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Abstract

Predicting a scene graph that captures visual entities and their interactions in an image
has been considered a crucial step towards full scene comprehension. Recent scene graph
generation (SGG) models have shown their capability of capturing the most frequent
relations among visual entities. However, the state-of-the-art results are still far from
satisfactory, e.g. models can obtain 31% in overall recall R@100, whereas the likewise
important mean class-wise recall mR@100 is only around 8% on Visual Genome (VG).
The discrepancy between R and mR results urges to shift the focus from pursuing a high
R to a high mR with a still competitive R. We suspect that the observed discrepancy
stems from both the annotation bias and sparse annotations in VG, in which many visual
entity pairs are either not annotated at all or only with a single relation when multiple
ones could be valid. To address this particular issue, we propose a novel SGG training
scheme that capitalizes on self-learned knowledge. It involves two relation classifiers,
one offering a less biased setting for the other to base on. The proposed scheme can
be applied to most of the existing SGG models and is straightforward to implement.
We observe significant relative improvements in mR (between +6.6% and +20.4%) and
competitive or better R (between −2.4% and +0.3%) across all standard SGG tasks.

1 Introduction
Various deep neural network models have been introduced to interpret visual inputs in vary-
ing high-level vision tasks, including object detection and segmentation [20, 38], image/video
captioning [8, 32], and referring expression comprehension [23, 34] etc. While describing vi-
sual content and identifying visually grounded entities1 from free-form language have been
made possible, inferring about the role of entities (either in isolation or relative to other
entities) is a crucial step towards full scene comprehension. This fosters the idea of rep-
resenting an image with a scene graph [16] in which the entity classes and their pairwise
relations constitute the nodes and directed edges, respectively. In particular, scene graph
is the formulation of the visual subject-relation-object triplets (e.g. mouse-attached

to-laptop) over entity and relation classes in an image. The Visual Genome (VG) dataset

c© 2020. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

1We use entity here instead of object (as in object detector) to prevent mixing it up with the object as in
subject-object pair.
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[16] is introduced to facilitate the advancement in the scene graph generation (SGG) tasks
[2, 3, 10, 17, 28, 33, 35, 36]. However, as first studied in [35], the annotations in VG
bias towards copiously recurring motifs. A strong baseline can be constructed by predicting
the relation between entities solely with the priors made on all subject-relation-object
triplets from the training set. Moreover, the scene graph of each image is hardly exhaus-
tively annotated with all possible relations [4] in which the annotated relations are often less
informative [29] (e.g. labelling a relation as girl-near-car instead of girl-behind-car).
Hence, the provided scene graphs inherit the imbalanced and long-tailed natures [19]. This
incurs an apparent complication: the frequent relations, such as on, has, or near can eas-
ily be exploited and more often predicted by a model than the rare ones, such as walking

on, wearing, or in front of. Then, one can already attain a decent recall rate by simply
making predictions from the most frequent relations.

In addition to the imbalanced distribution of the relations, an SGG model can be biased
due to the sparse and incomplete annotations [4]. Specifically, first, due to the large number
of entities in most of the images, the related entity pairs are sparsely identified and annotated,
leaving most of the entity pairs presumed as not related. Second, a subject-object pair can
often be reasonably related by more than one relation as in on, sitting on, and riding

relations for the man-bicycle pair. We refer to the former case as annotation False Negative
(aFN), and the latter as annotation Partially True Positive (aPTP). It comes to our attention
that nearly all of the SGG models do not address these cases. Overlooking these cases
can, (1) wrongly suppress the likelihood of a related entity pair in the predictions, or (2)
discourage the model from learning a multi-mode distribution that captures more than one
valid relation.

This work aims to address the aFN and aPTP cases in the SGG models. Inspired by
knowledge distillation (KD) [13, 22, 27, 37] and co-training framework [24], we propose a
novel SGG framework that regularizes a model’s predictions with self-learned knowledge in
reasoning the missing information from the annotations. In addition, to alleviate the adverse
effect from learning on imbalanced data, the proposed relation models are trained on the
hyperspherical space [9, 18]. To be more specific, our framework consists of two learners that
jointly learn on different assumptions and output spaces. The main learner F naively learns
on all relation classes including treating the unannotated entity pairs as the no-relation

class. The other skeptical learner G learns on all the relations except no-relation, i.e.
no assumption is made for G on those not annotated being really not related. Over the
course of the training, G transfers the knowledge (i.e. the predictions) on both annotated
and unannotated entity pairs to F , offering a crucial source of regularization that averts F
learning from the biased annotations (see Section 3).

