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Abstract

Semantic segmentation based on deep learning has undergone tremendous progress
in recent years. However, it continues to depend heavily on massive densely annotated
data. In this paper, we propose a novel framework for weakly supervised semantic seg-
mentation (WSSS) using bounding boxes to alleviate the need for pixel-wise annotations.
We argue that the most important problem of WSSS should be learning effectively from
noisy supervision. Therefore, we present a constrained foreground segmentation network
(CFS) to generate high-quality dense annotations from noisy proposals. The network
converts the segmentation task from multi-class classification to two-class classification
and removes most of irrelevant regions, making the task easier to optimize. Besides,
we introduce a loss-guided self-attention (LGSA) module to encourage self-correction
among intra-class pixels. Instead of allowing global information exchanges in existing
Non-local modules, our module imposes loss constraints on the information exchanges
between different categories and learns a more reasonable affinity matrix that can be
used for further random walk. Experiments indicate that our LGSA module has better
performance and interpretability than Non-local modules even with noisy supervision.
We obtain state-of-the-art results on the Pascal VOC 2012 validation set by combining
the two novel components.

1 Introduction
Deep learning has achieved great success on computer vision, but the success depends heav-
ily on a massive amount of labeled data. It’s laborious to collect data annotations, especially
for semantic segmentation where pixel-level annotations are usually necessary. Therefore,
weakly supervised semantic segmentation (WSSS), which uses cheaper annotations instead
of dense annotations for semantic segmentation, has drawn great attention recently. The cost
of data labeling can be reduced considerably by using cheaper annotations, e.g., image-level
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labels [13, 17], bounding boxes [8, 23], scribbles [25] and clicks [3]. In this paper, we focus
on WSSS based on bounding box annotations.

Most WSSS methods use off-the-shelf approaches, such as CAM [30], GrabCut [22],
DenseCRF [16] and MCG [20], to generate pixel-level proposals. The dense proposals tend
to supervise semantic segmentation networks directly or after refinement. However, the gen-
erated proposals are inevitably noisy, because the off-the-shelf approaches either have lim-
ited localization ability or use only low-level features, such as color and spatial information.
The learning of semantic segmentation networks is hard because of the noisy supervision.
Therefore, we argue that the most important problem of WSSS should be learning effec-
tively from noisy supervision. The problem can be further divided into two parts: getting
more accurate proposals from noisy ones and making semantic segmentation networks ro-
bust to noisy supervision. Hence, we present a constrained foreground segmentation (CFS)
network to generate high-quality proposals, and a loss-guided self-attention (LGSA) module
to encourage semantic segmentation networks to self-correct, making the networks robust to
noisy supervision.

The basic idea of CFS is that given a massive amount of data, a light weight network
should identify the common features of the data and reduce noise before over-fitting hap-
pens. The idea has been applied in many previous works [8, 15]. However, they apply the
denoising idea in the training process of semantic segmentation and use complex networks
to fit dirty supervision in all pixels and all classes directly, making the networks hard to op-
timize. Therefore, they have to use recursive training (i.e., using network outputs in the last
epoch as supervision in the next epoch directly or indirectly) and graph models frequently,
which are either complex or time-consuming. The recursive training is likely to be trapped
into poor local optimum [8]. CFS uses an independent light weight network for noise re-
duction and simplifies the task from difficult semantic segmentation to simple class-agnostic
foreground segmentation. We segment foreground within bounding boxes. The location and
class label of the foreground object are also known. Thus, we call it Constrained Foreground
Segmentation.

CFS brings several benefits. First, the search area is narrowed down because only a
small region instead of the full image needs to be handled. Second, most of the irrelevant
information is discarded. Each bounding box includes exactly one foreground object and
the multi-scale problem is solved because of the tightness of bounding boxes, Third, the
target problem is simplified because binary classification is less complicated than multi-class
classification. Based on the above benefits, CFS uses less resources and is much easier to
optimize than fitting the whole image with a complex semantic segmentation network.

CFS can generate more high-quality proposals as supervision of semantic segmentation
networks. However, the supervision is still noisy inevitably. The semantic segmentation
network should have self-correction ability and noisy robustness. We therefore design a self-
attention mechanism LGSA to capture long-range dependencies and reduce noise. Similar
to the Non-local module [26], LGSA calculates an affinity matrix to reweight feature maps.
The reweighting is similar to Non-local means [5] which is effective for image denoising.

