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Abstract

We propose a novel method to compute both the local and global 3D motion of the
human body from a 2D monocular video. Our approach only uses unpaired sets of 2D
keypoints from target videos and 3D motion capture data for training. The estimation
target video dataset is assumed to lack any ground truth and thus our supervision signal
comes from motion datasets that are fully disjoint from the target datasets. For each time
step, a temporal convolutional generator configures the human pose in the global space
to satisfy both a reprojection loss and an adversarial loss. The translational and rota-
tional global motion is then derived and converted into the egocentric representation in
a differentiable manner for adversarial learning. We compare our system to state-of-the-
art architectures that use the Human3.6M dataset for paired training, and demonstrate
comparable precision even though our system is never trained on the ground truth Hu-
man3.6M 3D motion capture data. Due to its unpaired and disjoint nature in the training
data, our system can be trained on a large set of videos and 3D motion capture data,
which can considerably expand the domain of the applicable motion data types.

1 Introduction

There is a growing demand in 3D human pose estimation from monocular videos for 3D
motion capture, surveillance, autonomous driving, and motion analysis. By predicting the
3D pose of the subject, it will be easier to understand the context and predict the future status.

One of the main challenges of predicting 3D motion from videos using machine learning
is that they require ground-truth training data, where the 2D monocular videos and the cor-
responding ground-truth 3D motion data are given. This significantly limits the availability
of the training data as most high quality motion capture data do not come with correspond-
ing 2D monocular videos if at all, let alone in a natural setting. Also, due to the lack of a
large dataset with both modalities, such supervised training tends to overfit to the training
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Figure 1: Overview of our system to show how disjoint motions datasets from the target
videos can be used to estimate the subject’s global motion. The temporal convolutional
generator G estimates the global SMPL parameters within the camera space to compute the
reprojection loss. For adversarial training based on motion feasibility, the motion is made
independent from the camera via our differentiable egocentrization.

data, where the motion types are limited and the conditions of the 2D videos are rather bi-
ased. This results in poor performance when testing in-the-wild videos that contain arbitrary
motion and background.

Another issue with existing methods using monocular videos is that they mostly com-
pute only the local motion, where the root of the body is fixed, but not the global body
motion, which describes how the body is translating in the world. This can be a limitation
for applications such as 3D motion capture and detailed motion analysis.

In this paper, we propose a novel method to compute both the local and global 3D motion
of the human body from a 2D monocular video in an fully unpaired manner with disjoint
datasets for estimation target and supervision signal. The overview of our system is shown in
Fig. 1. Our temporal convolutional motion generator receives a set of 2D body joint positions
from an off-the-shelf 2D pose detector as input, and outputs the 3D joint positions as well as
the root translation and orientation in the world space. Our system uses an unpaired, disjoint
set of 2D keypoint detections and 3D motion capture data for training. Our 2D and 3D
datasets come from completely separate sources where no 3D ground truth of the 2D data
are included in the training set. The system is trained by a reprojection loss and an adversarial
loss. To the best of our knowledge, this is the first method to estimate global motion from
2D keypoint detections on monocular videos using unpaired and disjoint datasets for the
estimation target and supervision signals.

Our results are evaluated quantitatively through an ablation study and qualitatively via
accompanied videos. We also compare our method with supervised architectures that require
a pair of 2D videos and 3D motion capture data, trained on Human3.6M. Our results are
comparable to supervised methods in terms of accuracy, even though our system is never
trained on the ground truth Human3.6M motion capture data.

To evaluate our system with the Human3.6M dataset, we retarget its motion data onto
the SMPL [15] skeleton. To map the dataset in a consistent manner, we propose a motion
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retargeting framework where we optimize the meta-parameters of the target skeleton based
on all the motion capture data by all the subjects jointly.

The contribution of this paper is summarized as follows:

• a novel architecture for estimation of the 3D pose of a human subject including the
global root motion from a monocular video using unpaired and disjoint datasets,

• a comprehensive evaluation of our framework in comparison to existing state-of-the-
art approaches, and

• a motion retargeting framework that optimizes the meta-parameters of the target skele-
ton based on the entire Human3.6M dataset.

2 Related Works
In this section, we first review techniques on 2D human pose estimation from images. We
next review techniques on 3D pose estimation from images, and finally those that make use
of temporal coherence to predict the 2D/3D human motions from videos.