Our main contributions can be summarized as follows. (1) We propose an SGG frame-
work that addresses biases inherit in the incomplete annotations of the VG dataset. (2) The
proposed model is learned on the hyperspherical space, which is shown better at captur-
ing the minority class distribution. (3) The proposed scheme is by design compatible with
the most of the existing SGG models and is easily implemented. We demonstrate the ef-
fectiveness of the proposed scheme on two state-of-the-art SGGs, Motifs [35] and VCTree
[28, 29], and observe significant relative improvements over the baseline counterparts in the
mean per-class recall (between +6.6% and +20.4%) while maintaining competitive overall
recall (between−2.4% to +0.3%) across all the standard SGG tasks [31, 35] (see Section 4).

Citation
Citation
{Krishna, Zhu, Groth, Johnson, Hata, Kravitz, Chen, Kalantidis, Li, Shamma, etprotect unhbox voidb@x protect penalty @M  {}al.} 2017

Citation
Citation
{Chen, Zhang, Xiao, He, Pu, and Chang} 2019{}

Citation
Citation
{Chen, Yu, Chen, and Lin} 2019{}

Citation
Citation
{Gu, Zhao, Lin, Li, Cai, and Ling} 2019

Citation
Citation
{Li, Ouyang, Zhou, Wang, and Wang} 2017

Citation
Citation
{Tang, Zhang, Wu, Luo, and Liu} 2019

Citation
Citation
{Yang, Lu, Lee, Batra, and Parikh} 2018

Citation
Citation
{Zellers, Yatskar, Thomson, and Choi} 2018

Citation
Citation
{Zhang, Shih, Elgammal, Tao, and Catanzaro} 2019{}

Citation
Citation
{Zellers, Yatskar, Thomson, and Choi} 2018

Citation
Citation
{Chen, Varma, Krishna, Bernstein, Re, and Fei-Fei} 2019{}

Citation
Citation
{Tang, Niu, Huang, Shi, and Zhang} 2020{}

Citation
Citation
{Liu, Miao, Zhan, Wang, Gong, and Yu} 2019

Citation
Citation
{Chen, Varma, Krishna, Bernstein, Re, and Fei-Fei} 2019{}

Citation
Citation
{Hinton, Vinyals, and Dean} 2015

Citation
Citation
{Mobahi, Farajtabar, and Bartlett} 2020

Citation
Citation
{Tang, Shivanna, Zhao, Lin, Singh, Chi, and Jain} 2020{}

Citation
Citation
{Zhang, Song, Gao, Chen, Bao, and Ma} 2019{}

Citation
Citation
{Qiao, Shen, Zhang, Wang, and Yuille} 2018

Citation
Citation
{Gidaris and Komodakis} 2018

Citation
Citation
{Liu, Wen, Yu, Li, Raj, and Song} 2017

Citation
Citation
{Zellers, Yatskar, Thomson, and Choi} 2018

Citation
Citation
{Tang, Zhang, Wu, Luo, and Liu} 2019

Citation
Citation
{Tang, Niu, Huang, Shi, and Zhang} 2020{}

Citation
Citation
{Xu, Zhu, Choy, and Fei-Fei} 2017

Citation
Citation
{Zellers, Yatskar, Thomson, and Choi} 2018



WANG ET AL: TACKLING THE UNANNOTATED: SCENE GRAPH GENERATION 3

2 Related Work
Scene Graph Generation. SGG offers the possibility of modeling the layout of visual
entities and holistically describing the image context. Often being a critical modality in
most of the SGG works, contextual modeling is usually implemented by a recurrent neural
network (RNN) or a graph neural network (GNN) which learns the underlying structure, e.g.
a fully connected [2, 3, 31, 33], a chained [35], or a tree-structured graph [28], among the
visual entities. Chen et al. [2] formulated SGG as a reinforcement learning problem which
aims at directly maximizing the non-differentiable graph-level rewards (e.g. Recall@K).
Zhang et al. [36] proposed a new set of contrastive losses to address (1) repetitive occurrence
of entities of the same visual class and (2) confusion caused by the close proximity of similar
entities. Despite the improved performance achieved by these state-of-the-art models, SGG
models are still facing challenges due to the benchmark datasets being biased towards few
majority relation classes. Only recently have some works started to address the imbalance
issue, shifting the focus of improvement from the majority relation classes to the minority
classes [3, 28, 29].

