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Abstract

Humans can incrementally learn to do new visual detection tasks, which is a huge
challenge for today’s computer vision systems. Incrementally trained deep learning
models lack backwards transfer to previously seen classes and suffer from a phenomenon
known as “catastrophic forgetting.” In this paper, we pioneer online streaming learning for
object detection, where an agent must learn examples one at a time with severe memory
and computational constraints. In object detection, a system must output all bounding
boxes for an image with the correct label. Unlike earlier work, the system described in this
paper can learn this task in an online manner with new classes being introduced over time.
We achieve this capability by using a novel memory replay mechanism that efficiently
replays entire scenes. We achieve state-of-the-art results on both the PASCAL VOC 2007
and MS COCO datasets.

1 Introduction

Object detection is a localization task that involves predicting bounding boxes and class
labels for all objects in a scene. Recently, many deep learning systems for detection [45, 48]
have achieved excellent performance on the commonly used Microsoft COCO [32] and
Pascal VOC [10] datasets. These systems, however, are trained offline, meaning they cannot
be continually updated with new object classes. In contrast, humans and mammals learn
from non-stationary streams of samples, which are presented one at a time and they can
immediately use new learning to better understand visual scenes. This setting is known as
streaming learning, or online learning in a single pass through a dataset. Conventional models
trained in this manner suffer from catastrophic forgetting of previous knowledge [12, 40].

Streaming object detection enables new applications such as adding new classes, adapting
detectors across seasons, and incorporating object appearance variations over time. Existing
incremental object detection systems [14, 29, 50, 51] have significant limitations and are
not capable of streaming learning. Instead of updating immediately using the current scene,
they update using large batches of scenes. These systems use distillation [19] to mitigate
forgetting. This means for the batch acquired at time t, they must generate predictions for all
of the scenes in the batch before learning can occur, and afterwards they loop over the batch
multiple times. This makes updating slow and impairs their ability to be used on embedded
devices with limited compute or where fast learning is required.
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Figure 1: In offline object detection, a model is provided an image and then trained with the
ground truth boxes for all classes (e.g., a, b, c) in the image at once (top figure). However, in
an online setting, ground truth boxes of different categories are observed at different time steps
(bottom figure). While conventional models suffer from catastrophic forgetting, RODEO
uses replay to efficiently train an incremental object detector for large-scale, many-class
problems. Given an image, RODEO passes the image through the frozen layers of its network
(G). The image is then quantized and a random subset of examples from the replay buffer
are reconstructed. This mixture of examples is then used to update the plastic layers of the
network (F) and finally the new example is added to the buffer.

Previous works in incremental image recognition have shown that replay mechanisms are
effective in alleviating catastrophic forgetting [4, 16, 44, 56]. Replay is inspired by how the
human brain consolidates learned representations from the hippocampus to the neocortex,
which helps in retaining knowledge over time [39]. Furthermore, hippocampal indexing
theory postulates that the human brain uses an indexing mechanism to replay compressed
representations from memory [52]. In contrast, others replay raw samples [4, 44, 56], which
is not biologically plausible. Here, we present the Replay for the Online DEtection of Objects
(RODEO) model, which replays compressed representations stored in a fixed capacity memory
buffer to incrementally perform object detection in a streaming fashion. To the best of our
knowledge, this is the first work to use replay for incremental object detection. We find that
this method is computationally efficient and can be easily be extended to other applications.
This paper makes the following contributions:

1. We pioneer streaming learning for object detection and establish strong baselines.
2. We propose RODEO, a model that uses replay to mitigate forgetting in the streaming

setting and achieves better results than incremental batch object detection algorithms.

2 Problem Setup

Continual learning (sometimes called incremental batch learning), is a much easier problem
than streaming learning and has recently seen much success on classification and detection
tasks [4, 6, 21, 25, 27, 35, 36, 41, 42, 51, 56]. In continual learning, an agent is required to
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learn from a dataset that is broken up into T batches, i.e., D =
S

T

t=1 Bt . At each time-step
t, an agent learns from a batch consisting of Nt training inputs, i.e., Bt = {Ii}Nt

i=1 by looping
through the batch until it has been learned, where Ii is an image. Continual learning is not an
ideal paradigm for agents that must operate in real-time for two reasons: 1) the agent must
wait for a batch of data to accumulate before training can happen and 2) an agent can only be
evaluated after it has finished looping through a batch. While streaming learning has recently
been used for image classification [7, 15, 16, 17, 36], it has not yet been explored for object
detection, which we pioneer here.

