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Abstract

One of the key challenges of today’s semantic segmentation approaches is to ob-
tain robust and reliable segmentation results not only in good weather conditions, but
also in adverse weather conditions such as darkness, fog or heavy rain. For this pur-
pose, multiple sensor data of several sensor types such as camera and lidar are required
to compensate the weather sensitivity of individual sensors. Hence, a semantic seg-
mentation dataset is necessary, which contains camera and lidar data, but until recently,
no such dataset exists. Therefore, the ADUULM dataset was created, a semantic seg-
mentation dataset which consists of fine-annotated camera data and pixel-wise labeled
lidar data recorded in diverse weather conditions. Additionally, the corresponding GPS,
IMU and stereo information are provided, and for each annotated data sample, a short
video-sequence is available, too. Furthermore, state-of-the-art semantic segmentation
and drivable area detection approaches are evaluated on the proposed dataset, and it
turned out that new methods are required to obtain robust and reliable results in ad-
verse weather conditions. The ADUULM-dataset will be available online at https:
//www.uni-ulm.de/in/iui-drive-u/projekte/aduulm-dataset/.

1 Introduction
In recent years, several public available semantic segmentation datasets for autonomous driv-
ing have been released. For example, the Cityscapes dataset [5] published in 2016 is one of
the first large datasets for semantic segmentation containing about 5000 fine-annotated cam-
era images and the corresponding depth value. The data were recorded in good weather
conditions in several cities in Germany. Recent published datasets such as Berkeley Deep
Drive (BDD) [21], Apollo Scapes [10], and the Mapillary dataset [13] consist of even more
labeled data and are also recorded in different weather conditions such as daylight, rain and
night, and in different environments such as city or countryside. An overview of the most
common segmentation datasets is shown in Table 1. Each of the listed datasets delivers
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Figure 1: The oncoming car (red boxes) can be hardly recognized in the camera image (a)
due to the darkness and the blending car headlights, while it can be clearly seen in the lidar
data (b). The corresponding fine-annotated camera image is illustrated in (c)

Table 1: Public available semantic segmentation datasets for autonomous driving

dataset images camera lidar stereo video weather conditions

CamVid [7] 701 X × × X daylight
Cityscapes [5] 5000 X × X X daylight

Kitti [8] 400 X (X)∗ (X)∗ × daylight
Mapillary [13] 25000 X × × × diverse weather

BDD [21] 5683 X × × X diverse weather
Apollo Scapes [10] 55884 X × X X diverse weather
SemanticKITTI [2] 43552 × X × X daylight

A2D2 [9] 41272 X X × × daylight
proposed 3893 X X X X diverse weather

∗for 200 images, lidar and stereo data are available through the stereo benchmark.

pixel-wise annotated labels of the camera images and many of them also provides video se-
quences and stereo information. These datasets also contribute to the increasing success of
the segmentation approaches such as ICNet [23], DeepLabv3+ [3] and BiSeNet [20], which
perform very well in good weather conditions. Although some of the datasets contain adverse
weather data, most of the semantic segmentation approaches are only suitable for a limited
degree in adverse weather conditions such as snow, fog, rain or darkness. Therefore, a ro-
bust and reliable semantic segmentation of the car’s surrounding is not possible [15], since
the environment cannot be observed completely any more by camera systems due to sensor
disturbances. For instance, in Fig. 1 (a), the van in front of the ego-vehicle can be clearly
seen by the human eye, while the oncoming car can be hardly recognized due to the darkness
and the blending car headlights. In contrast, the oncoming car can be clearly detected in the
lidar data (see Fig. 1 (b)). Consequently, an appropriate sensor fusion of camera and lidar
data might increase the segmentation performance and its robustness. Though fusing multi-
ple sensor data of different sensor types is very popular in object detection tasks [4, 11, 14],
there are hardly any similar methods for semantic segmentation applications. The reason is
that until now there are no suitable datasets available (see Table 1), which contain camera and
lidar data, except the Audi Autonomous Driving Dataset (A2D2) [9], which was published
in the end of April 2020. This motivates us to construct the ADUULM (Autonomous Driv-
ing at University Ulm) dataset, a dataset, which consists of 3893 fine-annotated camera and
lidar data and the corresponding GPS, IMU and stereo information. In contrast to the A2D2-
dataset, the ADDULM-dataset also provides small video-sequences for each annotated data
sample since the use of temporal information increases the segmentation accuracy further
[16, 17, 19, 22]. Furthermore, the ADDULM-dataset was recorded in diverse weather condi-
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tions such as daylight, darkness, (heavy) rain and fog, while the A2D2-dataset only contains
daylight recordings. In this work, more details about the proposed dataset is given and state-
of-the-art approaches of two computer vision sub-tasks (semantic segmentation and drivable
area detection) are evaluated on this new dataset. Nevertheless, this dataset is also suitable
for other applications such as object detection, instance and panoptic segmentation due its
labeling policy.