In one of the latest SGG works, Tang et al. [29] proposed a debiased method at the infer-
ence phase of SGG models, removing the concentrated probability mass from the majority
classes. As one of the few SGG works that address the issues caused by the incomplete an-
notations, Chen et al. [4] proposed a data-efficient scheme that trains the SGG models in a
semi-supervised fashion by using a limited labeled and a large amount of unlabeled samples.

Our proposed method is inspired and closely related to that in [4], but differs in several
facets. First, the proposed models co-train two learners, one supervised and another semi-
supervised, in one training phase. Second, our supervised learner regularizes itself with the
knowledge learned by the semi-supervised learner, significantly improving the predictions
on the minority classes. Third, the objective in [4] is to train a generative model that gen-
erates informative labels on the unannotated pairs given limited amount of labeled data per
relation class. However, our objective is to show that an existing SGG model can be greatly
improved by harnessing the soft labels on both the annotated and unannotated pairs.

Learning on Imbalanced Data. Learning on imbalanced distributions is an inevitable
subject to consider in most of the vision tasks [1, 6, 14, 19]. Some common techniques, such
as undersampling, oversampling, and class re-weighting [6] with a cost-sensitive objective
[15], have been proven to be effective. The recent studies suggest that a classification model
learned with the cross entropy (XE) loss can easily be biased towards majority classes. That
is because the XE loss does not explicitly enforce small intra-class variance [9, 12].

A simple modification, which we adopt in this work, is to respectively L2-normalize the
input representation and the classifier’s weights before calculating the logits (pre-softmax
values). This has been shown effective and usually considered as a strong baseline for mak-
ing predictions in the low-data regime [5, 9, 14, 19]. Accordingly, we adopt the same nor-
malization scheme and empirically prove its effectiveness in the SGG problem.

Knowledge Distillation. Learning a compact "student" model by distilling knowledge
from a more complex "teacher" model can lead to a better model than one trained from
scratch [13]. Recently, it has been shown that a neural network model can self-distill its
knowledge without referring to a teacher model to attain better accuracy [11, 37]. Knowledge
distillation (KD) approaches indicate that even the imperfect predictions (e.g. the predicted
class probabilities) can contain useful signals, e.g. the correlations between classes, that
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Figure 1: Overview of our proposed two-learner framework. Two learners F and G learn
on different output spaces R and R′, respectively, that make different assumptions on the
unannotated entity pairs. Over the course of training, G transfers its less biased knowledge to
F whose predictions are then regularized to capture more relevant relations among entities.
Wheel-Wing refers to the case where the annotation is missing a potential relation under,
while Wheel-Plane refers to the case where they could be related by, e.g. part of.

help regularize the model to curb the over-confident predictions [27]. We propose two KD
variants to combat against the dataset biases (see Section 1) imposed to the models.

3 Proposed Framework
A scene graph S consists of (B,O,R) in which B = {Bi|i = 1,2, ...,M}, O = {oi ∈ O|i =
1,2, ...,M}, and R= {ri, j ∈R|i, j = 1, ...,M} are the sets of candidate bounding boxes, entity
class labels, and relation class labels, respectively. In this work, we consider |O|= 150 most
frequent entity classes and |R|= 51 (fifty plus no-relation) most frequent relation classes
appearing in the VG dataset. Given an image I, one would like to model P(S|I) which we
decompose into three components, i.e. P(S|I) =P(R|O,B, I)P(O|B, I)P(B|I) as illustrated in
Figure 1. The entity proposal component P(B|I) is to generate the bounding box proposals,
i.e. the locations and sizes of entities. The entity classification component P(O|B, I) models
the entity class probabilities of each proposal in B. The relation classification component
P(R|O,B, I) is to model the relation class probabilities of every two proposals in B along
with their entity classes O. Our relation classification component capitalizes on knowledge
distillation (KD) and aims at reducing biases in the relation classifiers. We describe the entity
proposal and classification components in Section 3.1 and propose our relation classification
component and two KD schemes in Section 3.2.

