
A. YADAV ET AL.: MAKING L-BFGS WORK WITH INDUSTRIAL-STRENGTH NETS 1

Making L-BFGS Work with
Industrial-Strength Nets
Abhay Yadav
jaiabhay@cs.umd.edu

Tom Goldstein
tomg@cs.umd.edu

David Jacobs
djacobs@cs.umd.edu

University of Maryland
College Park,
Maryland, USA

Abstract

L-BFGS has been one of the most popular methods for convex optimization, but good
performance by L-BFGS in deep learning has been elusive. Recent work has modified
L-BFGS for deep networks for classification tasks and been able to show performance
competitive with SGD and Adam (the most popular current algorithms) when batch
normalization is not used. However, this work cannot be applied with batch normalization.
Since batch normalization is a defacto standard and important to good performance in
deep networks, this still limits the use of L-BFGS. In this paper, we address this issue.
Our proposed method can be used as a drop-in replacement without changing existing
code. The proposed method performs consistently better than Adam and existing L-BFGS
approaches, and comparable to carefully tuned SGD. We show results on three datasets,
CIFAR-10, CIFAR-100, and STL-10 using three different popular deep networks ResNet,
DenseNet and Wide ResNet. This work marks another significant step towards making
L-BFGS competitive in the deep learning community.

1 Introduction
Deep learning has become an indispensable tool in computer vision and emerged as a clear
winner in many important applications such as image classification [16, 18, 40] and object
detection [14]. Despite its enormous success, training a deep network presents many computa-
tional and optimization challenges. For example, (SGD) stochastic gradient descent [1, 6, 31]
is the standard algorithm used to train deep networks, but it requires an expert to find the
optimal learning rate and decay schedule [34, 36]. This usually requires an expensive grid
search over possible parameter values, especially costly since training a single instance of a
deep network takes considerable resources.

Second order methods like L-BFGS [26] (perhaps the most commonly used second-order
method in machine learning) have a proven track record of handling these issues for simple
classifiers. They automatically select learning rates and provide fast convergence, along
with several other advantages over SGD [35]. Recently, several attempts have been made
to explore L-BFGS for deep networks as well [3, 5, 29]. For example, Bollapragada et al.
[5] achieved performance comparable to SGD. One would expect that the advantages of

c© 2020. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{He, Zhang, Ren, and Sun} 2016{}

Citation
Citation
{Huang, Liu, Van Derprotect unhbox voidb@x protect penalty @M {}Maaten, and Weinberger} 2017

Citation
Citation
{Zagoruyko and Komodakis} 2016

Citation
Citation
{Girshick} 2015

Citation
Citation
{Amari} 1993

Citation
Citation
{Bottou} 2012

Citation
Citation
{Robbins and Monro} 1951

Citation
Citation
{Senior, Heigold, Yang, etprotect unhbox voidb@x protect penalty @M {}al.} 2013

Citation
Citation
{Smith} 2017

Citation
Citation
{Liu and Nocedal} 1989

Citation
Citation
{Shepherd} 2012

Citation
Citation
{Berahas and Tak{á}{£}} 2017

Citation
Citation
{Bollapragada, Mudigere, Nocedal, Shi, and Tang} 2018

Citation
Citation
{Rafati and Marcia} 2018

Citation
Citation
{Bollapragada, Mudigere, Nocedal, Shi, and Tang} 2018

2 A. YADAV ET AL.: MAKING L-BFGS WORK WITH INDUSTRIAL-STRENGTH NETS

L-BFGS should have popularized the use (or at-least promoted further exploration) of the
method for training deep networks. However, the applicability of L-BFGS has been limited
because it does not play well with state of the art networks [16, 18, 40] that rely on Batch
Normalization [9, 20, 32].

Batch Normalization (BatchNorm) is an integral component of almost all modern deep
networks (Ioffe and Szegedy [20] has more than 15,000 citations according to Google
Scholar). To put things in perspective, without BatchNorm the classification accuracy of deep
networks drops to almost 70% [5] from 92% [17] on CIFAR-10 using ResNet [16], and one
can notice a similar drop in accuracy for many other popular deep networks and datasets. This
discourages researchers from trying L-BFGS on deep networks without BatchNorm.

In this work we show how to get L-BFGS to work well with BatchNorm, obtaining
performance comparable to SGD. Our method is general enough to apply to a wide range
of L-BFGS variants [12, 13, 42], assuming only that curvature pair updates are done using
finite gradient differencing. These updates consist of estimating a component of curvature
by taking the difference between the gradient at different locations. Hopefully, our results
will encourage more use of L-BFGS in deep learning, and more research on how to further
improve its performance.

Contributions: We describe a novel scheme for stable curvature pair updates in the
stochastic L-BFGS method for deep networks, in a way that is robust to the presence of
BatchNorm. The scheme is generic enough to be applied to any variant of L-BFGS that
employs a finite gradient differencing approach. This makes our method even more appealing,
as it opens the possibility of borrowing other existing L-BFGS variants and their tricks. An
additional advantage is that the method needs almost no parameter tuning, which is one of the
benefits of using L-BFGS, and very important while training deep networks. Our numerical
experiments show that the method proposed in this paper – which we call the Frozen-Batch
L-BFGS (FbLBFGS) method – outperforms existing L-BFGS approaches by a large margin
(more than 10% in generalization accuracy for some problems) and also achieves performance
comparable to SGD on standard large scale networks such as ResNet [16], DenseNet [18], and
Wide ResNet [40] as demonstrated on standard datasets including CIFAR-10 [25], STL-10 [8],
and CIFAR-100 [24].

