene
(room) layout, complete object (furniture) shapes and reconstruct the full scene point cloud.

Previous methods on panorama layout estimation predict the 2D layout edges and corners
in the input panorama and by post-processing them to match the (Manhattan) 3D layout [19,
22, 33]. However, object clutter poses a challenge to properly extract the occluded edges and
corners. In addition, constraints are imposed in the optimization process to compute the 2D
to 3D conversion. In contrast to existing methods, our method directly estimates the layout
depth map. The predicted layout depth map can serve as a coarse 3D layout by converting it
to a 3D point cloud of the scene layout. Hence, the proposed method does not require extra
constraints for the 3D optimization.

As to object shape completion, most previous work focus on object-level completion [10,
23, 28, 29], in which the input are normally clean partial point clouds. In contrast, our
method aims to full scene-level object completion. Due to the accuracy limitation of scene-
level depth estimation and instance segmentation, the partial object point clouds inferred
from the predicted depth and instance masks are typically noisy and deformed. The pro-
posed method projects the noisy global feature vectors onto the manifold of the clean ones
to overcome the noise and deformations in the predicted partial point clouds.

To impose the global constraints for the scene-level reconstruction and enforce consis-
tency between the reconstructed scene point cloud and the panorama input, it is critical to
jointly train our pipeline end-to-end. The proposed method equirectangularly projects the
inferred complete object point clouds back on the 2D panorama to minimize the losses of
the projected object masks and depth with respect to the ground truth. Experimental results
indicate that joint training further advances the reconstruction accuracy. To the best of our
knowledge, our approach is the first to reconstruct the full 3D indoor semantic scene point
cloud from a single panorama image.

In summary, our contributions are as follows:

• A unified semantic scene reconstruction pipeline is proposed to reconstruct the full 3D
indoor semantic scene point cloud from a single panorama image.

• To recover the 3D layout of the scene, the method estimates the layout depth map and
reconstruct the parameterized 3D layout. Our method obtains state-of-the-art perfor-
mance for 3D layout estimation from a single panorama image.

• To generate the full point cloud of objects in the scene, the method completes the ob-
ject point cloud from the visible partial point cloud via global feature vector mapping
to obtain robustness to noise and deformations in the predicted partial point cloud.

• To enforce consistency between the reconstructed scene point cloud and the panorama
input, the method projects the inferred complete object point cloud back on the 2D
panorama and jointly trains the full pipeline end-to-end.

2 Related Work
Layout Prediction: Traditional methods treat this task as an optimization problem. Delage
et al. [5] propose a dynamic Bayesian network model to recover the 3D model of the indoor
scene. Hedau et al. [12] model the room with a parametric 3D box by iteratively localizing

Citation
Citation
{Lee, Badrinarayanan, Malisiewicz, and Rabinovich} 2017

Citation
Citation
{Sun, Hsiao, Sun, and Chen} 2019

Citation
Citation
{Zou, Colburn, Shan, and Hoiem} 2018

Citation
Citation
{Groueix, Fisher, Kim, Russell, and Aubry} 2018

Citation
Citation
{Tchapmi, Kosaraju, Rezatofighi, Reid, and Savarese} 2019

Citation
Citation
{Yang, Feng, Shen, and Tian} 2018

Citation
Citation
{Yuan, Khot, Held, Mertz, and Hebert} 2018

Citation
Citation
{Delage, Lee, and Ng} 2006

Citation
Citation
{Hedau, Hoiem, and Forsyth} 2009



W. ZENG, S. KARAOGLU, T. GEVERS: PANO2SCENE 3

Ed DGFV

E

FCRN

Mask
R-CNN

Panorama	Input

Depth	Estimation

Instance	Masks

3D	Layout	Estimation

Object	Shape	Completion

3D	Semantic	Scene	Reconstruction

V

Vd Vd

Figure 1: Overview of our pipeline. The whole process consist of three modules: 1) depth
and instance segmentation; 2) 3D layout estimation; 3) object shape completion. The output
is the reconstructed 3D indoor semantic scene point cloud of the panorama input.