2 Dataset

2.1 Sensor Equipment

The data of this dataset were collected by our test vehicle, which contains current state-of-
the-art sensors of the autonomous driving domain. Our car is equipped with four cameras,
four lidar sensors, an IMU accelerations measurement unit and a high-precision GPS sensor.
Three cameras (a wideangle camera and a stereo camera pair) of resolution 1920×1080 are
mounted behind the windshield, and the fourth camera of resolution 1392×1040 is mounted
in the rear window. Each of the cameras provides 12 bit grayscale images at a frame rate of
15Hz and is triggered by the GPS time. The camera images are stored as 16bit images due to
processing reasons. Moreover, the stereo information is yielded by the hardware unit ZYNQ
Box SCS FPGA V. 1.0, in which the stereo global matching (SGM) approach is efficiently
implemented. Furthermore, four lidar sensors of type Velodyne VLP-16 and frequency 10Hz
are mounted on four different positions on the roof of the test vehicle (front, left, right, and
rear) to capture accurate 3D information of the car’s surrounding. In recent recordings, the
front and the rear lidar sensors were replaced by Velodynes VLP-32 to get more precise
spatial environment information. For each 3D point of the point cloud, the corresponding
intensity value is also provided. Our test vehicle also contains an IMU measurement unit
providing the vehicle’s velocity and acceleration at a frame rate of 50Hz, and receives the
current GPS position for localization.

2.2 Sensor Calibration

An accurate sensor calibration is a very important requirement for fusing different sensor
data to obtain a good and robust monitoring of the environment. The provided sensors of
this dataset are mounted at different locations in the car and deliver their data at different
time and with different frequency. Therefore, the sensor data has to be calibrated spatially
and temporally. Generally, all sensors are spatially calibrated to a global reference point, the
origin of our vehicle coordinate frame, which is the center of the vehicle’s rear axis. For
instance, the transformation matrix from the image coordinate frame to the vehicle frame is
determined by means of extrinsic camera calibration. For this purpose, we distribute several
chessboards patterns of known size in the camera’s field of view and measure the position of
their inner corner points in respect to the vehicle frame by means of a laser rangefinder. The
rotation and the translation are yielded by minimizing the average reprojection error of the
determined 3D corner points to the corresponding image points, provided that the intrinsic
camera parameters are known. Moreover, the lidar sensors are calibrated to each other by
point cloud matching recorded at the same scene and to the vehicle coordinate frame by
matching the point clouds at different positions given the precise GPS-position.