Frozen-Batch L-BFGS (FbLBFGS) Method: In this paper, we study how to design a
stable curvature pair update in a stochastic setting when BatchNorm is used. We first note
that it is crucial to take two gradient steps with the same training batch to obtain a consistent
curvature estimate to use in updating the inverse Hessian. If two different batches are used,
the gradient noise may dominate the curvature computation, destabilizing the update. In the
frozen batch method, each time we select a new batch, we freeze it and take two gradient
steps before making the Hessian update. This is a simple trick, and has been used before in a
closely related method for online L-BFGS [33], namely oLBFGS, which also computes the
finite difference of gradients using the same batch. The key difference is that oLBFGS always
uses a fresh batch to take the actual descent gradient step (the recycled batch is only used
for the Hessian update), whereas the proposed method uses the recycled batch for both the
Hessian update and gradient step. This subtle difference has a huge impact on performance
when BatchNorm is used.

Citation
Citation
{He, Zhang, Ren, and Sun} 2016{}

Citation
Citation
{Huang, Liu, Van Derprotect unhbox voidb@x protect penalty @M {}Maaten, and Weinberger} 2017

Citation
Citation
{Zagoruyko and Komodakis} 2016

Citation
Citation
{Cooijmans, Ballas, Laurent, G{ü}l{ç}ehre, and Courville} 2016

Citation
Citation
{Ioffe and Szegedy} 2015{}

Citation
Citation
{Santurkar, Tsipras, Ilyas, and Madry} 2018

Citation
Citation
{Ioffe and Szegedy} 2015{}

Citation
Citation
{Bollapragada, Mudigere, Nocedal, Shi, and Tang} 2018

Citation
Citation
{He, Zhang, Ren, and Sun} 2016{}

Citation
Citation
{He, Zhang, Ren, and Sun} 2016{}

Citation
Citation
{Fei, Rong, Wang, and Wang} 2014

Citation
Citation
{Gao and Goldfarb} 2019

Citation
Citation
{Zhou, Gao, and Goldfarb} 2017

Citation
Citation
{He, Zhang, Ren, and Sun} 2016{}

Citation
Citation
{Huang, Liu, Van Derprotect unhbox voidb@x protect penalty @M {}Maaten, and Weinberger} 2017

Citation
Citation
{Zagoruyko and Komodakis} 2016

Citation
Citation
{Krizhevsky, Nair, and Hinton} 2014

Citation
Citation
{Coates, Ng, and Lee} 2011

Citation
Citation
{Krizhevsky, Nair, and Hinton} 2009

Citation
Citation
{Schraudolph, Yu, and G{ü}nter} 2007

A. YADAV ET AL.: MAKING L-BFGS WORK WITH INDUSTRIAL-STRENGTH NETS 3

2 Background and Related Work
Second-order methods have been studied in both convex and non-convex optimization, for
more details see [3, 4, 5, 7, 10, 11, 21, 28, 33, 37, 39, 42]. Schraudolph et al. [33] proposed
an online L-BFGS (oLBFGS) method to ensure a stable quasi-Newton curvature pair update
by computing gradients on the same batch at the beginning and end of the iteration. Since this
results in an extra computation of the gradients, Berahas et al. [4] proposed to use overlapping
batches that share a subset of their data samples. In this case, the Hessian is updated using only
samples that are shared between two adjacent batches, while the graident descent step uses all
samples in a batch. This idea was further explored for large scale machine learning problems
by Berahas and Takáč [3] and Bollapragada et al. [5]. Wang et al. [39] further extended
oLBFGS and proposed a damped version (SdLBFGS) of it to maintain stable convergence
in stochastic setting. Other approaches approximate curvature using the Fisher information
matrix [2, 15, 27]. Krishnan et al. [23] approximately computes the inverse Hessian by
expanding the matrices as the Neumann power series.

Multi-Batch L-BFGS

Let us consider the problem

min
x∈Rd

F(x)
4
=

1
N

N

∑
i=1

Fi(x) =
1
N

N

∑
i=1

f (x;zi), (1)

where Fi(x) = f (x;zi), f is a function (parametrized by x), and (zi) is a collection of data
drawn from an unknown probability distribution P(z). A stochastic quasi-Newton method is
given by

xk+1 = xk−αkHkgSk
k , (2)

where the batch gradient is

gSk
k = ∇FSk(xk)

4
=

1
|Sk| ∑i∈Sk

∇Fi(xk), (3)

the set Sk ⊂ {1,2, · · ·} indexes data points {zi} sampled from the distribution P, and Hk is a
positive definite approximation to the inverse Hessian.