The reweighting in the Non-local module is completely unconstrained and may cause
unexpected global information exchanges. In contrast, LGSA is guided by a novel loss
which encourages information to exchange only among intra-class pixels. We prove that
the loss tries to maximize inter-class distances and minimize intra-class distances. LGSA
also supports reweighting segments in addition to feature maps, because the module can
generate a more reasonable affinity matrix under the guidance. Therefore, we use random
work [1, 4] to further reweight the segments and get more accurate results. Experiments show
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that LGSA encourages inter-class competition and intra-class self-correction. Compared to
the Non-local module, LGSA has better performance and interpretability even with noisy
supervision.

Our contributions can be summarized as follows. First, we introduce a constrained fore-
ground segmentation network to generate high-quality dense annotations from noisy propos-
als by simplifying multi-class semantic segmentation to class-agnostic foreground segmenta-
tion. Second, we propose a loss-guided self-attention module that constrains the information
exchanges among different kinds of pixels. The module encourages self-correction among
intra-class pixels and generates a reasonable affinity matrix to reweight both feature maps
and segments. Third, we evaluate the proposed method on the Pascal VOC 2012 benchmark
and achieve state-of-the-art performance.

2 Related Works

Semantic segmentation, i.e., assigning a class label to each pixels of an image, is an im-
portant computer vision task. The state-of-the-art methods [2, 7, 18, 29] usually use fully
convolution neural network to predict dense segmentations and need expensive pixel-level
annotations. Therefore, WSSS using cheaper annotations draws a lot of attention recently.
The most related works to this paper are the ones using bounding box annotations. The
methods [8, 15, 19, 23] usually use GrabCut [22], DenseCRF [16] or MCG [20] to gen-
erate proposals. WSSL [19] applies deep learning first for WSSS using bounding boxes.
The method uses an expectation-maximization algorithm to learn from noisy supervision.
BoxSup [8] introduces an iterative strategy that generates multiple proposals and trains the
network alternatively to refine the estimated proposals. SDI [15] designs a novel strategy to
combine the proposals generated by GrabCut [22] and MCG [20]. Song et al. [23] employ
filling rates to reduce the effects of incorrectly labeled data. Different from the methods that
update the supervision recursively [8, 15] or use graph models frequently [15], we employ an
end-to-end constrained foreground segmentation network to generate high quality proposals
directly.

Semantic segmentation also benefits from attention mechanism. Song et al. [23] use soft
attention to generate a global spatial mask and reduce the weights of irrelevant regions. In the
paper, self-attention is applied instead. The Non-local module [26] introduces a novel self-
attention which uses deep features to calculate an affinity matrix and then uses the matrix to
reweight features. Based on the Non-local module, DANet [10] and CCNet [14] are proposed
for fully supervised semantic segmentation. DANet [10] applies attention mechanism in both
spatial and channel dimensions and CCNet [14] harvests non-local contextual information
in a criss-cross way. Yao et al. [27] apply the non-local module to generate proposals for
WSSS using image-level labels. Our self-attention module LGSA is similar to [26] and [27],
but we design a loss to guide the information exchanges among pixels of different categories.
Under the guidance, LGSA generates a more reasonable affinity matrix which can be used
to reweight segments in addition to features.
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Figure 1: Overview of the proposed method. We expand the bounding boxes to obtain the
inputs of the CFS (a1). GrabCut is applied for the coarse proposal generation (a2). CFS (a3)
and the full-resolution proposal generation (a4) are employed successively to achieve high-
quality proposals. Finally the LGSA-embedded semantic segmentation training is performed
(b).

3 Our Method

3.1 Overview
The procedure of our method is shown in Figure 1. We train a constrained foreground
segmentation network to identify the foreground objects and obtain high-quality proposals.
Then, the proposals serve as pixel-level supervision for training the semantic segmentation
network and LGSA is inserted into the semantic segmentation network for further improve-
ments.

3.2 High-quality Proposal Generation
We apply GrabCut to obtain coarse proposals for images within each bounding box, denoted
as Minit ∈ [0,1] (0 for background and 1 for foreground).