After the spatial calibration, the sensors have to be calibrated temporally, since the sensor
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Table 2: Class Definition

class id description
car 2 cars, vans, mini-buses including driver

truck 3 incl. agricultural and construction machines
bus 4 buses and trams

motorbike 5 motorbike and mopeds including motorcyclist
pedestrian 6 with bags and luggage
bicyclist 7 bike and bicyclist

traffic-sign 8 traffic signs without poles
traffic-light 9 traffic lights without poles

road 10 incl. road marking and public parking spaces
sidewalk 12 incl. curb

pole 15 e.g. pole of traffic-signs, lightings,...
unlabeled 0 not labeled areas and everything else

recording time of the different sensors are distinct. In our test vehicle, the GPS time is
used as global reference time, to which every sensor is calibrated, yielding a unique time
stamp for each sensor data. Nevertheless, the frequency of the sensors is still different,
e.g. the frequency of the camera is 15Hz, while the frequency of the lidar sensor is 10Hz.
Consequently, the different sensor data are available at different time stamps. This problem
can be solved by means of the so-called ego-motion compensation. The lidar points recorded
at time tv, are transformed by a transformation matrix T to the image recording time ti. For
the determination of T , the current vehicle speed v, the current vehicle acceleration a, the
rotation angle ψ of the vehicle, and the time difference ∆t = ti − tv between the sensors are
necessary. These vehicle specific data can be easily obtained from the IMU. According to
[1], the transformation matrix T is calculated by:

T (∆t) =


cos(ψ̇∆t) −sin(ψ̇) 0 v∆t + 1

2 a∆t2 − 1
6 vψ̇2∆t3 − 1

8 aψ̇2∆t4

sin(ψ̇∆t) cos(ψ̇) 0 1
2 vψ̇∆t2 + 1

3 aψ̇∆t3 − 1
24 vψ̇3∆t4

0 0 1 0
0 0 0 1

 (1)

Another problem is that the lidar points are not recorded at one time point, but during a time
interval due to the 360°rotation of the sensor. Hence, each lidar point has a different time
stamp. Therefore, the scanning range of lidar sensor is divided into N circle segments. For
each circle segment, a separate transformation matrix is determined, and each point within
the corresponding circle segment is transformed by this so that the lidar points are temporally
calibrated to the camera images. For each lidar sensor, the uncalibrated and calibrated point
clouds represented in the vehicle frame are available. Furthermore, the dataset also provides
the transformation matrices of each sensor.

2.3 Classes and Annotation

The ADUULM-dataset provides fine annotations at pixel level for the wideangle camera
image and pixel-wise labeled laser data of all four lidar sensors. Our 3893 annotated data
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Figure 2: Examples of the ADDULM-dataset: wideangle camera image and the correspond-
ing fine-annotated labels

samples are labeled by our in-house labeling tool and are double checked to guarantee high-
est quality. The 12 labeled classes were carefully selected according to their relevance in the
autonomous driving application area and are defined in accordance to the Cityscapes dataset
[5]. An overview of the provided classes can be found in Table 2. The camera images are an-
notated by manually drawing polygons onto the image, effectively capturing the contours of
all unobstructed entities before assigning them an unambiguously class label. Every image
is labeled from back to front so that a depth-ordering of the annotated objects is available,
which is required for instance segmentation for example. In contrast, the lidar point clouds
are annotated by means of a semi-automated procedure: the temporally synchronized three-
dimensional laser point cloud are projected into the annotated camera image, i.e. into a two
dimensional subspace, facilitating a first rough association of individual points with object
classes. During this step, points located outside of the camera’s field of view were neglected
for the sake of computational efficiency. The misclassified points of the automated annota-
tion are improved in a second step by a manually inspection of the scene by making use of
various intuitive perspectives in the annotation tool. The class information is stored as fourth
dimension of the point cloud, so that each annotated lidar point is represented by the tuple
(x,y,z, id), where x, y, z are the coordinates of the laser point and id denotes the correspond-
ing label id. Note, that only lidar points within the field of view of the wideangle camera and
in a range of about 70m in front of the ego-vehicle are labeled, since a clear allocation is not
possible for more distant object points due to their sparsity. Fig. 1 and Fig. 2 show some
examples of the provided dataset.