clutter and refitting the box. Recently, neural network-based methods took stride in tackling
this problem. Zou et al. [33] predict the layout boundary and corner map directly from the
input panorama. Yang et al. [27] leverage both the equirectangular panorama-view and the
perspective ceiling-view to learn different cues of the room layout. Sun et al. [22] encode
the room layout as three 1D vectors and propose to recover the 3D room layouts from 1D
predictions. Other works aims to leverage depth information for room reconstruction [20, 31,
34], but they all deal with perspective images and use ground truth depth as input. In contrast
to previous methods, in this paper, we predict the layout depth map as the intermediate
representation to recover the 3D layout of the input panorama.

Point Cloud Completion: Fan et al. [8] propose an architecture consisting of an encoder
which encodes the input into an embedding, and a decoder which generates the point cloud
from the embedding. Yang et al. [28] generate a point cloud structured as a manifold through
a series of deformation (folding) operations on the Euclidean plane. Yuan et al. [29] combine
the fully-connected decoder and the folding decoder to generate point clouds in two stages.
Groueix et al. [10] design a decoder that learns a manifold by computing a mapping from
the Euclidean plane to the ground-truth point cloud. Tchapmi et al. [23] propose a decoder
that generates a structured point cloud without assuming any specific structure or topology
on the underlying point set. [30] decomposes the single-view point cloud generation into
depth estimation and point cloud completion. The proposed method extends this concept to
scene-level reconstruction. The global feature vector mapping is used to obtain robustness
to noise and deformations in the inferred partial point cloud.

Semantic Scene Reconstruction: Indoor scene reconstruction from images is an essen-
tial task in computer vision and graphics. A number of existing approaches [4, 14] estimate
the object poses together with the room layout [5, 12]. However, these methods focus on the
prediction of the 3D bounding box for each object. Other methods [15, 16] use 3D model
retrieval modules to improve the shape quality in scene reconstruction. [9, 21, 24] only need
a single image as input to reconstruct multiple object shapes in a scene. [9] produces object
meshes, but ignores scene context and suffers from the artifacts of mesh generation on cubi-
fied voxels. [24] is designed for voxel reconstruction with limited resolution. [21] requires
clean and dense meshes to supervise object mesh reconstruction. Different from all existing
methods, our proposed method combines depth estimation, instance segmentation, 3D lay-
out estimation and object shape completion through a joint learning (end-to-end) pipeline to
reconstruct the 3D indoor semantic scene point cloud from a single panorama image.
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Figure 2: Demonstration of the 3D layout estimation module. This module estimates the (b)
layout depth of the (a) panorama input, then recovers the parameterized 3D scene layout. (c)
is the 3D layout point cloud directly recovered from the estimated layout depth map. The (d)
final 3D layout constrain the layout shape to Manhattan world assumption.

3 Method
The overview of the proposed pipeline is illustrated in Figure 1. Our pipeline consists of
three modules: (1) the depth and instance segmentation module predicts the depth map and
instance segmentation masks from the panorama input; (2) the 3D layout estimation module
recovers the 3D scene layout from the estimated layout depth map; (3) the object shape com-
pletion module infers the complete object point cloud from the visible partial point cloud.
The proposed pipeline reconstructs the full scene point cloud by embedding the outputs of all
modules together by joint training and inference. The details of each module are discussed
in this section.

3.1 Depth and Instance Segmentation

The first module of the proposed pipeline consists of depth estimation as well as instance
segmentation from a single panorama image.

Depth Estimation: For this task, different CNN models for depth estimation exist [3,
6, 7, 18, 25, 32]. In our work, the fully convolutional ResNet-50 architecture proposed by
Laina et al. [18] is used. However, the equirectangular panorama may suffer from horizontal
distortions. To reduce this distortion effect, the encoder uses a modified input block. As
shown by [32], the input block uses rectangle filters and varies the resolution to account for
different distortion levels. One more up-projection layer is also added to the original FCRN
network architecture so that the output depth preserves the input resolution.