More formally, during training, a streaming object detection model receives temporally
ordered sequences of images with associated bounding boxes and labels from a dataset
D = {It}T

t=1, where It is an image at time t. During evaluation, the model must produce
labelled bounding boxes for all objects in a given image, using the model built until time t.
Streaming learning poses unique challenges for models by requiring the agent to learn one
example at a time with only a single epoch through the entire dataset. In streaming learning,
model evaluation can happen at any point during training. Further, developers should impose
memory and time constraints on agents to make them more amenable to real-time learning.

3 Related Work

3.1 Object Detection

In comparison with image classification, which requires an agent to answer ‘what’ is in
an image, object detection additionally requires agents capable of localization, i.e., the
requirement to answer ‘where’ is the object located. Moreover, models must be capable of
localizing multiple objects, often of varying categories within an image. Recently, two types
of architectures have been proposed to tackle this problem: 1) single stage architectures (e.g.,
SSD [13, 34], YOLO [45, 46], RetinaNet [33]) and 2) two stage architectures (e.g., Fast
RCNN [55], Faster RCNN [48]). Single stage architectures have a single, end-to-end network
that generates proposal boxes and performs both class-aware bounding box regression and
classification of those boxes in a single stage. While single stage architectures are faster to
train, they often achieve lower performance than their two stage counterparts. These two stage
architectures first use a region proposal network to generate class agnostic proposal boxes. In
a second stage, these boxes are then classified and the bounding box coordinates are fine-tuned
further via regression. The outputs of all detection models are bounding box coordinates with
their respective probability scores corresponding to the closest category. While incremental
object detection has recently been explored in the continual learning paradigm, we pioneer
streaming object detection, which is a more realistic setup.

3.2 Incremental Object Recognition

Although continual learning is an easier problem than streaming learning, both training
paradigms suffer from catastrophic forgetting of previous knowledge when trained on chang-
ing, non-iid data distributions [12, 40]. Catastrophic forgetting is a result of the stability-
plasticity dilemma, where an agent must update its weights to learn new information, but if the
weights are updated too much, then it will forget prior knowledge [1]. There are several strate-
gies for overcoming forgetting in neural networks including: 1) regularization approaches
that place constraints on weight updates [3, 6, 20, 27, 30, 38, 41, 58], 2) sparsity where a net-
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work sparsely updates weights to mitigate interference [8], 3) ensembling multiple classifiers
together [9, 11, 43, 47, 53], and 4) rehearsal/replay models that store a subset of previous
training inputs (or generate previous inputs) to mix with new examples when updating the
network [4, 16, 17, 21, 25, 44, 56]. Many prior works have also combined these techniques
to mitigate forgetting, with a combination of distillation [19] (a regularization approach) and
replay yielding many state-of-the-art models for image recognition [4, 21, 44, 56].

3.3 Incremental Object Detection

While streaming object detection has not been explored, there has been some work on
object detection in the continual (batch) learning paradigm [14, 29, 50, 51]. In [51], a
distillation-based approach was proposed without replay. A network would initially be trained
on a subset of classes and then its weights would be frozen and directly copied to a new
network with additional parameters for new classes. A standard cross-entropy loss was used
with an additional distillation loss computed from the frozen network to restrict weights
from changing too much. Hao et al. [14] train an incremental end-to-end variant of Faster
RCNN [48] with distillation, a feature preserving loss, and a nearest class prototype classifier
to overcome the challenges of a fixed proposal generator. Similarly, [29] uses distillation
on the classification predictions, bounding box coordinates, and network features to train an
end-to-end incremental network. Shin et al. [50] introduce a novel incremental framework that
combines active learning with semi-supervised learning. All of the aforementioned methods
operate on batches and are not designed to learn one example at a time.

4 Replay for the Online Detection of Objects (RODEO)

Inspired by [17], RODEO is a model architecture that performs object detection in an online
fashion, i.e., learning examples one at a time with a single pass through the dataset. This means
our model updates as soon as a new instance is observed, which is more amenable to real-time
applications than models operating in the incremental batch paradigm. To facilitate online
learning, our model uses a memory buffer to store compressed representations of examples.
These representations are obtained from an intermediate layer of the CNN backbone and
compressed to reduce storage, i.e., compressed mid-network CNN tensors. During training,
RODEO compresses a new image input. It then combines this new input with a random,
reconstructed subset of samples from its replay buffer, before updating the model with this
replay mini-batch.