2.4 Data Acquisition and Datasets

The data of this dataset were recorded from our test vehicle while driving in and around Ulm
(Germany) at different daytimes, diverse seasons and in several good and adverse weather
conditions such as fog, snow or (heavy) rain. Several data samples are periodically extracted
from the recorded sequences at intervals from 5 seconds, which are then annotated as de-
scribed in Section 2.3. Each data sample includes the camera images, the stereo information,
the 3D point clouds of the four laser sensors, the current IMU data and the corresponding
labels of the wideangle camera and of all four laser sensors. Furthermore, a short video
sequence is provided for each data sample, which are stored as ROS-bags [18], so that the
previous and following sensor information are available for a short period. All in all, the
ADUULM dataset consists of 3893 fine-annotated data samples extracted from 100 video
sequences. The 2012 good-weather samples are divided into two subsets for training and
validation. The training set consists of 1504 samples (40 sequences) and the validation set
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of 508 samples (15 sequences). We ensured that each of the subsets contain different rep-
resentative scenarios such as urban and rural street scenes, which are recorded at different
locations. Furthermore, there are 1881 adverse-weather data (45 sequences), which are used
exclusively for testing. Training with the provided adverse weather data would increase
the performance in similar situations, but sensor disturbances in adverse weather conditions
are very complex so that it is almost impossible to capture all occurring weather scenarios.
Hence, we are not interested in achieving high scores in special adverse weather scenarios.
In contrast, our goal is to evaluate the robustness of current segmentation approaches, if
the sensor data are disturbed by unknown noise as it occurs in adverse weather conditions.
Therefore, the adverse weather data are excluded from the training and validation set in this
dataset. As previously stated, the front and the rear lidar sensors were replaced by Velo-
dynes VLP-32 to get more precise spatial environment information. In more detail, 410 of
the 1504 training data, 117 of the 508 validation data and 1378 of the 1881 test data contain
measurements of the Velodyne VLP-32, the remaining data were recorded by the original
sensor setup.

2.5 Evaluation Metrics
For evaluation and comparison of semantic segmentation approaches, meaningful evaluation
metrics are necessary, and hence, popular standard metrics are used for evaluation. A com-
monly used measure in this field is the percentage of correctly annotated image pixels or
lidar points, which is known as pixelwise accuracy (acc.) and is given by

acc =
TP

# pixels
(2)

where TP are the correctly classified image pixels or lidar points according to the ground-
truth. A further popular evaluation metric is mean Intersection-over-Union (mIoU) [6],
which is also known as mean Jaccard Index, and is more appropriate for datasets with im-
balanced classes. The mIoU is defined as

mIoU =
1
C

C

∑
i=1

TPi

TPi +FPi +FNi
(3)

where C is the number of classes, and TPi, FPi and FNi are the true positive, false positive
and false negative predictions for class i.

3 Semantic segmentation
In this section, different state-of-the-art semantic segmentation approaches are evaluated on
the proposed dataset by means of the evaluation metrics pixelwise accuracy and mIoU (see
Section 2.5). For this purpose, three popular image segmentation approaches are selected,
which can be applied in real-time applications such as autonomous driving: DeepLabv3+
[3] (backbone ResNet-18), BiSeNet [20] (backbone Xception-39) and ICNet [23]. The IC-
Net is additionally trained on the provided lidar data, where a dense depth map was deter-
mined for each sample as described in [15], so that the benefit of the lidar data in some
adverse weather scenarios can be demonstrated hereinafter. Furthermore, two recent pub-
lished approaches are considered based on sensor fusion or video-segmentation, which are
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Table 3: Evaluation of state-of-the-art segmentation approaches on the proposed ADUULM-
Dataset

all sunny adverse
Approach acc. mIoU acc. mIoU acc. mIoU

BiSeNet [20] 92.63 42.69 95.56 50.16 79.60 22.32
DeepLabv3+ [3] 93.02 41.13 95.46 46.25 82.54 25.01
ICNet (img) [23] 92.51 45.63 95.17 51.57 79.52 23.43
ICNet (lidar) [23] 88.70 31.79 91.34 35.66 69.76 17.25