Instance Segmentation: In our method, Mask R-CNN [11] is used to segment images
at the instance-level to obtain the object labels and corresponding masks. The ResNet-101
backbone is used and initialized with pre-trained weights on the MSCOCO dataset [1].

3.2 3D Layout Estimation

To obtain the global geometric structure of the scene, the proposed approach predicts the
3D scene layout. Instead of predicting 2D representations (e.g. edge and corner maps),
our method directly predicts the layout depth map from the input panorama. The input
of this proposed module is the concatenation of the predicted depth map and the instance
segmentation masks from previous module. A ResNet-18 is used to build our encoder for
the layout depth estimation network. The decoder restores the original input resolution by
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means of up-sampling operators followed by 3× 3 convolutions. The skip connections are
also added to prevent shifting of the prediction results during the up-sampling step. The
output is the estimated layout depth map with the same resolution as the input panorama.

To constrain the layout so that the floor and ceiling are planar and walls are perpendicular
to each other (Manhattan world assumption), the proposed method recovers the parameter-
ized 3D layout through optimization in 3D space, as shown in Figure 2. Using the scene
layout point cloud converted from the predicted layout depth map, the floor/ceiling plan map
is obtained by projecting the point cloud to the XZ plane. Similar to [27], a regression anal-
ysis is applied on the edges of the floor plan map and cluster them into sets of horizontal
and vertical lines in 3D space. Then, the floor plan is recovered by using the straight, axis-
aligned, wall-floor boundaries. The room height is efficiently computed by voting for the
ceiling-floor distance along the Y axis. As a result, the recovered parameterized 3D layout
meets the Manhattan world assumption.

3.3 Object Shape Completion

After the depth map is estimated, the point cloud of the visible scene is calculated based on
the camera model. With the predicted instance masks, the visible partial point cloud of each
object is inferred. Limited by the accuracy of the scene-level depth estimation and instance
segmentation, the inferred partial point clouds are typically noisy and deformed.

Object Point Cloud Completion: The full point cloud is inferred by learning a mapping
from the space of partial observations to the space of complete shapes. To this end, an
encoder-decoder network architecture similar to PCN [29] is used. The aim of the encoder
E is to concisely represent the geometric information of the partial point cloud by a global
feature vector v. The decoder D, taking the global feature vector v as input, first produces a
sparse point cloud by a fully-connected decoder [8]. Then, a detailed point cloud is obtained
by a folding-based decoder [28]. In order to learn a prior over the complete 3D point cloud,
we train the encoder-decoder network (E, D) taking the partial point cloud inferred from the
ground truth depth and instance masks, i.e. the clean partial point cloud, as input.

Global Feature Vector Mapping: If the inferred noisy and deformed partial point cloud
is passed through the encoder E, a "noisy" global feature vector is obtained, i.e. one that
does not lie on the manifold of representations learnt by the above encoder-decoder network
(E, D). Hence, the task of completing the point cloud is reduced to projecting the noisy
global feature vector onto the manifold of clean ones. The cleaned global feature vector can
then be passed through the decoder D to obtain a complete point cloud. Taking the estimated
partial object point cloud as input, another encoder Ed is trained. As shown in Figure 1,
the global feature vector vd from Ed is mapping to the clean global feature vector v from
E. Then the global feature vector vd is passed through the pre-trained decoder D to output
the completed point cloud. The parameters of D are not updated during this step. Through
the global feature vector mapping in latent space, the network becomes robust to noise and
deformations in the predicted partial point cloud.