More formally, our object detection model, H, can be decomposed as H (x) = F (G(x))
for an input image x, where G consists of earlier layers of a CNN and F the remaining layers.
We first initialize G(·) using a base initialization phase where our model is first trained offline
on half of the total classes in the dataset. After this base initialization phase, the layers in G

are frozen since earlier layers of CNNs learn general and transferable representations [57].
Then, during streaming learning, only F is kept plastic and updated on new data.

Unlike previous methods for incremental image recognition [44], which store raw (pixel-
level) samples in the replay buffer, we store compressed representations of feature map tensors.
One advantage of storing compressed samples is a drastic reduction in memory requirements
for storage. Specifically, for an input image x, the output of G(x) is a feature map, z, of size
p⇥ q⇥ d, where p⇥ q is the spatial grid size and d is the feature dimension. After G has
been initialized on the base initialization set of data, we push all base initialization samples
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Data: training set
Result: train model parameters incrementally

1 Train entire object detection model offline on half of the dataset;
2 Train the PQ model on mid-CNN feature maps;
3 Initialize replay buffer with quantized samples from initialization;
4 for increment 41 to 80 do

5 add new output units to classifier and box regressor;
6 for image 1 to N do

7 fetch edge box proposals;
8 fetch image annotation with ground truth boxes and labels;
9 push image through frozen layers and quantize;

10 if image in buffer then

11 append new image annotations to existing annotations;
12 else

13 add new quantized sample and annotations to buffer;
14 if buffer full then

15 remove an old sample and annotations from buffer;
16 end

17 end

18 reconstruct n�1 random samples from replay buffer;
19 train model on quantized current + replay (n) samples;
20 add current quantized sample to buffer;
21 end

22 end

Algorithm 1: Incremental update procedure for RODEO on COCO.

through G to obtain these feature maps, which are used to train a product quantization (PQ)
model [23]. This PQ model encodes each feature map tensor as a p⇥q⇥ s array of integers,
where s is the number of indices needed for storage, i.e., the number of codebooks used
by PQ. After we train the PQ model, we obtain the compressed representations of all base
initialization samples and add the compressed samples to our memory replay buffer. We then
stream new examples into our model H one at a time. We compress the new sample using our
PQ model, reconstruct a random subset of examples from the memory buffer, and update F

on this mixture for a single iteration. We subject our replay buffer to an upper bound in terms
of memory. If the memory buffer is full, then the new compressed sample is added and we
choose an existing example for removal, which we discuss next. Otherwise, we just add the
new compressed sample directly. For all experiments, we store codebook indices using 8 bits
or equivalently 1 byte, i.e., the size of each codebook is 256. We use 64 codebooks for COCO
and 32 for VOC. For PQ computations, we use the publicly available Faiss library [24]. A
depiction of our overall training procedure is given in Alg. 1.

For lifelong learning agents that are required to learn from possibly infinite data streams,
it is not possible to store all previous examples in a memory replay buffer. Since the capacity
of our memory buffer is fixed, it is essential to replace less useful examples over time. We use
a replacement strategy that replaces the image having the least number of unique labels from
the replay buffer. We also experiment with other replacement strategies in Sec. 6.1.
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5 Experimental Setup

5.1 Datasets

We use the Pascal VOC 2007 [10] and Microsoft COCO [32] datasets. VOC contains 20
object classes with 5,000 combined training/validation images and 5,000 testing images.
COCO contains 80 classes (including all VOC classes) with 80K training images and 40K
validation images, which we use for testing. We use the entire validation set as our test set.

5.2 Baseline Models

We compare several baselines using the Fast RCNN architecture with edge box proposals and
a ResNet-50 [18] backbone, which is the setup used in [51]. These baselines include:

• RODEO – RODEO operates as an incremental object detector by using replay mecha-
nisms to mitigate forgetting. Our main variant replays 4 randomly selected samples
from its buffer at each time step. We use 32 codebooks for VOC and 64 for COCO,
each of size 256.

• Fine-Tune (No Replay) – This is a standard object detection model without a replay
buffer that is fine-tuned one example at a time with only a single epoch through
the dataset. This model serves as a lower bound on performance and suffers from
catastrophic forgetting of previous classes.

• ILwFOD – The Incremental Learning without Forgetting Object Detection model [51]
uses a fixed proposal generator (e.g., edge boxes) with distillation to incrementally
learn classes. It is the current state-of-the-art for incremental object detection.