ICNet_LateFusion [15] 94.07 50.56 95.24 53.71 87.17 31.51
LSTM-ICNet [17] 93.14 49.60 95.29 54.36 85.22 31.13

night rain foggy
Approach acc. mIoU acc. mIoU acc. mIoU

BiSeNet [20] 57.37 6.28 83.35 26.23 94.38 40.34
DeepLabv3+ [3] 61.15 10.34 88.35 29.94 95.69 41.65
ICNet (img) [23] 56.81 8.00 83.34 29.35 94.63 42.15
ICNet (lidar) [23] 73.52 21.01 76.13 16.74 63.84 11.49

ICNet_LateFusion [15] 78.06 24.80 87.87 30.89 93.65 38.39
LSTM-ICNet [17] 69.55 17.84 88.61 35.61 95.28 43.74

more robust in adverse-weather conditions than the conventional segmentation methods: the
ICNet_LateFusion [15], which is one of the first semantic segmentation approaches using
camera and lidar data, and the LSTM-ICNet, which captures temporal image information
by means of convLSTM-cells. All approaches were pretrained on Cityscapes, and then
fine-tuned on the 1504 training data of the ADUULM-dataset for 100k iterations using a
batch-size of two due to memory reasons. Each training was repeated for five times to com-
pensate the training fluctuations. The remaining training hyper-parameters are identical to
[15] and [17]. Table 3 shows the results of various image-sets evaluated in different weather
conditions on the proposed dataset, and some qualitative examples are shown in Fig. 3. The
image-set all contains good and adverse weather data, while the image-set sunny consists of
only good weather data and the image-set adverse of adverse weather data. Furthermore, the
performance in different adverse weather conditions (night, rain, foggy) is given. It turns
out, that all segmentation approaches perform similarly in good-weather conditions. In con-
trast, their performance declines enormously in adverse weather conditions. For example,
the single-image segmentation approaches ICNet, BiSeNet and DeepLabv3+ achieve an pix-
elwise accuracy of over 95% in good weather conditions, while only less than 80% of all pix-
els can be correctly classified in adverse weather conditions. The quantitative analysis also
shows the use of multiple sensor-data and previous sensor information increase the segmen-
tation accuracy in adverse weather conditions. For instance, ICNet_LateFusion outperforms
the image based ICNet by about 20 percent in terms of pixelwise accuracy and by about 16
percent in terms of mIoU at night. Moreover, LSTM-ICNet increases the segmentation ac-
curacy by about 6 percent in terms of pixelwise accuracy and by about 5 percent in terms of
mIoU compared to the ICNet, if it rains. Nevertheless, both approaches - ICNet_LateFusion
and LSTM-ICNet - are still not appropriate for a robust semantic segmentation in adverse
weather conditions due to their poor performance, and hence, further research is necessary
in the future.
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Figure 3: Qualitative results of state-of-the-art semantic segmentation approaches on the
ADUUlm-dataset