Stable Quasi-Newton Updates

In the L-BFGS methods, the inverse Hessian approximation is updated using the following
recursive formula,

Hk+1 =V T
k HkVk +ρkθkθ

T
k

ρk = (yT
k θk)

−1

Vk = I−ρkykθ
T
k

(4)

where θk = xk+1− xk and yk = ∇FSk+1(xk+1)−∇FSk(xk) is the difference in the gradients
at xk+1 and xk. When the batch changes from one iteration to the next (Sk+1 6= Sk), yk is
computed using different samples and the updating process (which is very sensitive to noise)

Citation
Citation
{Berahas and Tak{á}{£}} 2017

Citation
Citation
{Berahas, Nocedal, and Tak{á}c} 2016

Citation
Citation
{Bollapragada, Mudigere, Nocedal, Shi, and Tang} 2018

Citation
Citation
{Byrd, Hansen, Nocedal, and Singer} 2016

Citation
Citation
{Curtis} 2016

Citation
Citation
{De, Yadav, Jacobs, and Goldstein} 2017

Citation
Citation
{Keskar and Berahas} 2016

Citation
Citation
{Mokhtari and Ribeiro} 2015

Citation
Citation
{Schraudolph, Yu, and G{ü}nter} 2007

Citation
Citation
{Sohl-Dickstein, Poole, and Ganguli} 2014

Citation
Citation
{Wang, Ma, Goldfarb, and Liu} 2017

Citation
Citation
{Zhou, Gao, and Goldfarb} 2017

Citation
Citation
{Schraudolph, Yu, and G{ü}nter} 2007

Citation
Citation
{Berahas, Nocedal, and Tak{á}c} 2016

Citation
Citation
{Berahas and Tak{á}{£}} 2017

Citation
Citation
{Bollapragada, Mudigere, Nocedal, Shi, and Tang} 2018

Citation
Citation
{Wang, Ma, Goldfarb, and Liu} 2017

Citation
Citation
{Ba, Grosse, and Martens} 2016

Citation
Citation
{Grosse and Martens} 2016

Citation
Citation
{Martens and Grosse} 2015

Citation
Citation
{Krishnan, Xiao, and Saurous} 2018

4 A. YADAV ET AL.: MAKING L-BFGS WORK WITH INDUSTRIAL-STRENGTH NETS

may be unstable. To fix this, one approach is to repeat the same batch twice [33, 39] to
compute gradient at both the iterates (xk and xk+1), given by

yk = gSk
k+1−gSk

k . (5)

However, this comes at the additional cost of wasted gradient computation. To avoid this,
Berahas et al. [4] and Bollapragada et al. [5] propose to use overlapping batches, and compute
Hessian updates using only the overlapping samples using the formula

yk = gOk
k+1−gOk

k , (6)

where Ok = Sk ∩Sk+1. This needs no extra computation since the two gradients in this case
are subsets of the gradients corresponding to the samples Sk and Sk+1.

Stochastic Line Search

Historically, L-BFGS is combined with a line search method that automatically selects a
stepsize by checking that the objective decreases sufficiently on each iteration, and cutting the
stepsize if not. Bollapragada et al. [5] propose to perform a backtracking line search that aims
to satisfy the Armijo condition

FSk(xk−αkHkgSk
k)≤ FSk(xk)− c1αk(g

Sk
k)T HkgSk

k , (7)

where 0 < c1 < 1. This condition checks whether the observed decrease in the loss function
is at least c1 times the decrease predicted by a local linear approximation. This condition
guarantees convergence in the deterministic setting, but not in the stochastic setting. The
initial value of αk is given by,

αk =

1+
Vari∈Sv

k
{gi

k}

|Sk|
∥∥∥gSk

k

∥∥∥2

−1

, (8)

where Vari∈Sv
k
{gi

k}=
1

|Sv
k|−1 ∑i∈Sv

k

∥∥∥gi
k−gSk

k

∥∥∥2
, and Sv

k ⊆ Sk.

Other authors suggest using a decaying learning rate such as 1/
√

k [33, 39]. This decaying
learning rate is more theoretically justified in that convergence is guaranteed if the Hessian
approximation is constant, but in practice this may be slow.

Citation
Citation
{Schraudolph, Yu, and G{ü}nter} 2007

Citation
Citation
{Wang, Ma, Goldfarb, and Liu} 2017

Citation
Citation
{Berahas, Nocedal, and Tak{á}c} 2016

Citation
Citation
{Bollapragada, Mudigere, Nocedal, Shi, and Tang} 2018

Citation
Citation
{Bollapragada, Mudigere, Nocedal, Shi, and Tang} 2018

Citation
Citation
{Schraudolph, Yu, and G{ü}nter} 2007

Citation
Citation
{Wang, Ma, Goldfarb, and Liu} 2017

A. YADAV ET AL.: MAKING L-BFGS WORK WITH INDUSTRIAL-STRENGTH NETS 5

Batch Normalization
The batch normalization1 (BatchNorm) normalizes the activation output fl(xk;zi) of a given
layer l as follows:

µ
Sk ← 1

|Sk|

|Sk|

∑
i=1

fl(xk;zi)

VarSk ← 1
|Sk|

|Sk|

∑
i=1

(fl(xk;zi)−µ
Sk)2

fl(xk;zi; µ
Sk ,VarSk)← fl(xk;zi)−µSk√

VarSk +ε

≡ BNSk(fl(xk;zi))

(9)

where zi ∈ Sk, Sk is the batch at iteration k, ε is a small number used for numerical stability
and fl is the transformation function of the layer l. From Eq 9, it is evident that the BN
transform does not independently process each training example. Rather, BNSk(fl(xk;zi)) is
a function of both the training example and the other examples in that batch. For more details
refer to [19].