• SLDA + Stream-Regress – Deep streaming linear discriminant analysis was recently
shown to work well in classifying deep network features on ImageNet [15]. Since
SLDA is only used for classification, we combine it with a streaming regression model
to regress for bounding box coordinates. To handle the background class with SLDA,
we store a mean vector per class and a background mean vector per class, along with
a universal covariance matrix. At test time, a label is assigned based on the closest
Gaussian in feature space, defined by the class mean vectors and universal covariance
matrix. More details for this model are provided in supplemental materials.

• Offline – This is a standard object detection network trained in the offline setting using
mini-batches and multiple epochs through the dataset. This model serves as an upper
bound for our experiments.

All models use the same network initialization procedure. Similarly, all models are optimized
with stochastic gradient descent with momentum, except SLDA. We were not able to replicate
the results for ILwFOD, so we use the numbers provided by the authors for VOC and do not
include results for COCO since our setup differs. While RODEO, SLDA+Stream-Regress,
and Fine-Tune are all streaming models trained one sample at a time with a single epoch
through the dataset, ILwFOD is an incremental batch method that loops through batches of
data many times making it less ideal for immediate learning.

5.3 Metrics

We introduce a new metric that captures a model’s mean average precision (mAP) at a 0.5 IoU
threshold over time. This metric extends the Wall metric from [16, 26] for object detection
and normalizes an incremental learner’s performance to an optimized offline baseline, i.e.,
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WmAP = 1
T

ÂT

t=1
at

aoffline,t
, where at is an incremental learner’s mAP at time t, aoffline,t is

the offline learner’s mAP at time t, and there are T total testing events. We only evaluate
performance on classes learned until time t. While WmAP is usually between 0 and 1, a value
greater than 1 is possible if the incremental learner performed better than the offline baseline.
This metric makes it easier to compare performance across datasets of varying difficulty.

5.4 Training Protocol

In our training paradigm, the model is first initialized with half the total classes and then
it is required to learn the second half of the dataset one class at a time, which follows the
setup in [51]. We organize the classes in alphabetical order for both PASCAL VOC 2007
and COCO. For example, on VOC, which contains 20 total classes, the network is first
initialized with classes 1-10, and then the network learns class 11, then 12, then 13, etc. This
paradigm closely matches how incremental class learning experiments have been performed
for classification tasks [17, 44]. For all experiments, the network is incrementally trained on
all images containing at least one instance for the new class. This means that images could
potentially be repeated in previous or future increments. When training a new class, only the
labels for the ground truth boxes containing that particular class are provided.

For incremental batch models, after base initialization, models are provided a batch
containing all data for a single class, which they are allowed to loop over. Streaming models
operate on the same batches of data, but examples from within the batch are observed one at a
time and can only be observed once, unless the data is cached in a memory buffer. For VOC,
after each new class is learned, each model is evaluated on test data containing at least one
box of any previously trained classes. For COCO, models are updated on batches containing a
single class after base initialization, which is identical to the VOC paradigm. However, since
COCO is much larger than VOC and evaluation takes much longer, we evaluate the model
after every 10 new classes of data have been trained.

5.5 Implementation Details

Following [51], we use the Fast RCNN architecture [55] with a ResNet-50 [18] backbone
and edge box object proposals [59] for all models, unless otherwise noted. Edge boxes is
an unsupervised method for producing class agnostic object proposals, which is useful in
the streaming setting where we don’t know what types of objects will appear in future time
steps. Specifically, we compute 2,000 edge boxes for an image. Following [48], we first resize
images to 800 ⇥ 1000 pixels. To determine whether a box should be labelled as background
or foreground, we compute overlap with ground truth boxes using an IoU threshold of 0.5.
Then, batches of 64 boxes are randomly selected per image, where each batch must have
roughly 25% positive boxes (IoU > 0.5). During inference, 128 boxes are chosen as output
after applying a per-category Non-Maximal Supression (NMS) threshold of 0.3 to eliminate
overlapping boxes. More parameter settings are in supplemental materials.

For each input image to RODEO, layer G produces feature map tensors of approximate
size 25 ⇥ 30 ⇥ 2048. Images from the base initialization classes (1-10) for VOC and (1-40)
for COCO are used to train the PQ model. For VOC, we are able to fit all the feature maps in
memory to train the PQ model. For COCO, it is not possible to fit all the images in memory,
so we sub-sample 30 random locations from the full feature map of each image to train the
PQ. The ResNet-50 backbone has four residual blocks. We quantize RODEO after the third
residual block, i.e., F consists of the last residual block, the Fast RCNN MLP head composed
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Figure 2: Learning curve for VOC 2007. Figure 3: Learning curve for COCO.

of two fully connected layers, and the linear classifier and regressor. To make experiments
fair, we subject RODEO’s replay buffer to an upper limit of 510 MB, which is the amount
of memory required by ILwFOD. For VOC, this allows RODEO to store a representation of
every sample in the training set. For COCO, this only allows us to store 17,668 compressed
samples. To manage the buffer, we use a strategy that always replaces the image with the least
number of unique objects.