2.1 2D Pose Estimation

Human pose estimation from videos is a classic computer vision problem [1]. Most suc-
cessful classical approaches are based on the Deformable Part Models (DPM) [6], where
the system recognizes each joint based on the features and their connectivity with adjacent
joints. Hand-crafted features such as HOG, edges, color histograms etc are used for detecting
the joints.

The performance of the pose estimators have improved since the usage of deep learning
techniques. The model by Toshev et al. [28] significantly outperforms classical approaches
based on hand-crafted features. Jain et al. [10] apply convolutional neural networks for com-
puting the heatmaps for joints and then use the global position prior to compute their final
positions. Newell et al. [22] use multiple resolutions of the image to increase the precision
of the local pose estimation. Cao et al. [3] improve the body pose estimation using the Part
Affinity Field that predicts the connection between joints.

2.2 3D Pose Estimation

There is an increasing interest in the prediction of 3D human pose from 2D images. Mar-
tinez et al. [18] regress 2d detections from [22] to 3D poses with a simple neural network.
Zhou et al. [30] expand [22] by a depth regression and formulate geometric losses for semi-
supervised learning, enabling combined training on data with 3D and 2D GT only. Mehta et
al. [19] introduce a green screen dataset with exchangeable backgrounds for better general-
ization. They also optimize for reprojection in camera space to obtain global poses assuming
the camera stays fixed. Kanazawa et al. [11] estimate both 3D pose and shape based on
SMPL [15], a parametric model of human shape and pose. A concurrent work by Pavlakos
et al. [23] completes the same task in a similar manner.

These approaches predict human poses from individual images, and thus suffer from
jerkiness when applied to videos. In addition, due to depth ambiguity from monocular views,
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they can only predict root relative poses but not the global motion in the world space over
time. We call these root relative human poses local poses.

Methods that consider temporal coherence can remove the jerkiness of the joints when
blindly applying per-frame pose-estimators to video frames. Tekin et al. [27] use motion
compensation for 3D pose prediction but the poses still are root relative. Mehta et al. [20]
filter poses over consecutive frames and optimize for reprojection in camera space. Their
method therefore results in global motion sequences with translation as long as the camera
is fixed. Dabral et al. [5] extend [30] by a supervised temporal pose refinement for root
relative poses. Hossain and Little [9] and Pavllo et al. [24] regress sequences of 2D poses
to sequences of 3D (root relative) poses using LSTM and TCN, respectively. Xu et al. [29]
reconstruct pose, mesh, and cloth in the global space but needs an initialization per subject,
where the subject’s standing pose must be scanned by a video from different directions.
Peng et al. [25] learn 3d pose sequences in the world space from videos as a byproduct
from learning reinforcement policies within a physical environment. In contrast to our work,
their method needs retraining for every video. Kanazawa et al. [12] propose a system to
predict the 3D motion of the person from a single image. Kocabas et al. [13] use a temporal
discriminator to learn smooth movements of the body. Arnab [2] use bundle adjustment of a
sequence of poses based on consecutive single frame estimations.

We train our system purely with unpaired 2D and 3D motion capture data while also
predicting the global motion. Among the previous works, majority of the works only predict
the local poses of the subjects (except [20, 25, 29]). Also, although some works such as
[11, 12, 13] claim unpaired training, their system are co-trained by paired data such as the
Human3.6M training videos. This makes our work unique from existing works; we compare
our system with existing methods later in this paper and show that it performs comparably
even though it is trained in a fully unpaired fashion.

3 Methodology

We regress global 3D motion from 2D keypoint detections by learning a mapping to satisfy
a motion critic, a pose critic, and a reprojection loss based on a known camera. We assume
the camera is static and its intrinsics and extrinsics are known in advance. We use the off-
the-shelf detector OpenPose [4] for obtaining keypoint estimates on test videos. A temporal
convolutional generator learns a mapping from a sequence of 2D detections to a sequence of
body shape, body pose and translation parameters for the differentiable SMPL human body
model [15] (see section 3.1). In order to reduce the dimensional complexity of global motion,
we then express it from the perspective of the subject (what we call egocentrization) in a
differentiable way (see section 3.2). The global joint positions can be projected into 2D with
known camera parameters for a reprojection loss (see section 3.3). A temporal convolutional
discriminator is trained to distinguish the generated and real motion in a motion database [17]
(see section 3.4). Further we use a pose discriminator which only sees the SMPL pose angle
parameters (see section 3.5). Note that the system never sees any video’s 3D ground truth
data. We also propose a heuristic for obtaining SMPL parameterized motion sequences
from skeletal motion data (see section 3.7). This function is useful when marker data is not
available and MoSh [14] cannot be used.
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Figure 2: The generator (left) and discriminator (right) structures of our system. Note that
the generator’s output motion is processed through our differentiable egocentrization before
it is inputted to the discriminator, which is not depicted here.