The proposals from GrabCut are noisy due to the lack of semantic information. We apply
CFS to get high-quality proposals. The visible region to CFS is limited within the bounding
boxes to alleviate the interference from irrelevant information. Concretely, for each bounding
box, we expand it by increasing its height and width by 50%. The expanded region, whose
annotations are determinate as background, helps to distinguish foreground objects. We then
crop the region within the expanded bounding box from the original image, denoted as Iexp.
Accordingly, the initial proposal Minit is expanded to Mexp:

Mexp(i′, j′) =

{
Minit(i, j), if (i, j) in B,
0, otherwise.

(1)

where B is the original bounding box and (i, j) is the corresponding coordinates of pixel
(i′, j′) in Minit . Mexp will serve as the ground truth of CFS. Similarly, we encode the position
information of the original bounding box into Bexp:

Bexp(i′, j′) =

{
1, if (i, j) in B,
0, otherwise.

(2)
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Figure 2: The structure of CFS network. The
details can be found in the supplementary ma-
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Figure 3: The structure of LGSA. ASPP is a
moudle of DeepLab-v2[7].

Bexp and class label y serve as the inputs of CFS in the one-hot format. These prior knowledge
benefits the network training effectively.

We design a CFS network similar to U-Net [21] with a ResNet-50 backbone (Figure
2 and more details in the supplementary material). The network takes Iexp, Bexp and y as
inputs. The bounding box masks and class labels help distinguish foreground objects in
shallow layers, but the information usually vanishes in deep layers. Therefore, following
the idea of residual blocks [12], we add skip connections to feed Bexp and y to deep layers
directly. The loss function of CFS is defined as

LCFS = CE(M̂exp,Mexp), (3)

where M̂exp is the output of CFS network and CE(·) represents the pixel-wise cross-entropy
loss.

Because only cross-entropy loss is used for training, the network output lacks precise
boundaries. Therefore, we use GrabCut to refine them. Specifically, pixels with foreground
probability higher than 60% are considered as foreground, and pixels with foreground prob-
ability lower than 40% are considered as background, and the rest are regarded as possible
foreground. GrabCut is performed with the above trimap as a mask prior to obtain a precise
proposal.

In the inference, we apply CFS for each bounding box respectively. The class label of
the bounding box is also known. We then combine the results to a full-resolution multi-class
proposal. If two boxes overlap, we process the larger one first because the smaller one is
more likely to be in the front of foreground.
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3.3 Semantic Segmentation Learning
We use a fully convolution network for semantic segmentation. CFS is effective in reducing
noise and generating high-quality proposals but cannot eliminate all mistakes. Therefore,
we design LGSA to achieve network self-correction and noise robustness. The structure of
LGSA is shown in Figure 3.

Similar to the Non-local module, we use deep features to calculate an affinity matrix and
then use the matrix to reweight the features. Given a feature X ∈ RC×H×W , where C, H and
W denote the channel, height and width of X respectively, we applies three different linear
embedding functions (e.g., 1× 1 convolutions) θ , φ and g to obtain θ(X), φ(X) and g(X).
The embedded results with a shape of C′×H×W are reshaped to C′×N where N = H×W .
The affinity matrix W ∈ RN×N is produced by matrix multiplication and softmax:

W = softmax(θ(X)T ·φ(X)). (4)

Then we use the matrix to reweight the feature:

Z = h(W ·g(X))+X , (5)

where Z is the reweighted feature, h is another linear embedding function whose weight
and bias are initialized to zero. We refer readers to [26] for more details about the basic
self-attention module.