3.1 Entity Proposal and Classification

Entity Proposal Component P(B|I). We model P(B|I) with Faster R-CNN [25] entity de-
tector. We use ResNeXt-101-FPN [30] (following [29]) as the backbone network to extract
the bounding boxes Bi and their visual representations {fi ∈ R4096|i = 1, ...,M}. The same
backbone network is used to extract the visual representations {fi, j ∈ R4096|i, j = 1, ...,M}
from the union region of every two proposals (i.e. the smallest bounding box that covers the
two proposals) for the later use (see Section 3.2.2). As the entity proposal component, we
use the model pre-trained on entity proposal labels from VG [25] and freeze it when training
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two following components.
Entity Classification Component P(O|B, I). This component comprises a context mod-
ule that takes {fi|i = 1, ...,M} and outputs the entity context2 {ci} (ci ∈ R512) with which
P(O|B, I) is modeled. We adopt the context module proposed in either Motifs [35] or VC-
Tree [28, 29] (other choices [3, 33] are also reasonable). Given {fi}, Motifs models ci with
a bi-directional LSTM, while VCTree learns a hierarchical tree structure on which a bi-
directional TreeLSTM [26] is constructed. The entity contexts capture the structured (e.g.
chained or hierarchical) interactions among the visual entities. The classification component
is trained on the standard cross-entropy loss (i.e. Lc) given the entity class labels.

3.2 Relation Classification with Two Learners
Our proposed relation classification component modeling P(R|O,B, I) consists of two rela-
tion learners, a main supervised learner F and an auxiliary semi-supervised learner G (see
Figure 1). F learns on both the relation labels and G’s knowledge. This two-learner scheme
is introduced to alleviate the biases from the dataset (discussed in Section 1) brought into the
models. We elaborate the two learners respectively in the following sections.

3.2.1 Supervised Learner F

Here we model P(r ∈ R|oi,o j) for the supervised learner F , in which oi,o j represent the
entity classes for the ith and jth proposals. We first separately learn the representations for
subjects oi and objects o j as cFi = WF

s ci and cFj = WF
o c j, respectively with their entity

contexts ci and c j. WF
s ,WF

o ∈ R512×512 are the parameter matrices for subjects and objects,
and WF is that for the relations. Now, the relation class probabilities are modeled as

P(r ∈R|oi,o j) = pi, j = softmax
(
γ ·σL2(W

F )σL2(g
F
i, j)+ soi,o j

)
, WF ∈ R|R|×4096 (1)

gFi, j =WF
c [cFi ,cFj ]� fi, j, WF

c ∈ R4096×1024 (2)

where σL2(·) L2-normalizes the vector or each row of the matrix, [, ] denotes concatenation
of two vectors, and � denotes element-wise multiplication. soi,o j is the (constant) frequency
prior of P(r|oi,o j) pre-calculated from the training set [35]. γ is the radius of the hyper-
spherical space [18]. Later in Section 4.3, we will show that L2-normalization of both WF

and gFi, j consistently improves the predictions on the minority relation classes.
The per-image loss for F is then given by

LF =− 1
|R| ∑

ri, j∈R
logpi, j[ri, j], (3)

where ri, j is the target relation class for oi,o j, and pi, j[ri, j] = P(ri, j|oi,o j)∈ [0,1] denotes the
rth

i, j element of pi, j, i.e. the probability of relation ri, j. Learning F purely with Eq. (3) may
impose undesirable biases into the classifier. P(ri, j|oi,o j) is encouraged to be maximized
(and P(r ∈ R,r 6= ri, j|oi,o j) to be suppressed) despite that (1) (oi,o j) contains a valid but
not annotated relation (the aFN cases) and (2) r 6= ri, j could be valid relations between oi,o j
(the aPTP cases). We address the biases stemming from these two cases with the other
classifier G along with the proposed two KD schemes next.

2referred as object context in [28, 35] or contextual cues in [3].
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3.2.2 Semi-supervised Learner G and Knowledge Distillation

Semi-supervised Learner G. We co-train the other classifier G that learns in a semi-
supervised fashion. Instead of learning on R, G learns on R′ = R\{no-relation} while
being encouraged to detect as many relations as possible in {no-relation}. This is to ad-
dress the fact that no-relation is an artificial class to accommodate the unannotated entity
pairs. Specifically, similar to F , given ci,c j, G learns a different set of subject and object
representations (for establishing a different perspective from that of F) as cGi = WG

s ci and
cGj =WG

o c j, respectively, where WG
s ,WG

o ∈ R512×512. Next, the classifier is given by

P(r ∈R′|oi,o j) = qi, j = softmax
(
γ ·σL2(W

G)σL2(g
G
i, j)