3.4 Joint Learning for Semantic Scene Reconstruction

In this section, the learning targets are discussed with the corresponding loss functions, and
we describe our joint loss for end-to-end training.
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Individual Losses: For depth estimation, the reverse Huber (berHu) loss is used:

Ldep =

{
ei ei ≤ c

e2
i +c2

2c else
(1)

where ei = ‖di−gi‖1, di and gi denote the predicted and ground truth depth respectively. We
follow [18] to set c = 1

5 maxi(‖di−gi‖1).
For instance segmentation, the same losses as Mask R-CNN [11] are used:

Lseg = lcls + lbox + lmask (2)

where lcls, lbox and lmask denote the classification loss, the bounding-box loss and the mask
loss, respectively.

For 3D layout estimation, to account for both pixel-wise accuracy and spatially coherent
results of the layout depth estimation, the depth gradient and normals are incorporated with
the reverse Huber loss, as done by [13]:

Llayout_dep = ldepth + lgradient + lnormal (3)

where ldepth, lgradient and lnormal denote the reverse Huber loss, the depth gradient loss and
the normal loss, respectively.

For point cloud completion, the Earth Mover’s Distance (EMD) is used to measure the
distance between the predicted point cloud Pp and the ground truth point cloud Pgt . The
EMD requires Pp,Pgt ⊆ R3 to have equal size s = |Pp|= |Pgt |, defined by:

LEMD =
1
|s|

min
φ :Pp→Pgt

∑
x∈Pp

‖x−φ(x)‖2
2 (4)

where φ : Pp → Pgt is a bijection. As to the latent space mapping for the global feature
vectors, the pipeline minimizes the L2 distance between the global feature vector vd from
the estimated partial object point cloud and the one v from the ground truth.

Lg f v = ‖vd− v‖2
2 (5)

Joint Losses: To enforce consistency between the reconstructed scene point cloud and
the panorama input, we define: (1) projected mask loss Lpro j_m, as the average binary cross-
entropy loss between the projected object masks and the ground truth masks; (2) projected
depth loss Lpro j_d , as the L2 loss between the projected object depth and the ground truth ob-
ject depth. As done by [17], we only use the non-zero pixels in the projected depth map and
search their neighbors to reduce the influence of projection errors. With these two proposed
joint losses, the poses and scales of the reconstructed object point cloud are constrained and
consistent with the panorama input image.

End-to-end joint training using all loss functions is defined by:

L = λdepLdep +λsegLseg +λlayout_depLlayout_dep

+λEMDLEMD +λg f vLg f v +λpro j_mLpro j_m +λpro j_dLpro j_d
(6)

where λ∗ are the weights used to balance contribution of each component loss.

Citation
Citation
{Laina, Rupprecht, Belagiannis, Tombari, and Navab} 2016

Citation
Citation
{He, Gkioxari, Doll{á}r, and Girshick} 2017

Citation
Citation
{Hu, Ozay, Zhang, and Okatani} 2019

Citation
Citation
{Jiang, Shi, Qi, and Jia} 2018



W. ZENG, S. KARAOGLU, T. GEVERS: PANO2SCENE 7

Method 3D IoU(%) Corner error(%) Pixel error(%)
LayoutNet [33] 76.33 1.04 2.70
DuLa-Net [27] 79.36 0.79 2.55

HorizonNet [22] 79.79 0.71 2.39
wo/ depth & semantic 77.25 1.23 3.40

w/ pred. depth 81.82 0.84 3.02
w/ pred. semantic 78.26 1.25 3.31

Ours 84.88 0.70 2.40

Table 1: Quantitative results and ablation study of 3D layout estimation on the Stanford
2D-3D dataset. Our method outperforms all existing methods.

4 Experiments
In this section, the performance of our proposed pipeline is evaluated on 3D layout estima-
tion, object point cloud completion and 3D semantic scene reconstruction.

Dataset: The dataset used for training and testing is the Stanford 2D-3D dataset [2]. The
Stanford 2D-3D dataset contains 1413 RGB panoramic images collected from 6 large-scale
indoor environments, including offices, conference rooms, and other open spaces. For each
room there is real-scanned point cloud and annotated as furniture (board, bookcase, chair,
sofa, table) or building elements (ceiling, floor, wall, door, window) or clutter.