Up to now, the calculation of the affinity matrix is completely unconstrained which may
cause unreasonable information exchanges. For example, suppose an image containing a cat
and a dog is used. The information should not be exchanged between the two objects because
it will make their features similar and thus confuse the network. To overcome the problem,
the proposed LGSA constrains information exchanges among pixels of different categories
by performing an loss function on the generated affinity matrix. We denote W ∈ RN×N as the
generated affinity matrix of LGSA and define the ground truth matrix Wgt as

Wgt(i, j) =

{
0, if M(i) 6= M( j),
1, otherwise,

(6)

where M is the generated full-resolution multi-class proposals in section 3.2. Then each
Wgt(i, j) is divided by ∑i Wgt(i, j) for normalization. The loss function of LGSA can be
formulated as

Latt = MSE(W,Wgt), (7)

where MSE(·) is mean squared error. With the loss, LGSA encourages inter-class competi-
tions and intra-class self-correction. The weight between two pixels of different categories
tends to be 0. Hence, the information exchanges are constrained between different categories
and inter-class distances will tend to the maximum. The weight between two pixels of the
same category tends to be the mean value of all the pixels of the category, leading to the
minimum of intra-class distances.

In the Non-local module, reweighting is only performed to deep features. Howerver,
LGSA can also reweight the segments because LGSA generates a more reasonable affinity
matrix under the loss guidance. We use random walk [1, 4] to reweight the segments as

M̂rw =W · M̂, (8)
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where M̂ is the original network output and M̂rw is the refined result.
We train the semantic segmentation network in an end-to-end manner. The loss for seg-

mentation is
Lseg = CE(M̂rw,M). (9)

The total loss for the network is

Ltotal = Lseg +α ·Latt , (10)

where α is a hyper-parameter to balance the two losses.

4 Experiments

4.1 Experimental Setup
We conduct experiments on the Pascal VOC 2012 benchmark [9], which contains 1,461
images for training, 1,449 images for validation, and 1,459 images for testing. Following
the setting of other similar works, we augment the training set to 10,582 images according
to [11].

When training CFS, small bounding boxes, i.e., less than 50 pixels in height or width, are
filtered out. All boxes remain in the inference. The input size is 224× 224. The optimizer
is SGD with an initial learning rate of 0.005. A step learning rate scheduler is implemented
where the learning rate is multiplied by 0.8 every 10 epochs. The total epoch numbers is 60.

For the semantic segmentation training, DeepLabv2 with a ResNet-101 backbone [7]
pretrained on ImageNet is adopted. We follow the settings in [7] except that the initial
learning rate is 0.00025 and the training epochs are 15. A warm-up strategy is employed
where the learning rate in the first epoch is divided by 10. We find the strategy to be useful
when the network includes self-attention modules. By default, we apply two cascaded LGSA
modules for the balance of performance and efficiency, and insert them right after the ResNet
backbone. α is set to 10,000 when using two or more LGSA modules and 1,000 when using
one module. We only use the affinity matrix generated by the last LGSA module for random
walk. In the inference, DenseCRF [16] is applied for post-processing.

All experiments are implemented using PyTorch and performed on four NVIDIA GTX
2080 Ti GPUs. We use mean Intersection-over-Union (mIoU) to evaluate semantic segmen-
tation results.

4.2 Comparisons with Other Methods
We compare our method with other WSSS methods on the Pascal VOC 2012 validation
set. Table 1 shows that our method achieves better performance than other WSSS methods
using bounding box annotations. Figure 4 shows qualitative segment results of our method
compared with Song et al. [23]. The first three rows indicate our segments are more accurate,
especially on the object boundaries. The last three rows come from the failure cases in their
paper. The method of Song et al. is confused by some rare patterns, e.g., a dog with clothes,
whereas our method is more robust. Our method also fails to distinguish chair and sofa with
similar appearances, but our method still outperforms than theirs. For instance, the incorrect
chair regions are smaller, the boundaries of the sofa are more accurate, and the potted plant
is recognized.
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(a) (b) (c) (d)

Figure 4: Qualitative segmentation results on
PASCAL VOC 2012 val set. (a)-origin im-
age, (b)-ground truth, (c)-results of Song et
al. [23], (d)-ours.

Image GrabCut OursCSD OursCSD (refined)(a)Image GrabCut OursCSD OursCSD (refined)(b)Image GrabCut OursCSD OursCSD (refined)(c)Image GrabCut OursCSD OursCSD (refined)(d)

Figure 5: Qualitative results of CFS. (a)-
origin images, (b)-GrabCut results, (c)-CFS
results, (d)-refined CFS results.

Table 1: Comparisons with other WSSS meth-
ods. Ann.-annotations, F-Full supervision, I-
image-level label, S-scribble, B-bounding box.