6 Experimental Results

Table 1: WmAP results for VOC and COCO.

METHOD VOC COCO

Fine-Tune 0.385 0.220
ILwFOD 0.787 -
SLDA+Regress 0.696 0.655
RODEO (recon, n = 4) 0.853 0.829

RODEO (recon, n = 12) 0.906 0.760

RODEO (real, n = 4) 0.911 0.870
RODEO (real, n = 12) 0.914 0.812

Offline 1.000 1.000

Our main experimental results are in Table 1
and learning curves are in Fig. 2 and Fig. 3
for VOC and COCO, respectively. We in-
clude results for RODEO models that use
both real and reconstructed features. Real
features do not undergo reconstruction be-
fore being passed through plastic layers, F .
To normalize WmAP, we use offline models
that achieve final mAP values of 0.715 and
0.42 on VOC and COCO, respectively. Addi-
tional results are in supplemental materials.

For VOC, RODEO beats all previous
methods just by replaying only four sam-
ples. Our method is much less prone to forgetting than other models, which is demonstrated
by its performance at the final time step in Fig. 2. The SLDA+Regress model is surprisingly
competitive on both datasets without the need to update its backbone. For COCO, RODEO is
run with four replay samples and outperforms the baseline models by a large margin. Further,
across various replay sizes and replacement strategies (Table 2), we find that real features
yield better results compared to reconstructed features.

6.1 Additional Studies of RODEO Components
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Table 2: Incremental mAP results for several vari-
ants of RODEO.

METHOD MEAN WmAP

Fine-Tune 0.093 0.220
SLDA+Regress 0.275 0.655
RODEO n = 4 (recon, BAL) 0.330 0.784
RODEO n = 4 (recon, MIN) 0.348 0.829

RODEO n = 12 (recon, BAL) 0.312 0.741
RODEO n = 12 (recon, MIN) 0.320 0.760
RODEO n = 4 (recon, MAX) 0.119 0.282
RODEO n = 4 (recon, RANDOM) 0.251 0.598

RODEO n = 4 (real, BAL) 0.350 0.831
RODEO n = 4 (real, MIN) 0.366 0.870

RODEO n = 12 (real, BAL) 0.325 0.774
RODEO n = 12 (real, MIN) 0.342 0.812

RODEO n = 4 (real, NO-REPLACE) 0.390 0.928

Offline - 1.000

To study the impact of the buffer man-
agement strategy chosen, we run the
following replacement strategies on the
COCO dataset. Results are in Table 2.

• BAL: Balanced replacement strat-
egy that replaces the item which
least affects the overall class dis-
tribution.

• MIN, MAX: Replace the image
having the least and highest num-
ber of unique labels respectively.

• RANDOM: Randomly replace
an image from the buffer.

• NO-REPLACE: No replace-
ment, i.e., store everything and
let the buffer expand infinitely.

For an ideal case, we ran a version
of RODEO with real features (n = 4) and an unlimited buffer (storing everything). This model
achieved an WmAP of 0.928. All other replacement strategies are only allowed to store 17,668
samples. We find that MAX replace yields even worse results compared to RANDOM replace
suggesting storing more samples with more unique categories is better. Similarly, we find
that MIN replace performs better across both real and reconstructed features, even beating the
balanced (BAL) replacement strategy. We hypothesize that since MIN replace keeps images
with the most unique objects, it results in a more diverse buffer to overcome forgetting.

For our VOC experiments, we do not replace anything from the buffer. As we increase the
number of replay samples from 4 to 12, the performance improves by 0.3% for real features
and 5.3% for reconstructed features respectively. Surprisingly for COCO, which has buffer
replacement, the performance decreases as we increase the number of replay samples. We
suspect this could be because COCO has many more objects per image compared to VOC
which are being treated as background for region proposal selection. In the future, it would be
interesting to develop new methods to handle this background class in an incremental setting,
which has been explored for incremental semantic segmentation [5].