3.1 3D Global Motion Generator for SMPL Sequences
The temporal convolutional generator G (see Fig. 1) takes a sequence of 2D body keypoint
detections X2d

t ∈ R19×2 as an input and maps it to a sequence of SMPL [15] parameters
{β ,θ , t}t including the body shape PCA basis β ∈R10, the pose angles θ ∈R24×3 in rotation
vector representation and the root global translation t ∈ R3 in meters. The body rotation is
hereby included in θ as the first joint’s rotation.

G is a temporal convolutional neural network (see Fig. 2, left) inspired by the U-Net [26]
architecture. It consists of down sampling blocks, up sampling blocks and keep blocks. A
down sampling block halves the temporal width by a 1d convolution layer with stride two
while also doubling the amount of channels. The up sampling block uses nearest neighbor
upsampling to double the temporal width before a 1d convolution layer halves the channel
size. The keep block is a 1d convolution that keeps the input’s and output’s temporal width
and channel size the same. All blocks also feature a ReLU [21] after the convolution except
when a block is used as the last output layer. To assemble the network Nd down sampling
blocks are followed by Nk keep blocks which in turn are followed by Nu = Nd up sampling
blocks. Also, the nth down sampling block is connected to the (NU − n)th up sampling
block via residual connections. We chose Nd = Nu = 3,Nk = 1, a filter length 15, a temporal
window length of 128 frames at 10fps and a channel size of 512 after the first down sampling
block for this generator.

3.2 Differentiable Motion Egocentrization
In order to construct a useful global motion representation for adversarial motion learning we
convert the global motion {β ,θ , t}t into the subject’s egocentric coordinate system, which
we call egocentrization (Φ in Fig. 1). The motivation stems from the fact that for example
a straight walk is the same motion regardless from which to which point and at which angle
it is performed. By transforming the representation from the world coordinates into the
subject’s egocentric coordinate system, which is a process that we call egocentrization, the
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motion becomes invariant to arbitrary rotations and translations while keeping the temporal
path within the sequence intact. This reduces the dimensional complexity without losing
relevant information. The original global translation and rotation can be obtained by forward
integration.

While similar representations have been used in data preprocessing pipelines for char-
acter animation modelling [8] we need to construct it as a differentiable function of an
SMPL [15] parameter sequence to use it online for training. We call this differentiable
egocentrization function Φ. First we need the SMPL accompanied default world space 3D
joint position computation module, here denoted J: xw = J(β ,θ , t), where xw ∈ R24×3 are
the position of the joints in the world space. Φ further maps xw to joint positions in egocen-
tric space (xego), the velocity in egocentric space (ṫego) and the angular velocity around the
z-axis (ϕ̇z), with z being the up axis. For this we set the world space joints xw with its hips
to the origin x0 = xw− tx,y on the horizontal plane using tx,y, the global translation t with the
z-component set to zero. Let R be the rotation matrix that rotates x0 around the z-axis so that
the subject looks in +x direction and the hips are aligned with the y-axis. This gives

xego = (Rxᵀ0 )
ᵀ (1)

ṫego = R(tt − tt−1) (2)
ϕ̇z =−(Rᵀ

t−1Rt)i=1, j=1. (3)

All these operations are differentiable so we can use Tensorflow’s autograd feature to obtain
the gradients.

3.3 Reprojection Loss
The reprojection loss Lrep aligns the generated global poses {β ,θ , t}t with the input 2D key-
point detections X2d

t by projecting them with given camera parameters. Because the default
SMPL skeleton does not match OpenPose’s underlying assumed 3D skeleton, we follow the
common practice of using a learned regression from the vertices of the SMPL output mesh
to the target skeleton. Here we denote V (β ,θ , t) as the differentiable SMPL function to cal-
culate the 3D position of the body mesh vertices. JOP(V (β ,θ , t)) ∈ R19×3 maps the vertices
further to the OpenPose skeleton. The camera projection P(·) then calculates the 2D pro-
jections given the camera’s matrix M ∈ R4×4, focal length f ∈ R2 and center point c ∈ R2.
Hence the reprojection loss is