)
, WG ∈ R|R

′|×4096 (4)

gGi, j =WG
c [cGi ,c

G
j ]� fi, j, WG

c ∈ R4096×1024 (5)

Comparing Eqs. (1) and (4), one can notice that G learns without the prior soi,o j . We argue
that the prior, on the one hand, offers a strong baseline for the classifier to learn from, but
on the other hand, can bias the classifier towards the majority classes as soi,o j statistically
speaks more for them. In addition, adding the same prior as F to G can end up learning two
classifiers of similar behavior.

The loss function LG for G is defined over disjoint sets (1) RL = {(i, j)|ri, j ∈R′}, the set
of the entity pairs annotated with a relation in R′ and (2) RU = {(i, j)|ri, j 6∈ R′}, the set of
the unannotated entity pairs, in which |RL∪RU |= |R|,

LG =− 1
|RL| ∑

(i, j)∈RL

logqL
i, j[ri, j]−λG

1
|RU | ∑

(i, j)∈RU

H(qU
i, j), (6)

where qL
i, j = qi, j, ∀(i, j) ∈ RL, and qU

i, j = qi, j, ∀(i, j) ∈ RU . The role of H(qU
i, j), the entropy

of the probability distribution qU
i, j is to be maximized so that G is encouraged to detect as

many relations as possible. λG is a hyperparameter.
Knowledge Distillation. G transfers its knowledge to F through a knowledge distillation
(KD) loss LG→F ,

LG→F = λG→F
(

∑
(i, j)∈RL

wL
i, jKL(q̃L

i, j||p′Li, j)+ ∑
(i, j)∈RU

wU
i, jKL(q̃U

i, j||p′Ui, j)
)
, (7)

where λG→F is a hyperparameter and KL(·|·) denotes the Kullback-Leibler divergence be-
tween two distributions. p′∗i, j denotes the first |R′| elements of p∗i, j calculated via Eq. (1)
for (i, j) ∈ R∗, where ∗ ∈ {L,U}. q̃∗i, j considers temperature scaling before transferring the
knowledge [13], i.e.

q̃∗i, j = softmax
(
γ ·σL2(W

G)σL2(g
G
i, j)/T

)
, ∀(i, j) ∈ R∗, ∗ ∈ {L,U}, (8)

where T is the temperature hyperparameter. Note that Eq. (8) reduces to Eq. (4) when
T = 1. In Eq. (7), w∗i, j serves as a normalization factor for which we propose two differ-
ent forms: (1) the uniform KD (uKD), i.e. w∗i, j = 1/|R∗| and (2) the certainty-based KD (cKD),
i.e. w∗i, j = ∑(m,n)∈R∗H(q∗m,n)/H(q∗i, j). One can see that a more certain q∗i, j (smaller H(q∗i, j))
yields a larger w∗i, j, i.e. F is forced to absorb more knowledge from the relatively confident
predictions of G. We do not propagate gradients from G to F to avert F affecting G because,
otherwise, one would end up obtaining two classifiers that make similar predictions.

The combined loss L from entity classification (see Section 3.1) and the three relation
classification losses is then L = Lc +LF +LG +LG→F .
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4 Experiments

4.1 Dataset, Tasks, Metrics

Dataset. We evaluate the SGG models on the VG dataset [16]. We follow the same training,
validation and test splits as in [2, 3, 28, 29, 35], where only the most frequent |O| = 150
entity classes and |R|= 50 relation classes are considered.
Tasks. The SGG tasks, from the easiest to the hardest setups, are (1) predicate classification
(PrdCls), (2) scene graph classification (SGCls), and (3) scene graph detection (SGDet)
[31]. In the PrdCls task, the entity proposals and class labels are provided to the model for
predicting the relations among entity pairs. In the SGCls task, only the entity proposals are
given and models are used to predict both the entity classes and relations. In the SGDet
task, models are used to generate entity proposals and predict their classes and relations.
Among all three tasks, the models are evaluated either with or without the graph constraint
[2, 3, 35, 36]. Models with the constraint predict a single relation with the highest possibility
for each entity pair. Those without the constraint are allowed to predict multiple relations
for each entity pair.
Metrics. For the tasks with the constraint, we consider recall@K (R@K) and the mean
class-wise recall@K (mR@K), where K = {20,50,100}. For those without the constraint,
we consider R@{50,100} and mR@{50,100}. mR@K has been emphasized more in the
most recent SGG works [2, 28, 29] to address the imbalanced relation class distributions.
R@K accounts for the proportion of the top K confident predicted relation triplets that are
in the ground-truth relation triplets. mR@K calculates the average of all R@Ks, each of
which is computed separately for the triplets consisting of each relation class. Other metrics,
e.g. precision@K, false positive and negative rates etc., are not adopted and neither in other
SGG works [2, 3, 35, 36] because they are considered less fair in evaluating the methods
performed on the sparsely annotated dataset such as VG.