6.2 Training Time

For COCO, we train each incremental iteration of Fast R-CNN for 10 epochs which takes
about 21.83 hours. Thus, full offline training of 40 iterations takes a total of 873 hrs. In
contrast, our method, RODEO, requires only 22 hours which is a 40⇥ speed-up compared to
offline. SLDA+Regress and Fine-Tune both train faster, but perform much worse in terms of
detection performance. These numbers do not include the base initialization time, which is
the same for all methods. Exact numbers are in supplemental materials (Table S2).

7 Discussion

In current object detection problem formulations, detected objects are not aware of each
other. However, many real-world applications require an understanding of attributes and the
relationships between objects. For example, Visual Query Detection (VQD) is a new visual
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grounding task for localizing multiple objects in an image that satisfies a given language
query [2]. Our method can be easily extended for the VQD task by modifying the object
detector to output only the boxes relevant to the language query.

In any real system where memory is limited, the choice of an ideal buffer replacement
strategy is vital. For any agent that needs to learn new information over time, while also
recalling previous knowledge, it is critical to store the most informative memories and replace
those which carry less information. This procedure has also been studied in the reinforcement
learning literature as experience replay [22, 31]. Our buffer size is limited because it is
calculated with respect to the maximum storage required by the ILwFOD model [51]. To
efficiently use this limited storage, we tried various replacement strategies to store the newer
examples such as: random replacement, class distribution balancing, and replacement of
images with the most or fewest number of unique bounding boxes present. In the future, more
efficient strategies for determining the maximum buffer size and replacement strategy could
be useful for online applications.

RODEO is designed explicitly for streaming applications where real-time inference and
overall compute are critical factors, such as robotic or embedded devices. Although RODEO
uses Fast-RCNN, a two stage detector, which is slower than single stage detectors like
SSD [13, 34] and YOLO [45, 46], single stage approaches could be used to facilitate faster
learning and inference. Moreover, RODEO currently uses a ResNet-50 backbone and can
only process two images in a single batch. Using a more efficient backbone model like a
MobileNet [49] or ShuffleNet [37] architecture would allow the model to run faster with
fewer storage requirements. In future work, it would be interesting to study how RODEO
could be extended to single-stage detectors by replaying intermediate features and directly
using the generated anchors instead of edge box proposals.

Further performance gains could be achieved by using augmentation strategies on the mid-
level CNN features. Recently, several augmentation strategies have been designed explicitly
for object detection [28, 54, 60] and it would be interesting to explore how they could improve
performance within deep feature space for an incremental learning application.

8 Conclusion

We proposed RODEO, a new method that pioneers streaming object detection. RODEO
uses replay of quantized, mid-level CNN features to mitigate catastrophic forgetting on a
fixed memory budget. Using our new model, we achieve state-of-the-art performance for
incremental object detection tasks on the PASCAL VOC 2007 and MS COCO datasets when
compared against models that operate in the easier incremental batch learning paradigm.
Furthermore, our model is general enough to be applied to multi-modal incremental detection
tasks in the future like VQD [2], which require an agent to understand scenes and the
relationships between objects within them.

Acknowledgements

This work was supported in part by DARPA/MTO Lifelong Learning Machines program
[W911NF-18-2-0263], AFOSR grant [FA9550-18-1-0121], and NSF award #1909696. The
views and conclusions contained herein are those of the authors and should not be interpreted
as representing the official policies or endorsements of any sponsor.

Citation
Citation
{Acharya, Jariwala, and Kanan} 2019

Citation
Citation
{Isele and Cosgun} 2018

Citation
Citation
{Lin} 1992

Citation
Citation
{Shmelkov, Schmid, and Alahari} 2017

Citation
Citation
{Fu, Liu, Ranga, Tyagi, and Berg} 2017

Citation
Citation
{Liu, Anguelov, Erhan, Szegedy, Reed, Fu, and Berg} 2016

Citation
Citation
{Redmon and Farhadi} 2017

Citation
Citation
{Redmon, Divvala, Girshick, and Farhadi} 2016

Citation
Citation
{Sandler, Howard, Zhu, Zhmoginov, and Chen} 2018

Citation
Citation
{Ma, Zhang, Zheng, and Sun} 2018

Citation
Citation
{Kisantal, Wojna, Murawski, Naruniec, and Cho} 2019

Citation
Citation
{Wang, Wang, Yang, Zhang, and Zuo} 2019

Citation
Citation
{Zoph, Cubuk, Ghiasi, Lin, Shlens, and Le} 2019

Citation
Citation
{Acharya, Jariwala, and Kanan} 2019



ACHARYA, HAYES, KANAN: REPLAY FOR ONLINE OBJECT DETECTION 11

References

[1] Wickliffe C Abraham and Anthony Robins. Memory retention–the synaptic stability
versus plasticity dilemma. Trends in Neurosciences, 2005.