4 Drivable Area Detection

The task of drivable area detection is to identify regions, where the vehicle can drive based on
its current environment. Unlike road segmentation, the focus of drivable area detection is to
detect separate driving lanes and classify them based on their driving direction. Drivable area
annotations are missing in most semantic segmentation datasets, which usually only define a
road class. To our knowledge, the only available dataset with drivable area annotations is the
BDD-Dataset [21]. BDD defines two classes of drivable area, direct and alternative drivable
area. Direct drivable area is the lane, the ego vehicle is currently driving on. Alternative
drivable area are all lanes, where the ego vehicle can potentially drive on, pointing in the
same driving direction as direct drivable area. Apart from the two classes defined by BDD,
an autonomous vehicle may need more information about the lane geometry such as if the
lane is a turn lane or has a different driving direction. The ADUULM dataset builds on this
idea, annotating a total of six classes for the drivable area detection task. Ego lane is the
lane, where the ego vehicle is currently driving on. A parallel lane is a lane, which has the
same direction as the ego lane. Parallel lanes, which are clearly identified as a turn lane, e.g.
because of a turn arrow, are labeled as a separate class called parallel turn lane. Opposite lane
is every lane, which points in the opposite direction than the current ego lane. Following the
parallel turn lane, opposite turn lanes are also annotated as a separate class. Lanes which are
used for parking only are annotated as parking lane. To cope with the difficulty of annotating
crossing areas, where multiple lanes overlap or cannot be distinguished clearly, a separate
class is introduced as crossing area. Identifying the crossing area even without knowing the
exact lane geometry can be valuable, as the autonomous vehicle can pay more attention in
these situations. Fig. 4 shows multiple examples of annotated images for the drivable area
task. The ADUULM dataset contains a total of 2314 annotated camera images for this task.
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Figure 4: Annotation examples for the drivable area detection task. Ego lane is colored
green, parallel lane yellow, parallel turn lane dark yellow, opposite lane red, opposite turn
lane purple, parking lane blue and crossing area light blue.

Table 4: Evaluation of state-of-the-art segmentation approaches on the ADUULM drivable
area detection task.

default simplified
Approach acc. mIoU acc. mIoU
ICNet [23] 88.31 36.28 90.61 71.02

DFANet [12] 89.50 41.72 90.25 68.93

4.1 Task Definition
We define two drivable area detection tasks. The first contains all six classes described above
and a background class, leading to a total of seven different classes. We refer to this task as
the default drivable area detection task. Furthermore, we propose a simplified version with
only four classes in total. The classes ego lane and crossing area are joint to a new ego lane
class. Pixels of the classes parallel turn lane and opposite turn lane are considered part of the
classes parallel lane and opposite lane respectively. Parking lane pixel are considered part
of the background class. We refer to this task as the simplified drivable area detection task.
Since the drivable area detection task is a segmentation task, we use the same metrics as for
the semantic segmentation task, accuracy and mIoU. Refer to Section 2.5 for details.

4.2 State-of-the-art Results
In this section, we evaluate two different real-time state-of-the-art architectures on the driv-
able area task, ICNet [23] and DFANet [12]. We split the dataset in train, val and test set
and report performance on the test set. We use 1545 images for the train set, 569 images
for the val set and 200 images for the test set. The training protocols follow the settings in
[23] and [12]. Results are shown in Table 4 for the default and simplified detection task.
Both networks have poor performance on the default task. This states that state-of-the-art
segmentation networks cannot solve the task properly, which leaves space for future research
in this area. Qualitative results on the simplified task are shown in Fig. 5. The top row shows
the prediction, while the bottom row shows the ground truth. The network can extract the
general lane geometry but struggles at further distances and in separating different lanes of
the same class.
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Figure 5: Qualitative results of DFANet on the simplified drivable area detection task. The
top row shows the prediction while the bottom row shows the ground truth. The mid and
right columns show more challenging examples.

5 Conclusion

In this work, the ADUULM-dataset was introduced, one of the first semantic segmenta-
tion datasets, which contains fine-annotated camera images and point-wise labeled lidar data
and additionally provides video-data. Several state-of-the-art approaches in the field of se-
mantic segmentation and drivable area detection were evaluated on the proposed dataset,
but generally, the dataset can also be used for diverse other tasks such as object-detection
or panoptic segmentation. The experiments show that the considered approaches perform
well in good weather conditions but fail in adverse weather conditions. Therefore, new
approaches are necessary to improve the segmentation approaches, e.g. advanced sensor fu-
sion and video segmentation approaches. Finally, we hope the proposed dataset contributes
to making the segmentation approaches more robust against unknown sensor disturbances
and adverse weather effects so that a reliable segmentation will be possible in all weather
conditions in the future.
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