4.2 Training Settings

We separately train different models for SGDet, SGCls, and PrdCls on top of the pre-trained
Faster R-CNN with ResNeXt-101-FPN backbone (provided by the authors in [29]). The
SGG models is subject to the performance of entity detector, therefore, we choose a more
complex backbone network to align with one of the most recent SGG works [29], however, a
direct comparison to other works [2, 3, 28, 35] seems difficult as they use an earlier VGG16
backbone. Motifs [35] and VCTree [28] are the two baselines for which we adapt our pro-
posed relation component.
Hyperparameters. The radius hyperparameter γ = 12 in Eqs. (1,4,8), temperature T = 1.5
in Eq. (8), λG = 0.1 in Eq. (6), and λG→F = 0.1 in Eq. (7) are selected according to the
evaluations on the validation set.
Training Details. All models are trained up to 50,000 batch iterations of 12 images using
SGD with 0.9 momentum. KD starts only after 10,000 iterations (λG→F = 0 from 0–10,000
iterations). Learning rate starts from 0.01 and is linearly increased every batch iteration up
to 0.12 until 500 iterations (i.e. the warm-up period). After the warm-up, the learning rate
is decayed by 0.2 (0.1) for Motifs (VCTree) models if no improvement in R@100 is ob-
served within two successive validation rounds (2,000 iterations / round). The training is
early terminated once the learning rate is decayed for three times.
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w/ constraint SGDet SGCls PrdCls
Model R@{20,50,100} mR@{20,50,100} R@{20,50,100} mR@{20,50,100} R@{20,50,100} mR@{20,50,100}

Motifs† [35] 21.4 27.2 30.3 4.2 5.7 6.6 32.9 35.8 36.5 6.3 7.7 8.2 58.5 65.2 67.1 10.8 14.0 15.3
VCTree† [28] 22.0 27.9 31.3 5.2 6.9 8.0 35.2 38.1 38.8 8.2 10.1 10.8 60.1 66.4 68.1 14.0 17.9 19.4
Routing† [3] - 27.1 29.8 - 6.4 7.3 - 36.7 37.4 - 9.4 10.0 - 65.8 67.6 - 17.7 19.2
Critic† [2] 22.1 27.9 31.2 - - - 35.9 39.0 39.8 - - - 60.2 66.4 68.1 - - -
Motifs? [29] 25.48 32.78 37.16 4.98 6.75 7.90 35.63 38.92 39.77 6.68 8.28 8.81 58.46 65.18 67.01 11.67 14.79 16.08
Motifs baseline 25.78 33.08 37.57 5.37 7.36 8.62 36.13 39.35 40.14 7.32 8.94 9.50 59.15 65.57 67.29 13.01 16.63 17.89
Motifs L2 25.86 33.22 37.69 5.68 7.77 9.15 36.06 39.21 39.98 8.01 9.80 10.43 59.33 65.76 67.51 13.78 17.55 18.99
Motifs L2+uKD 24.80 32.24 36.75 5.68 7.88 9.53 35.11 38.50 39.32 8.57 10.90 11.81 57.37 64.14 65.95 14.19 18.59 20.32
Motifs L2+cKD 25.20 32.50 37.08 5.81 8.05 9.58 35.58 38.93 39.75 8.66 10.71 11.39 57.73 64.58 66.44 14.36 18.49 20.22
VCTree? [29] 24.53 31.93 36.21 5.38 7.44 8.66 42.77 46.67 47.64 9.59 11.81 12.52 59.02 65.42 67.18 13.12 16.74 18.16
VCTree baseline 25.15 32.23 36.32 5.31 7.29 8.46 41.48 45.10 46.04 8.54 10.48 11.17 59.80 65.87 67.49 13.33 16.89 18.23
VCTree L2 25.13 32.20 36.36 5.29 7.22 8.43 41.86 45.54 46.48 8.85 10.90 11.61 59.76 65.90 67.51 13.68 17.25 18.65
VCTree L2+uKD 24.44 31.60 35.90 5.68 7.69 9.21 40.93 44.66 45.60 9.90 12.43 13.40 58.49 65.01 66.71 14.20 18.24 19.92
VCTree L2+cKD 24.84 32.02 36.12 5.66 7.73 9.06 41.41 45.17 46.11 9.65 12.14 13.11 59.04 65.42 67.07 14.41 18.42 20.03