Lrep =
Nt

∑
t
|P(JOP(V (G(X2d

1,...,Nt
)t)),M, f ,c)−X2d

t |. (4)

3.4 Motion Discriminator
The motion discriminator DMotion (see Fig. 1) compares the generated egocentric motion with
real motion examples. DMotion is a convolutional neural network with a similar structure as
the generator G (see Fig. 2, right). It uses a shorter filter length of nine, only one down, up
sampling and keep block and 384 channels. This yields a shorter receptive field of about
three seconds at ten fps. We use the loss and gradient penalty described in [7]:

LDM = ∑
t
[DMotion(Φ(xreal

1,...,Nt
))t −DMotion(Φ(J(G(X2d

1,...,Nt
))))t ]+ cMotion

pen RMotion
pen , (5)

where RMotion
pen is the gradient penalty and cPose

pen = 10.
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3.5 Pose Discriminator

We use a time independent pose discriminator DPose (see Fig. 1) on all 23 relative joint angles
in a generated θt . Hence we ignore the first angle in θt , which is the pose’s absolute rotation
angle. Note that this allows the generator to freely rotate the subject globally and avoid
discontinuities that are found in datasets that do not use rotations above 2π . The real pose
examples are drawn from AMASS dataset [17]. DPose is a feed forward network with two
hidden layers with dimensionality 512. Like for DMotion we use the loss and gradient penalty
described in [7]:

LDP = ∑
t
[DPose(xreal

t )−DPose(J(G(X2d
t )))]+ cPose

pen RPose
pen , (6)

where RPose
pen is the gradient penalty and cMotion

pen = 0.0001.

3.6 Loss Composition and Training

The generator G and the discriminators DMotion,DPose are trained with adversarial training.
We use the following loss for the generator:

LG = ∑
t
[DMotion(Φ(J(G(X2d

1,...,Nt
))))t +DPose(J(G(X2d

t )))]+ crepLrep. (7)

where crep = 10000 and cβ = 100. We use Adam [16] batched stochastic gradient descent
with a batch size of 32. One iteration trains DMotion five times, DPose three times and G one
time. We train for 25k iterations. We use the AMASS [17] motion dataset, which itself is a
compilation of multiple motion datasets reparameterized as SMPL sequences.

3.7 Motion Retargeting by Optimizing Meta Parameters

For our supervised comparison experiment we need the Human3.6M 3D ground truth as a
SMPL parameter sequence. The SMPL skeleton differs from the Human3.6M skeleton and
thus we need to retarget the Human3.6M dataset to the SMPL skeleton. 1

Given a set of motion sequences with NS subjects we subsample the dataset to a reason-
able size so that it completely fits on a single GPU (we use 1fps for Human3.6M). For each
of the SMPL joint, we define sets of joints in the source skeleton: Each SMPL joint j is
assigned the most similar source skeleton joint and all neighboring joints n j

1, ...,n
j
N j. We op-

timize the convex combination of these joints to have the same position as the corresponding
SMPL joint. Hence given a set of linear coefficients C = {ci j|∀i j} the cost function for a
single pose is:

Lsingle(C,βS,θ) =
24

∑
j

∥∥∥∥∥J(βS,θ) j−
N j

∑
i=1

ci jv′n j
i

∥∥∥∥∥
2

+

∥∥∥∥∥1−
N j

∑
i=1

ci j

∥∥∥∥∥
2

, (8)

where v′a is the position of a joint a in the source skeleton. The coefficients ci j are shared
among all bodies and poses. Thus for all body shapes B = {β1, ...,βNS} and poses Θ =

1Previously [11, 12, 13] this conversion was achieved with marker based MoSh[14]. The resulting data has since
been removed from the internet and the official Human3.6M dataset does not feature the marker data.
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{θS,t |∀S, t} we optimize

Ltotal(C,B,Θ) =
NS

∑
S

NS
t

∑
t

Lsingle(C,βS,θS,t) (9)

with respect to C,B,Θ using gradient descent until convergence.

4 Evaluation

4.1 Translations

We show our mean global translation error per frame in millimeters (see Table 1). Due to
lack of work for fair comparison, we train a simple supervised baseline for a comparison (see
section 4.1.1). Note that the baseline in this setting is quite strong and its practical use would
be limited to datasets with ground truth data only. Still we are coming reasonably close.