[2] Manoj Acharya, Karan Jariwala, and Christopher Kanan. VQD: Visual query detection
in natural scenes. NAACL, 2019.

[3] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny, Marcus Rohrbach, and Tinne
Tuytelaars. Memory aware synapses: Learning what (not) to forget. In ECCV, 2018.

[4] Francisco M Castro, Manuel J Marín-Jiménez, Nicolás Guil, Cordelia Schmid, and
Karteek Alahari. End-to-end incremental learning. In ECCV, 2018.

[5] Fabio Cermelli, Massimiliano Mancini, Samuel Rota Bulo, Elisa Ricci, and Barbara
Caputo. Modeling the background for incremental learning in semantic segmentation.
In CVPR, 2020.

[6] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS Torr.
Riemannian walk for incremental learning: Understanding forgetting and intransigence.
In ECCV, 2018.

[7] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny.
Efficient lifelong learning with a-GEM. In ICLR, 2019.

[8] Robert Coop, Aaron Mishtal, and Itamar Arel. Ensemble learning in fixed expansion
layer networks for mitigating catastrophic forgetting. IEEE Trans. on Neural Networks

and Learning Systems, 24(10), 2013.

[9] Wenyuan Dai, Qiang Yang, Gui-Rong Xue, and Yong Yu. Boosting for transfer learning.
In ICML, 2007.

[10] Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew
Zisserman. The pascal visual object classes (voc) challenge. IJCV, 2010.

[11] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A
Rusu, Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient
descent in super neural networks. arXiv:1701.08734, 2017.

[12] Robert M French. Catastrophic forgetting in connectionist networks. Trends in Cognitive

Sciences, 3(4), 1999.

[13] Cheng-Yang Fu, Wei Liu, Ananth Ranga, Ambrish Tyagi, and Alexander C Berg. Dssd:
Deconvolutional single shot detector. arXiv preprint arXiv:1701.06659, 2017.

[14] Yu Hao, Yanwei Fu, Yu-Gang Jiang, and Qi Tian. An end-to-end architecture for
class-incremental object detection with knowledge distillation. In ICME, 2019.

[15] Tyler L Hayes and Christopher Kanan. Lifelong machine learning with deep streaming
linear discriminant analysis. In CVPRW, 2020.

[16] Tyler L Hayes, Nathan D Cahill, and Christopher Kanan. Memory efficient experience
replay for streaming learning. In ICRA, 2019.



12 ACHARYA, HAYES, KANAN: REPLAY FOR ONLINE OBJECT DETECTION

[17] Tyler L Hayes, Kushal Kafle, Robik Shrestha, Manoj Acharya, and Christopher Kanan.
Remind your neural network to prevent catastrophic forgetting. In ECCV, 2020.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In CVPR, 2016.

[19] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural
network. arXiv preprint arXiv:1503.02531, 2015.

[20] Geoffrey E Hinton and David C Plaut. Using fast weights to deblur old memories. In
Annual Conference of the Cognitive Science Society, 1987.

[21] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a
unified classifier incrementally via rebalancing. In CVPR, 2019.

[22] David Isele and Akansel Cosgun. Selective experience replay for lifelong learning. In
AAAI, 2018.

[23] Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for nearest
neighbor search. TPAMI, 33(1), 2010.

[24] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with
gpus. arXiv:1702.08734, 2017.

[25] Ronald Kemker and Christopher Kanan. FearNet: Brain-inspired model for incremental
learning. In ICLR, 2018.

[26] Ronald Kemker, Marc McClure, Angelina Abitino, Tyler L Hayes, and Christopher
Kanan. Measuring catastrophic forgetting in neural networks. In AAAI, 2018.

[27] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Des-
jardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, Demis Hassabis, Claudia Clopath, Dharshan Kumaran, and Raia Hadsell.
Overcoming catastrophic forgetting in neural networks. PNAS, 2017.

[28] Mate Kisantal, Zbigniew Wojna, Jakub Murawski, Jacek Naruniec, and Kyunghyun Cho.
Augmentation for small object detection. arXiv preprint arXiv:1902.07296, 2019.