w/o constraint SGDet SGCls PrdCls
Model R@{50,100} mR@{50,100} R@{50,100} mR@{50,100} R@{50,100} mR@{50,100}

Motifs† [35] 30.5 35.8 - - 44.5 47.7 - - 81.1 88.3 - -
VCTree† [28] - - - - - - - - - - - -
Routing† [3] 30.9 35.8 11.7 16.0 45.9 49.0 19.8 26.20 81.9 88.9 36.3 49.0
Critic† [2] 31.6 36.8 - - 48.6 52.0 - - 83.2 90.1 - -
Motifs? [29] 36.58 43.43 - - 48.48 51.98 - - 81.02 88.24 - -
Motifs baseline 37.12 43.97 12.63 17.07 49.03 52.61 18.66 25.01 81.95 89.05 33.28 45.53
Motifs L2 37.23 44.05 13.54 18.34 48.97 52.52 20.70 27.66 82.22 89.29 36.61 49.52
Motifs L2+uKD 35.98 42.98 13.95 19.47 48.53 52.12 22.73 30.09 80.02 87.18 36.92 50.89
Motifs L2+cKD 36.27 43.15 14.22 19.78 48.63 52.17 22.07 29.64 80.29 87.49 37.15 50.83
VCTree? [29] 35.73 42.34 - - 58.36 62.70 - - 81.63 88.83 - -
VCTree baseline 36.25 42.90 12.42 16.98 56.46 60.59 22.26 29.84 82.56 89.43 34.45 46.82
VCTree L2 36.22 42.71 12.53 16.94 56.94 61.12 22.82 30.80 82.69 89.54 35.12 47.61
VCTree L2+uKD 35.48 42.05 13.82 19.13 55.97 59.97 26.83 35.19 81.43 88.46 37.69 51.72
VCTree L2+cKD 35.88 42.38 13.93 19.01 56.61 60.67 26.80 35.82 81.94 88.83 38.35 52.42

Table 1: Comparisons with the state of the art. Motifs [35] and VCTree [28] baselines are es-
tablished to be compared. Models with † refer to those with VGG16 as the backbone network
while the other moare with ResNeXt-101-FPN. Models with ? refer to the results reported
by the authors of [29]. They are excluded from the comparison due to some modifications to
the Motifs/VCTree baseline on which our proposed models are based.

4.3 Experimental Results and Comparison with the State of the Art

We conduct extensive quantitative comparisons between our proposed models and the state-
of-the-art in Table 1 and Figure 2 to see if the proposed scheme can be used to improve
the existing SGG models. Motifs/VCTree baseline and L2 differ only in that baseline
(which is the re-implementation of the original Motifs/VCTree provided in [29]) does not
L2-normalize the row vectors in WF and the input features gFi, j in Eq. (1) while the latter
does. Neither baseline nor L2 involves learning G. L2+uKD and L2+cKD adopt uniform and
certainty-based KD schemes, respectively (see Section 3.2.2). We inspect the relative im-
provement (%), i.e. (RA−RB)/RB× 100%, when comparing the recall RA of a proposed
model A to RB of a baseline model B, and similarly for mean class-wise recall mR.
L2 vs. baseline. We observe consistent improvements in mR@K across the three SGG
tasks in almost all metrics, e.g. +6.15% in mR@100 with Motifs L2 in SGDet with the
graph constraint. The changes in R@K across all tasks (with and without the constraint) are
nearly negligible (−1% to 1%).
L2+cKD vs. L2+uKD. L2+cKD performs better than L2+uKD in R@K across all tasks with and
without the constraint. However, L2+uKD can sometimes slightly outperforms L2+cKD in mR.
For instance, VCTree L2+uKD leads L2+cKD by 0.49% in mR@K but is 1.19% behind in R@K
on average in SGDet with the constraint. Although cKD falls short in mR@K in some cases
when evaluated with the graph constraint (first row, Figure 2(a)), the difference in mR@K
obtained by cKD and uKD usually becomes almost negligible without the graph constraint
(second row, Figure 2(a)). Overall, we favor L2+cKD over L2+uKD models here since the for-
mer usually produce more balanced results in R@K and mR@K (see Figure 2). Hence, we
mainly compare L2+cKD against other models from here on.
L2+cKD vs. L2. L2+cKD significantly improves mR@K at a negligible cost of R@K, e.g.
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Figure 2: (a) Relative improvements (%) of models against their baselines, Motifs [35] and
VCTree [28] in R@100 and mR@100. Two baselines, black hollow4 and©, serve as ref-
erence points for two groups of experiments, respectively. (b) Class-wise recall comparison
of VCTree baseline and L2+cKD shows clear improvement in the minority classes.