3 ProposedMethod

3.1 Stable Quasi-Newton Updates With BatchNorm:
We now explain the challenges BatchNorm poses for existing L-BFGS approaches and then we
discuss our proposed solution. As per the overlapping batch approach suggested by Berahas
et al. [4], Bollapragada et al. [5], the stochastic gradient difference yk with BatchNorm can be
written as:

yk =
1
|Ok| ∑

i∈Ok

∇Fi(xk+1;BNSk+1)

− 1
|Ok| ∑

i∈Ok

∇Fi(xk;BNSk),

(10)

where BNSk represents the batch normalization statistics for the batch Sk. From (10), it is clear
that because of the different BatchNorm parameters, the gradients used to compute yk are not
consistent; even though only overlapping samples are used, the batch norm statistics depend
on the non-overlapping samples. This breaks the gradient consistency for the overlapping
approach.

To address this issue, one obvious solution is to repeat the same batch twice [33, 39].
However, this requires that the gradient be evaluated twice for every batch Sk at xk and xk+1.
We make use of the extra gradient computation by actually taking another gradient step.
We update the Hessian only using gradients from the same batch. Specifically, we propose
to freeze the batch for two consecutive iterations, take two gradient steps, and then update
the curvature pair (yk, θk). The newly updated Hessian is applied to a gradient from the

1For clarity, we omit the learnable parameters γ and β , which produce an affine transformation applied on top
of the batch-norm layer. This is just another trainable layer, not affecting the proposed analysis. See [19] for more
details.

Citation
Citation
{Ioffe and Szegedy} 2015{}

Citation
Citation
{Berahas, Nocedal, and Tak{á}c} 2016

Citation
Citation
{Bollapragada, Mudigere, Nocedal, Shi, and Tang} 2018

Citation
Citation
{Schraudolph, Yu, and G{ü}nter} 2007

Citation
Citation
{Wang, Ma, Goldfarb, and Liu} 2017

Citation
Citation
{Ioffe and Szegedy} 2015{}

6 A. YADAV ET AL.: MAKING L-BFGS WORK WITH INDUSTRIAL-STRENGTH NETS

same batch. Then in the next iteration, when changing the batch from Sk to Sk+1, we do not
update the curvature pair. Put another way, we compute two gradients for each batch, and
we take a gradient descent step using both of these gradients. We find that this approach
works significantly better than the existing approach SdLBFGS [39], improving L-BFGS
performance by a large margin. We believe this is due to the fact that that the gradient
direction in our method gets pre-conditioned by a Hessian that was updated on the same batch.
While with Wang et al. [39], one takes a (consistent and probably stable) Hessian update on
one batch, and then use it to pre-condition on another.

Algorithm 1 Frozen-Batch L-BFGS (FbLBFGS)
Input: x0 (initial iterate), D= {(zi, t i), for i= 1, . . . ,n} (training data), m (memory parameter),
U = False (Flag to control curvature update).

1: Create initial batch S1
2: for k = 1,2, ... do
3: if k == 1 then
4: Set the search direction pk =−gSk

k
5: else
6: Calculate the search direction pk = −HkgSk

k {Using L-BFGS Two-Loop Recur-
sion (Procedure 3.1 in [39])}

7: end if
8: Normalize the search direction pk =

pk
||pk||2

9: Set αk = 1
10: while the Armijo condition (7) not satisfied do
11: Set αk = αk/2
12: end while
13: Compute xk+1 = xk +αk pk
14: if U is True then
15: Compute the curvature pairs θk = xk+1− xk and yk = gSk

k+1−gSk
k

16: Replace the oldest pair (θi,yi) by θk,yk
17: Create the next batch Sk+1
18: Set U = False {Do not update curvature in next iteration}
19: else
20: Set U = True {Update curvature in next iteration}
21: Set Sk+1 = Sk {Freeze the sample in next iteration}
22: end if
23: end for

3.2 Line Search:
The stochastic line search (eq 7) proposed by Bollapragada et al. [5] requires computation of
the initial value of αk, which in turn requires computation of the variance of the gradient for
each example. This is not possible when using BatchNorm, since estimation of the variance
of the gradient requires a forward pass for each example one by one, which will change the
batch statistics.

In the stochastic case, sometimes the norm of the search direction can be too large, causing
the algorithm to be very unstable. To cater to this, we propose a heuristic: we normalize the

Citation
Citation
{Wang, Ma, Goldfarb, and Liu} 2017

Citation
Citation
{Wang, Ma, Goldfarb, and Liu} 2017

Citation
Citation
{Wang, Ma, Goldfarb, and Liu} 2017

Citation
Citation
{Bollapragada, Mudigere, Nocedal, Shi, and Tang} 2018

A. YADAV ET AL.: MAKING L-BFGS WORK WITH INDUSTRIAL-STRENGTH NETS 7

Figure 1: A side-by-side schematic depiction of curvature pair (yk, θk) update scheme in
SdLBFGS [39] and FbLBFGS (ours). Here, the dotted box represents the batch used for a
curvature pair update and the solid box represents the batch used for the gradient step. The
SdLBFGS method computes an auxiliary stochastic gradient at xk using the sample Sk−1 from
the (k−1)-st iteration, which is used for gradient differencing only (to update yk). Then a
gradient step is taken on a new batch Sk and the process repeats. On the other hand, FbLBFGS
(proposed) does not compute any auxiliary gradients but skips the first curvature pair update
(k-th iteration), takes a gradient step, and in the next iteration ((k+1)-st) the same frozen
batch Sk is used both to update the curvature pair and to take another gradient step. In the
following next iteration (xk+2), when the batch changes to Sk+1, the Hessian update is skipped,
and the process repeats.
search direction (-HkgSk

k) before doing the standard Armijo line search. This heuristic works
surprisingly well in practice for all the datasets and all the models we tried.