Metrics: The 3D layout estimation is evaluated by: 1) 3D IoU: intersection over union
between predicted 3D layout and the ground truth; 2) Corner error (CE): average Euclidean
distance between predicted corners and ground-truth corners; 3) Pixel error (PE): pixel-wise
error between predicted surface classes and the ground truth.

The object point cloud completion is evaluated by the Chamfer Distance (CD) and Earth
Mover’s Distance (EMD). The Chamfer Distance measures the difference between the pre-
dicted point cloud Pp and the ground truth point cloud Pgt , defined by:

LCD =
1
|Pp| ∑

x∈Pp

min
y∈Pgt
‖x− y‖2

2 +
1
|Pgt | ∑

y∈Pgt

min
x∈Pp
‖x− y‖2

2 (7)

The 3D scene reconstruction is also evaluated by the Chamfer Distance and Earth Mover’s
Distance.

Implementation: To initialize our networks properly, the pipeline follows a two-stage
training procedure: we first train depth estimation, instance segmentation, 3D layout estima-
tion, and object shape completion network individually. Then, we combine all the networks
and jointly train the pipeline end-to-end with the loss L in Equation 6.

4.1 3D layout Estimation:
A quantitative comparison of different methods for 3D layout estimation on the Stanford 2D-
3D dataset is summarized in Table 1. LayoutNet [33] predicts the layout boundary and corner
maps directly from the input panorama. DuLa-Net [27] leverages both the equirectangular
panorama-view and the perspective ceiling-view to learn different cues for room layout.
HorizonNet [22] encodes the room layout as three 1D vectors and proposes to recover the
3D room layout from 1D predictions by a RNN. Besides, ablation studies of the proposed
method are conducted as: 1) wo/ depth&semantic: predicting the layout depth directly from
the input; 2) w/ pred. depth: only with the predicted depth; 3) w/ pred. semantic: only
with the predicted semantic. The proposed method shows state-of-the-art performance and
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Figure 3: Qualitative comparison on 3D layout estimation. For each example, the predicted
layout (HorizonNet [22]: blue, our proposed method: green) is shown together with the
ground truth (orange) under an equirectangular view.

Window Door Table Chair Sofa Bookcase Board Reconstructed Scene

CD

PointNet-FC (baseline) 0.011 0.022 0.039 0.015 0.043 0.018 0.006 0.022
FoldingNet [28] 0.009 0.018 0.035 0.009 0.039 0.016 0.004 0.019
PCN [29] 0.009 0.019 0.022 0.007 0.030 0.014 0.005 0.015
Ours (with GFV) 0.004 0.006 0.014 0.007 0.019 0.009 0.002 0.009
Our Final (with GFV & joint training) 0.004 0.004 0.011 0.004 0.017 0.008 0.002 0.007

EMD

PointNet-FC (baseline) 0.017 0.039 0.068 0.027 0.080 0.039 0.008 0.040
FoldingNet [28] 0.015 0.032 0.073 0.022 0.051 0.032 0.006 0.033
PCN [29] 0.014 0.031 0.033 0.016 0.048 0.021 0.006 0.024
Ours (with GFV) 0.008 0.011 0.025 0.015 0.033 0.018 0.004 0.016
Our Final (with GFV & joint training) 0.008 0.007 0.021 0.010 0.030 0.015 0.004 0.013

Table 2: Point cloud reconstruction. Our proposed method performs the best for object shape
reconstruction and overall scene reconstruction.

outperforms other existing methods. By leveraging the layout depth map as an intermediate
representation, the proposed network abstracts the geometric structure of the scene from
both a local and global perspective. This results in more geometric cues for the scene layout
prediction and is less affected by occlusions.