VCTree L2+cKD outperforms VCTree L2 by 7.18% in mR@K with only −0.79% loss in
R@K on average in SGDet with the constraint. The relative improvements in mR@K to
R@K are even higher in SGCls. This indicates that L2+cKD is more effective in reducing the
biases from the imbalanced distributions in VG than L2.
Improvements in mR@K vs. R@K. The relative improvements of L2+cKD against base-
line in mR@K (6.03%− 20.39%) are much higher than the losses (at worst, −1.21%) in
R@K across all tasks (see Figure 2(a)) with or without the constraint. The main losses in
the majority classes are usually negligible compared to the gains in the minority classes (see
Figure 2(b)). This indicates that our proposed scheme is more capable of modeling rare re-
lation classes, e.g. on back of, lying on, and playing etc.
Improvements in models w/ constraint vs. w/o constraint. In SGDet, our proposed mod-
els show much more improvements in mR@50 and mR@100 when not under the graph
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constraint than under it. This suggests that, when not constrained, our models are more able
to retrieve more relevant relations (and ignore the less relevant) than baseline.
Ablation study on temperature T in Eq. (8). From Table 2, we can see that one can at-
tain a higher mR@K with a larger T in the PrdCls task with VCTree L2+cKD. However, the
drop in R@K can become deeper in exchange of lower improvements in mR@K. This can
be explained by the fact that the learner G can provide less informative (i.e. more uniform)
predictions with a larger T that overly regularizes F’s predictions.

with constraint, PrdCls w/o constraint, PrdCls
R@{20,50,100} mR@{20,50,100} R@{50,100} mR@{50,100}

T =1.0 58.74 65.68 67.54 13.66 17.75 19.37 81.81 89.02 36.25 49.52
T =1.25 58.76 65.55 67.39 13.6 18.15 19.94 81.74 88.98 37.23 51.31
T =1.5 59.04 65.42 67.07 14.41 18.42 20.03 81.94 88.83 38.35 52.42
T =1.75 58.86 65.32 66.96 14.36 18.5 20.18 81.52 88.31 38.88 52.48

Table 2: Ablation study on temperature hyperparameter T in Eq. (8) on VCTree L2+cKD.

5 Conclusion
We proposed a novel SGG framework consisting of two relation learners in which one learner
regularizes the other learner’s predictions with the less biased knowledge. This particularly
addresses the biases incurred by the incomplete annotations in VG. The quantitative analy-
ses showed that our proposed models are less biased towards the majority relation classes
and more capable of capturing more than one relevant relations. Empirically we improved
two state-of-the-arts, Motifs [35] and VCTree [28] with (and without) the graph constraint,
respectively by 11.14% (14.23%) and 7.09% (12.06%) in SGDet, by 19.89% (18.39%) and
17.37% (20.22%) in SGCls, and by 13.02% (11.64%) and 9.87% (11.96%) in PrdCls in
mR@100. R@100 results are −1.3% (−1.86%) at worst across all tasks with (without)
the constraint. We believe that the improvements come from the fact that our proposed
models alleviate the impact of the biases from the partially annotated and unannotated sam-
ples in the popular VG dataset. One of the future directions is to investigate the general-
ization ability of our models on the rarely seen (few-shot [7]) or unseen (zero-shot [21])
subject-relation-object triplets.
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