3.3 On Convergence
In this section, we discuss the convergence of the proposed mehtod (FbLBFGS). The main
challenge in designing a stochastic L-BFGS method for non-convex problem lies in the
difficulty in preserving the positive-definiteness of the inverse Hessian approximation Hk,
due to the non-convexity of the problem and the noise in gradient estimation. Wang et al.
[39] proposed to address this issue by using damped curvature pair update. We leverage the
convergence proof by Wang et al. [39] and show that we do not break their convergence
conditions.

When frozen batch is used, we update the inverse Hessian approximation following [39]:

Hk+1 =V T
k HkVk +ρkθkθ

T
k

ŷk = λkyk +(1−λk)H−1
k θk

ρk = (ŷk
T

θk)
−1

Vk = I−ρkŷkθ
T
k ,

(11)

where θk = xk+1− xk and yk = ∇FSk(xk+1)−∇FSk(xk) is the difference in the gradients at
xk+1 and xk. The damping factor λk is give by,

λk =

0.75θ>k H−1

k θk

θ>k H−1
k θk−θ>k yk

, if θ>k yk < 0.25θ>k H−1
k θk,

1, otherwise.
(12)

When the batch is changed, we do not update the inverse Hessian approximation, i.e., we
skip the update and set Hk+1 = Hk. So, this ensures that the inverse Hessian approximation
always remains positive-definite.

Citation
Citation
{Wang, Ma, Goldfarb, and Liu} 2017

Citation
Citation
{Wang, Ma, Goldfarb, and Liu} 2017

Citation
Citation
{Wang, Ma, Goldfarb, and Liu} 2017

Citation
Citation
{Wang, Ma, Goldfarb, and Liu} 2017

8 A. YADAV ET AL.: MAKING L-BFGS WORK WITH INDUSTRIAL-STRENGTH NETS

4 Experiments

In this section, we empirically demonstrate the proposed method’s effectiveness on three
benchmark datasets: STL-10 [8], CIFAR-10 [25], and CIFAR-100 [24]. Our results show
three main points. First, without fine tuning, FbLBFGS can obtain generalization perfor-
mance competitive with carefully tuned SGD using practical state-of-the-art architectures
that use BatchNorm [19]. Second, FbLBFGS outperforms existing adaptive optimizers that
automatically set the learning rate with minimal or no user supervision. Third, we show that
our simple approach substantially outperforms existing L-BFGS methods.

It is impressive that FbLBFGS’s performance approaches that of highly tuned SGD. For
each model and dataset, untold grad student hours have been spent on grid search for good
hyperparameters. Often these are chosen based on performance on the test set, instead of
a separate held out dataset, overfitting the data [30]. To get a better sense of this, we also
test SGD with a standard method of automatic parameter tuning. S1 and S2 are defined as
follows: the learning rate starts with 0.1 for S1 or 1 for S2 and is reduced by 1/10 after every
100,200,300 epochs. FbLBFGS often outperforms these approaches.

We also compare our method against Adam [22]. Adam is the most popular and effec-
tive adaptive optimizer. We find that other adaptive optimizers [38, 41] perform similarly.
FbLBFGS always significantly outperforms Adam.

Finally, we also compare the proposed method with existing L-BFGS methods. Specif-
ically, we compare against the overlapping batch approach by Bollapragada et al. [5] and
the stochastic damped L-BFGS (SdLBFGS) method by Wang et al. [39]. We use our line
search with both of these so that we can compare our approach of freezing batches to prior
approaches that address the same issue.

In all experiments, the batch size used is 128, history size is 5, and default parameters
for Adam and other L-BFGS methods are used. We ran all the methods for 350 epochs. It
is observed that as the optimizer reaches towards the solution, the gradients might be too
noisy, and to get high fidelity gradients its recommended to increase the batch size [5, 11]. To
address this issue, we set the batch size to 25% of the dataset towards the end of the training,
for all the experiments. The deep networks used are WRN-28-10 [40], ResNet-18 [16], and
DenseNet-40-12 [18]. The computational cost of FbLBFGS is increased because it makes
two passes from the same frozen batch twice for each epoch. For a fair comparisons, we ran
all other methods with a similar frozen batch as well (but did not notice any change in the
performance as compared to using the batch only once per epoch). We report results over 5
different random seeds, as shown in Table 1, Table 2, and Table 3, for STL-10, CIFAR-10
and CIFAR-100, respectively. We also show the training and test accuracy (Figure 2) for
STL-10, CIFAR-10, and CIFAR-100 on the deep networks Wide ResNet, DenseNet, and
ResNet, respectively2.