The qualitative results for the 3D layout estimation are shown in Figure 3. The proposed
method outperforms the other methods and shows robustness to occlusion. As presented
by the first two examples in the second row, with more global structure information and
semantic content, the detection of occluded corners are more accurate. As shown in the
third example in the second row, since the proposed method explicitly incorporates depth
information, the corners are located more precisely (avoiding locations in the middle of the
wall which has continuous depth).

4.2 Object Point Cloud Completion:

To evaluate our proposed object shape completion module, the results are compared with the
baseline PointNet-FC as well as state-of-the-art methods FoldingNet [28] and PCN [29], as
shown in Table 2. The baseline PointNet-FC consists of the PointNet encoder and a fully
connected decoder with 4 layers of output dimensions 256, 512, 1024, and 3×N (N = 1024
in our experiments). The FoldingNet proposes a folding-based decoder that deforms a canon-
ical 2D grid onto the underlying 3D object surface of a point cloud. The PCN generates point
clouds in 2 stages where the first stage is a lower resolution point cloud and the second stage
is the final output. With the global feature vector mapping (GFV) to regulate the inferred
partial point cloud, our proposed module outperforms other methods for all categories.

A number of qualitative results are shown in Figure 4. The ground truth of Stanford
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Figure 4: Qualitative comparison on 3D object point cloud completion.

2D-3D dataset, used as supervision, are real-scanned point clouds which may be incom-
plete. This makes the object point cloud completion more challenging. FoldingNet tends to
generate continuous surfaces which could not preserve the gap between points (e.g. doors)
and details (e.g. chair leg in the second example of the first row). PCN could abstract the
global structures of the objects but the details are negatively affected by the inferred noisy
partial point clouds (e.g. both chairs examples). Through global feature vector mapping, our
proposed method generates plausible complete object point clouds.

4.3 3D Semantic Scene Reconstruction:

To impose the global constraints for the scene-level reconstruction and enforce consistency
between the reconstructed scene point cloud and the panorama input, we combine all the
modules and jointly train the pipeline end-to-end. As this is the first work, to the best of our
knowledge, to reconstruct the full 3D semantic scene point cloud from a single panorama
image, we report the quantitative results in Table 2 and illustrate the qualitative results of the
reconstructed semantic scene point cloud in Figure 5. As shown in Table 2, with joint (end-
to-end) training, the performance of the reconstruction is further improved. The examples in
the first row in Figure 5 show the scenes with clear views and less occlusions. The examples
in the second row exhibit the input panoramas with more clutter and large occlusions. The
third row presents the results for more complicate scenes. All the results manifest that,
with different complexities, our pipeline maintains visually appealing reconstructed semantic
scene point cloud.

As an example, to show the generalization ability of our model, we apply our method
on unseen data provided by the SUN360 dataset [26], where no ground truth depth or point
clouds are available. As shown in Figure 6, although the SUN360 dataset has completely
different indoor configurations, our approach still obtains plausible 3D reconstruction results.

5 Conclusion
In this paper we propose a pipeline to reconstruct the 3D indoor semantic scene point cloud
from a single panorama image. The proposed pipeline joint learns to predict the 3D scene
layout, complete the object shapes and reconstruct the full scene point cloud. By estimating
the layout depth map, the method recovers the parameterized 3D scene layout. To generate
the full object point cloud, the method completes the noisy partial point cloud via global fea-
ture vector mapping. The full pipeline is joint training end-to-end to ensure the consistency
between the reconstructed scene point cloud and the panorama input. Experimental results
demonstrate the the generality and suitability of the proposed pipeline.
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Panorama	Input Ours Ground	Truth

Figure 5: Qualitative results for 3D semantic scene reconstruction. Given a single panorama
image, our method (end-to-end) reconstructs the 3D indoor semantic scene point cloud.

Panorama	Input Ours	Reconstruction Panorama	Input Ours	Reconstruction

Figure 6: Qualitative results for 3D semantic scene reconstruction on unseen image samples
from the SUN360 dataset.
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