We also show in our ablation experiments that the motion discriminator plays an impor-
tant role. Without it the generator has trouble to position the subject close to the ground
truth. If the pose discriminator is also removed the error again rises, but not as drastically as
before. This can also be seen in the ablation results in our video.

4.1.1 Supervised Baseline

We train a convolutional neural network with the same architecture as the generator G to su-
pervisedly regress {β ,θ , t}t from 2d keypoint detections from the same camera. The ground
truth Human3.6M sequences are obtained by using the method described in section 3.7. We
train on subjects 1, 5, 6, 7, 8 and report for subjects 9 and 11 as evaluation.

4.2 Root Relative Poses

Like previously proposed, we report the root relative pose error on subject 9 and 11 on the
Human3.6m dataset. Note that our system never sees any Human3.6M 3D ground truth data.
We align the estimated pose with its 3D ground truth via the root joint and report the mean
per joint position error (MPJPE) in mm (see Table 2). We compare our results to a selection
of previous works as well as our own supervised baseline (section 4.1.1) and our ablation
experiments. We mark a method as disjoint in Table 2 if no dataset is used for both target
and label supervision signal in the training process.

We almost reach state of the art performance with a significant conceptual disadvantage
of not using any Human3.6M ground truth in training. We also use less non-pose training
target data (images, videos or keypoints) than any other method except for [18], which uses
the same amount.

Table 1: Translational error (mm).
Supervised Baseline 120.1
Ours (only Lrep, no discriminators) 901.1
Ours (without DMotion) 718.3
Ours 259.3
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Table 2: Mean per joint position error (MPJPE) in mm.
MPJPE unpaired disjoint

Martinez et. al. 2017 [18] 62.9 7 7
VIBE (Kocabas et. al. 2019)[13] 65.6 7 7
VNect (Mehta et. al. 2017)[20] 80.5 7 7
Pavllo et. al. 2018 [24] 46.8 7 7
HMR (Kanazawa et. al. 2018)[11] 88.0 7 7
HMR (Kanazawa et. al. 2018)[11] unpaired 106.8 3 7

Supervised Baseline 72.2 7 7

Ours (only Lrep, no discriminators) 246.6 3 3
Ours (without DMotion) 189.2 3 3
Ours 118.2 3 3

Our ablation shows that both discriminators have similar effect in improving the pose
configuration. Note that the pose discriminator also restricts the pose angles to a feasible
range similar to the discriminator in [11]. Without it joints can rotate in an unnatural way to
reach poses that look valid to the motion discriminator as it is only looking at the positional
configuration.

5 Discussion

The reason the motion discriminator improves not only the global translation but also the
local pose configuration error is that it enforces temporal coherence that a pose discriminator
alone cannot impose. Even if all poses are enforced to be valid, the body can still float or
slide over the ground freely. Also, the body shape and the pose can switch between frames
in an unnatural manner. The readers are referred to the supplementary video for the visual
details.

The general problem of finding the absolute distance of an object in camera space is im-
possible to solve without knowing its size. In our method the sizes of the subjects are learned
indirectly because world contacts (like the foot on the ground) need to be hypothesized cor-
rectly by the generator in order to produce feasible motion. The ground contacts imply a
scale when the ground plane location is known.

Our method is robust to dataset changes by design. Since we do not use supervision from
any target dataset we provide a lower bound of what is achievable with guaranteed no target
dataset specific overfitting.

A disadvantage to common methods is that for a new setting the camera needs to be
calibrated and the system needs to be retrained. Once this is done similar results like reported
in this paper can be expected to be achieved. For this our method only needs motion data
for training. Motion data is easier available and often licensed less restrictively than datasets
with video and 3D ground truth, which other methods need for their training.

To further advance our method one could investigate how to transfer information about
a subjects body shape over longer temporal distances in a computational feasible way. Cur-
rently we achieve this for short temporal distances by regularizing body shape stability but
this is limited in terms of information flow by the length of the receptive field. It might also
be useful to extend this method to a multi-view task.
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6 Conclusion
We propose an unpaired, disjoint system to estimate the 3D human poses from 2D keypoints
extracted from the state-of-the-art 2D pose detector. To achieve this task, we propose a fully
differentiable pipeline composed of egocentrization, generator, pose discriminator and mo-
tion discriminator. Our system shows comparable results to supervised frameworks, which
has much more restrictions on the data that can be used for training.

As a future work, we are interested in extending our technique to predict the camera
parameters in videos where the camera is dynamically moving.
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