From the results, one can observe that our approach (FbLBFGS) always outperforms all
the adaptive methods. Its performance compared with tuned SGD is comparable; sometimes
it performs better than tuned SGD, sometimes about the same, and sometimes a bit worse.
This shows the effectiveness of our approach to BatchNorm and also the practical usefulness
of L-BFGS when applying deep networks to problems in which SGD has not been carefully
tuned, since FbLBFGS has no free parameters.

The Figure 3 shows the number of function evaluations per line search for each L-BFGS
method. The overlap and SdLBFGS methods take nearly 10 times more backtracking steps

2All the training curves are in the supplementary material.

Citation
Citation
{Coates, Ng, and Lee} 2011

Citation
Citation
{Krizhevsky, Nair, and Hinton} 2014

Citation
Citation
{Krizhevsky, Nair, and Hinton} 2009

Citation
Citation
{Ioffe and Szegedy} 2015{}

Citation
Citation
{Recht, Roelofs, Schmidt, and Shankar} 2018

Citation
Citation
{Kingma and Ba} 2014

Citation
Citation
{Tieleman and Hinton} 2012

Citation
Citation
{Zeiler} 2012

Citation
Citation
{Bollapragada, Mudigere, Nocedal, Shi, and Tang} 2018

Citation
Citation
{Wang, Ma, Goldfarb, and Liu} 2017

Citation
Citation
{Bollapragada, Mudigere, Nocedal, Shi, and Tang} 2018

Citation
Citation
{De, Yadav, Jacobs, and Goldstein} 2017

Citation
Citation
{Zagoruyko and Komodakis} 2016

Citation
Citation
{He, Zhang, Ren, and Sun} 2016{}

Citation
Citation
{Huang, Liu, Van Derprotect unhbox voidb@x protect penalty @M {}Maaten, and Weinberger} 2017

A. YADAV ET AL.: MAKING L-BFGS WORK WITH INDUSTRIAL-STRENGTH NETS 9

than our method, which is likely due to a better Hessian approximation by our method. We
also observed that the Armijo condition almost always accepts the step-length 1, which means
there is little overhead for using the line search. We believe normalizing the search direction
before doing a line search is an effective heuristic. Without normalizing the search direction,
all L-BFGS methods perform poorly. Hence, we ignored those results.

ResNet DenseNet Wide ResNet
Method Train Test Train Test Train Test

SGD? 99.9 73.7 ±0.3 99.9 73.5 ±0.2 99.9 77.1±0.5
SGD(S1) 99.8 68.0 ±0.2 99.9 63.9 ±0.2 99.9 71.1 ±0.2
SGD(S2) 99.9 72.5 ±0.3 99.9 71.9 ±0.3 99.9 71.8 ±0.6

Adam 99.9 69.5 ±0.1 99.9 70.2 ±0.2 99.9 69.2 ±0.2
Bollapragada et al. [5] 95.8 65.8 ±0.1 98.2 67.2 ±0.4 93.2 62.5 ±0.7

SdLBFGS [39] 96.7 66.8 ±0.3 96.7 69.8 ±0.2 94.8 65.1 ±0.8
FbLBFGS (ours) 99.8 75.1 ±0.1 99.9 73.4 ±0.5 99.9 76.4 ±0.4

Table 1: Comparison of train/test accuracy for STL-10 on ResNet, DenseNet, and Wide
ResNet respectively. The results are shown in the format of ‘mean ±std’ computed over 5
random seeds. Higher are better. ? denotes highly tuned SGD with grid search and potentially
over-fitting the test set for a particular model. We report these results for complete perspective.

ResNet DenseNet Wide ResNet
Method Train Test Train Test Train Test

SGD? 99.9 92.1 ±0.2 99.6 91.2 ±0.3 99.9 95.2 ±0.5
SGD(S1) 99.8 90.6 ±0.3 99.5 89.9 ±0.4 99.9 93.2 ±0.4
SGD(S2) 90.6 89.2 ±0.2 99.9 93.1 ±0.1 99.9 94.8 ±0.2

Adam 97.1 91.4 ±0.5 95.2 89.2 ±0.1 95.1 90.1 ±0.3
Bollapragada et al. [5] 93.7 84.6±0.6 95.0 85.6 ±0.4 95.8 90.1 ±0.3

SdLBFGS [39] 94.5 86.2 ±0.2 95.5 87.4 ±0.3 96.1 88.1 ±0.2
FbLBFGS (ours) 99.9 92.9 ±0.4 99.5 91.2 ±0.1 99.8 94.2 ±0.3

Table 2: Comparison of train/test accuracy for CIFAR-10 on ResNet, DenseNet, and Wide
ResNet respectively. The results are shown in the format of ‘mean ±std’ computed over 5
random seeds. Higher are better. ? denotes highly tuned SGD with grid search and potentially
over-fitting the test set for a particular model. We report these results for complete perspective.