[29] Dawei Li, Serafettin Tasci, Shalini Ghosh, Jingwen Zhu, Junting Zhang, and Larry Heck.
Rilod: near real-time incremental learning for object detection at the edge. In IEEE

Symposium on Edge Computing, 2019.

[30] Zhizhong Li and Derek Hoiem. Learning without forgetting. In ECCV. Springer, 2016.

[31] Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning
and teaching. Machine Learning, 8(3-4), 1992.

[32] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in
context. In ECCV. Springer, 2014.

[33] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for
dense object detection. In ICCV, 2017.



ACHARYA, HAYES, KANAN: REPLAY FOR ONLINE OBJECT DETECTION 13

[34] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-
Yang Fu, and Alexander C Berg. Ssd: Single shot multibox detector. In ECCV, 2016.

[35] Vincenzo Lomonaco, Davide Maltoni, and Lorenzo Pellegrini. Fine-grained continual
learning. arXiv preprint arXiv:1907.03799, 2019.

[36] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual
learning. In NeurIPS, 2017.

[37] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical
guidelines for efficient cnn architecture design. In ECCV, 2018.

[38] Davide Maltoni and Vincenzo Lomonaco. Continuous learning in single-incremental-
task scenarios. arXiv:1806.08568, 2018.

[39] James L McClelland, Bruce L McNaughton, and Randall C O’reilly. Why there are
complementary learning systems in the hippocampus and neocortex: insights from the
successes and failures of connectionist models of learning and memory. Psychological

Review, 1995.

[40] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist
networks: The sequential learning problem. Psychology of Learning and Motivation,
24, 1989.

[41] Cuong V. Nguyen, Yingzhen Li, Thang D. Bui, and Richard E. Turner. Variational
continual learning. In ICLR, 2018.

[42] German I Parisi, Ronald Kemker, Jose L Part, Christopher Kanan, and Stefan Wermter.
Continual lifelong learning with neural networks: A review. Neural Networks, 2019.

[43] Robi Polikar, Lalita Upda, Satish S Upda, and Vasant Honavar. Learn++: An incremental
learning algorithm for supervised neural networks. IEEE Trans. on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), 31(4), 2001.

[44] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert.
icarl: Incremental classifier and representation learning. In CVPR, 2017.

[45] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster, stronger. In CVPR, 2017.

[46] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In CVPR, 2016.

[47] Boya Ren, Hongzhi Wang, Jianzhong Li, and Hong Gao. Life-long learning based on
dynamic combination model. Applied Soft Computing, 56, 2017.

[48] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards
real-time object detection with region proposal networks. In NeurIPS, 2015.

[49] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh
Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In CVPR, 2018.

[50] Dong Kyun Shin, Minhaz Uddin Ahmed, and Phil Kyu Rhee. Incremental deep learning
for robust object detection in unknown cluttered environments. IEEE Access, 6, 2018.



14 ACHARYA, HAYES, KANAN: REPLAY FOR ONLINE OBJECT DETECTION

[51] Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari. Incremental learning of
object detectors without catastrophic forgetting. In ICCV, 2017.

[52] Timothy J Teyler and Jerry W Rudy. The hippocampal indexing theory and episodic
memory: updating the index. Hippocampus, 17(12), 2007.

[53] Haixun Wang, Wei Fan, Philip S Yu, and Jiawei Han. Mining concept-drifting data
streams using ensemble classifiers. In ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. ACM, 2003.

[54] Hao Wang, Qilong Wang, Fan Yang, Weiqi Zhang, and Wangmeng Zuo. Data augmenta-
tion for object detection via progressive and selective instance-switching. arXiv preprint

arXiv:1906.00358, 2019.

[55] Xiaolong Wang, Abhinav Shrivastava, and Abhinav Gupta. A-fast-rcnn: Hard positive
generation via adversary for object detection. In CVPR, 2017.

[56] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye, Zicheng Liu, Yandong Guo, and
Yun Fu. Large scale incremental learning. In CVPR, 2019.

[57] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are
features in deep neural networks? In NeurIPS, 2014.

[58] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual learning through synaptic
intelligence. In ICML, 2017.

[59] C Lawrence Zitnick and Piotr Dollár. Edge boxes: Locating object proposals from edges.
In European Conference on Computer Vision. Springer, 2014.

[60] Barret Zoph, Ekin D Cubuk, Golnaz Ghiasi, Tsung-Yi Lin, Jonathon Shlens, and
Quoc V Le. Learning data augmentation strategies for object detection. arXiv preprint

arXiv:1906.11172, 2019.