ResNet DenseNet Wide ResNet
Method Train Test Train Test Train Test

SGD? 96.5 66.6 ±0.2 97.1 68.4±0.1 99.9 79.4 ±0.3
SGD(S1) 93.1 63.5 ±0.3 97.9 67.5 ±0.3 99.9 76.7 ±0.4
SGD(S2) 96.0 66.2 ±0.4 96.9 67.0 ±0.2 99.9 79.4 ±0.3

Adam 94.9 63.2 ±0.5 97.5 63.4 ±0.2 97.4 67.0 ±0.4
Bollapragada et al. [5] 89.6 58.8 ±0.3 72.1 62.2 ±0.5 91.2 66.4 ±0.3

SdLBFGS [39] 89.1 59.5 ±0.3 75.3 64.8 ±0.3 95.8 66.6 ±0.1
FbLBFGS (ours) 93.8 65.2 ±0.3 95.2 67.9 ±0.3 99.5 75.4±0.2

Table 3: Comparison of train/test accuracy for CIFAR-100 on ResNet, DenseNet, and Wide
ResNet respectively. The results are shown in the format of ‘mean ±std’ computed over 5
random seeds. Higher are better. ? denotes highly tuned SGD with grid search and potentially
over-fitting the test set for a particular model. We report these results for complete perspective.

Citation
Citation
{Bollapragada, Mudigere, Nocedal, Shi, and Tang} 2018

Citation
Citation
{Wang, Ma, Goldfarb, and Liu} 2017

Citation
Citation
{Bollapragada, Mudigere, Nocedal, Shi, and Tang} 2018

Citation
Citation
{Wang, Ma, Goldfarb, and Liu} 2017

Citation
Citation
{Bollapragada, Mudigere, Nocedal, Shi, and Tang} 2018

Citation
Citation
{Wang, Ma, Goldfarb, and Liu} 2017

10 A. YADAV ET AL.: MAKING L-BFGS WORK WITH INDUSTRIAL-STRENGTH NETS

0 50 100 150 200 250 300

Epoch

0

20

40

60

80

100

A
cc

u
ra

cy

SGD(*)

SGD(*)

SGD(S1)

SGD(S1)

SGD(S2)

SGD(S2)

Adam

Adam

Overlap

Overlap

SdLBFGS

SdLBFGS

FbLBFGS

FbLBFGS

0 50 100 150 200 250 300 350

Epoch

20

40

60

80

100

A
cc

u
ra

cy

0 50 100 150 200 250 300 350

Epoch

0

20

40

60

80

100

A
cc

u
ra

cy

Figure 2: Overview of the performance of STL-10, CIFAR-10 and CIFAR-100 on Wide
ResNet, DenseNet, and ResNet respectively. The solid lines represent train accuracy and
dashed lines represent test accuracy, respectively.

0 2500 5000 7500 10000 12500 15000 17500 20000

Iteration

0

2

4

6

8

10

#
F

u
n

ct
io

n
E

va
lu

a
ti

o
n

s
P

er
L

in
e

S
ea

rc
h

Overlap

SdLBFGS

FbLBFGS

0 50000 100000 150000 200000 250000

Iteration

2

4

6

8

10

#
F

u
n

ct
io

n
E

va
lu

a
ti

o
n

s
P

er
L

in
e

S
ea

rc
h

0 50000 100000 150000 200000 250000

Iteration

1

2

3

4

5

6

7

8

#
F

u
n

ct
io

n
E

va
lu

a
ti

o
n

s
P

er
L

in
e

S
ea

rc
h

Figure 3: The number of function evaluations per line search for STL-10, CIFAR-10, and
CIFAR-100 on Wide ResNet, DenseNet, and ResNet, respectively. The average of every
consecutive 100 iteration is plotted for display purpose.

5 Conclusion

It has proven challenging to effectively apply L-BFGS training methods to neural networks
with batch normalization. We have shown how to make a simple and extremely effective
modification to L-BFGS that makes it competitive with well-tuned SGD on classification
tasks with BatchNorm. Our approach uses a frozen batch to ensure that all elements of
the Hessian update are based on the same batch statistics. Along with a new approach to
line search that reduces the number of expensive backtracking steps, we achieve results that
considerably improve on previous L-BFGS implementations for training neural networks
with batch normalization.

We find it a bit surprising to see L-BFGS compete with tuned SGD; the community often
assumes that L-BFGS is overly aggressive, and line search methods get stuck in local minima.
Interestingly, when applied to high-performance networks with BatchNorm (with the proposed
modifications to maintain stability), L-BFGS does not suffer from these problems. This further
supports the intuition that BatchNorm, while not understood theoretically, promotes more
well behaved loss functions.

A. YADAV ET AL.: MAKING L-BFGS WORK WITH INDUSTRIAL-STRENGTH NETS 11

Acknowledgements
The work of A. Yadav and D. Jacobs was supported by the National Science Foundation, grant
no. IIS-1910132 and the Guaranteeing AI Robustness Against Deception (GARD) program
from DARPA. The work of PI Goldstein was supported by the ONR and AFOSR MURI
programs, and the National Science Foundation Directorate of Mathematical Sciences.

References
[1] Shun-ichi Amari. Backpropagation and stochastic gradient descent method. Neurocomputing, 5

(4-5):185–196, 1993.

[2] Jimmy Ba, Roger Grosse, and James Martens. Distributed second-order optimization using
kronecker-factored approximations. 2016.

[3] Albert S Berahas and Martin Takáč. A robust multi-batch l-bfgs method for machine learning.
arXiv preprint arXiv:1707.08552, 2017.

[4] Albert S Berahas, Jorge Nocedal, and Martin Takác. A multi-batch l-bfgs method for machine
learning. In Advances in Neural Information Processing Systems, pages 1055–1063, 2016.

[5] Raghu Bollapragada, Dheevatsa Mudigere, Jorge Nocedal, Hao-Jun Michael Shi, and Ping Tak Pe-
ter Tang. A progressive batching l-bfgs method for machine learning. In International Conference
on Machine Learning, pages 619–628, 2018.

[6] Léon Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the trade, pages
421–436. Springer, 2012.

[7] Richard H Byrd, Samantha L Hansen, Jorge Nocedal, and Yoram Singer. A stochastic quasi-
newton method for large-scale optimization. SIAM Journal on Optimization, 26(2):1008–1031,
2016.

[8] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in unsupervised
feature learning. In Proceedings of the fourteenth international conference on artificial intelligence
and statistics, pages 215–223, 2011.

[9] Tim Cooijmans, Nicolas Ballas, César Laurent, Çağlar Gülçehre, and Aaron Courville. Recurrent
batch normalization. arXiv preprint arXiv:1603.09025, 2016.

[10] Frank Curtis. A self-correcting variable-metric algorithm for stochastic optimization. In Interna-
tional Conference on Machine Learning, pages 632–641, 2016.

[11] Soham De, Abhay Yadav, David Jacobs, and Tom Goldstein. Automated inference with adaptive
batches. In Artificial Intelligence and Statistics, pages 1504–1513, 2017.

[12] Yun Fei, Guodong Rong, Bin Wang, and Wenping Wang. Parallel l-bfgs-b algorithm on gpu.
Computers & Graphics, 40:1–9, 2014.

[13] Wenbo Gao and Donald Goldfarb. Quasi-newton methods: superlinear convergence without line
searches for self-concordant functions. Optimization Methods and Software, 34(1):194–217, 2019.

[14] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer
vision, pages 1440–1448, 2015.

12 A. YADAV ET AL.: MAKING L-BFGS WORK WITH INDUSTRIAL-STRENGTH NETS

[15] Roger Grosse and James Martens. A kronecker-factored approximate fisher matrix for convolution
layers. In International Conference on Machine Learning, pages 573–582, 2016.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pages 630–645. Springer, 2016.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[18] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4700–4708, 2017.

[19] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International Conference on Machine Learning, pages
448–456, 2015.

[20] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International Conference on Machine Learning, pages
448–456, 2015.

[21] Nitish Shirish Keskar and Albert S Berahas. adaqn: An adaptive quasi-newton algorithm for
training rnns. In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pages 1–16. Springer, 2016.

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[23] Shankar Krishnan, Ying Xiao, and Rif A Saurous. Neumann optimizer: A practical optimization
algorithm for deep neural networks. 2018.

[24] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 and cifar-100 datasets. URl:
https://www. cs. toronto. edu/kriz/cifar. html, 6, 2009.

[25] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. The cifar-10 dataset. online: http://www. cs.
toronto. edu/kriz/cifar. html, 55, 2014.

[26] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1-3):503–528, 1989.

[27] James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored approxi-
mate curvature. In International conference on machine learning, pages 2408–2417, 2015.

[28] Aryan Mokhtari and Alejandro Ribeiro. Global convergence of online limited memory bfgs. The
Journal of Machine Learning Research, 16(1):3151–3181, 2015.

[29] Jacob Rafati and Roummel F Marcia. Improving l-bfgs initialization for trust-region methods in
deep learning. In 2018 17th IEEE International Conference on Machine Learning and Applications
(ICMLA), pages 501–508. IEEE, 2018.

[30] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do cifar-10 classifiers
generalize to cifar-10? arXiv preprint arXiv:1806.00451, 2018.

[31] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemat-
ical statistics, pages 400–407, 1951.

A. YADAV ET AL.: MAKING L-BFGS WORK WITH INDUSTRIAL-STRENGTH NETS 13

[32] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry. How does batch
normalization help optimization? In Advances in Neural Information Processing Systems, pages
2483–2493, 2018.

[33] Nicol N Schraudolph, Jin Yu, and Simon Günter. A stochastic quasi-newton method for online
convex optimization. In Artificial intelligence and statistics, pages 436–443, 2007.

[34] Andrew Senior, Georg Heigold, Ke Yang, et al. An empirical study of learning rates in deep neural
networks for speech recognition. In 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 6724–6728. IEEE, 2013.

[35] Adrian J Shepherd. Second-order methods for neural networks: Fast and reliable training methods
for multi-layer perceptrons. Springer Science & Business Media, 2012.

[36] Leslie N Smith. Cyclical learning rates for training neural networks. In 2017 IEEE Winter
Conference on Applications of Computer Vision (WACV), pages 464–472. IEEE, 2017.

[37] Jascha Sohl-Dickstein, Ben Poole, and Surya Ganguli. Fast large-scale optimization by unifying
stochastic gradient and quasi-newton methods. In International Conference on Machine Learning,
pages 604–612, 2014.

[38] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop, coursera: Neural networks for
machine learning. University of Toronto, Technical Report, 2012.

[39] Xiao Wang, Shiqian Ma, Donald Goldfarb, and Wei Liu. Stochastic quasi-newton methods for
nonconvex stochastic optimization. SIAM Journal on Optimization, 27(2):927–956, 2017.

[40] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

[41] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701,
2012.

[42] Chaoxu Zhou, Wenbo Gao, and Donald Goldfarb. Stochastic adaptive quasi-newton methods for
minimizing expected values. In Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pages 4150–4159. JMLR. org, 2017.