Method Backbone Ann. val(mIoU)
Deeplab v1 [6] VGG-16 F 67.6
Deeplab v2 [7] ResNet-101 F 76.2
FickleNet [17] ResNet-101 I 64.9
RDM [28] ResNet-101 I 66.3
Kernel Cut [24] ResNet-101 S 75.0
BPG [25] ResNet-101 S 76.0
BoxSup [8] VGG-16 B 62.0
WSSL [19] VGG-16 B 60.6
SDI [15] ResNet-101 B 69.4
Song et al. [23] ResNet-101 B 70.2
Ours ResNet-101 B 72.4

Table 2: Comparisons with other su-
pervisions using official DeepLab-v2
in Pascal VOC 2012 val set.

Supervision mIoU
Bounding box 55.4
GrabCut 66.6
CFS 70.8

Table 3: Comparisons with the Non-
local module.

Block Number
1 2 3

Non-local 71.3 71.5 71.5
Ours 71.9 72.4 72.6
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Table 4: Per-class results in Pascal VOC 2012 val set (mIoU in %).
Methods bkg plane bike bird boat bottle bus car cat chair cow table dog horse moto person plant sheep sofa train tv mean

DeepLabgrabcut 90.7 71.1 31.0 81.6 56.6 69.2 83.3 74.1 83.2 32.8 77.9 55.7 77.7 70.0 65.0 71.2 49.4 71.4 45.1 73.5 70.1 66.6
Ours 92.3 69.3 31.1 84.6 71.0 76.2 90.7 81.8 87.3 39.6 84.5 57.5 83.1 74.0 73.3 76.4 60.6 80.8 57.5 80.4 69.2 72.4

(a) Image (b) Non-local (c) LGSA (d) Image (e) Non-local (f) LGSA

Figure 6: Visualizations of Non-local and LGSA. The query point is marked as a red ‘+’ and
the corresponding weights are sampled from the affinity matrix and shown as a heatmap.

Table 4 shows per-class results of our method and DeepLab-v2 supervised by GrabCut
proposals. Our method outperforms GrabCut in most situations.

4.3 Ablation Study
Effectiveness of CFS. We train the official DeepLab-v2 model with different supervisions,
including bounding boxes, GrabCut proposals and high-quality proposals generated by CFS,
to verify the effectiveness of CFS. The models are evaluated on Pascal VOC 2012 val set
and the result is in Table 2. Our CFS is more outstanding than GrabCut, indicating that CFS
can generate more high-quality dense annotations from noisy proposals. Figure 5 shows that
GrabCut can locate the foreground object but shows performance degradation when either
the foreground colors are close to background or the textures are complex, e.g., the person
and the potted plant. Our CFS outperforms in those situations because CFS tries to find
common semantic patterns of the data and therefore generates more high-quality proposals.

Effectiveness of LGSA. We compare LGSA with the Non-local module under different
self-attention block number settings. Table 3 shows that the performance of LGSA surpasses
the Non-local module’s. Our LGSA also gives better interpretability as shown in Figure 6
(More visualizations are shown in the supplementary material). The affinity matrix generated
by the Non-local module focuses on fragmentary regions, while LGSA’s affinity matrix is
more reasonable and focuses on all pixels of the same class. The main reason is that the
Non-local module captures dependencies without guidance and is sensitive to certain small
regions. LGSA guides the information exchanges to restrain unreasonable exchanges among
different categories and enhance the correspondence of intra-class pixels.

Influence of α and random walk. We test the influence of α to further verify the proposed
LGSA. Table 5 shows that when α is 0, i.e., no loss guidance, the performance is 71.5,
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Table 5: The influence of α and random walk (RW).
α

0 5000 10000 15000 20000
Without RW 71.5 71.7 71.8 71.8 71.7
With RW 71.5 72.1 72.4 72.3 72.2

similar to Non-local modules. As α is increased, the network benefits from the loss guidance.
However, a too large α may be harmful to segmentation learning. Table 5 also shows the
influence of random walk, i.e., reweighting segments. When α is 0, random walk has almost
no influence to the performance because the affinity map is unreasonable. As the increment
of α , random walk increases the performance significantly, indicating that the affinity map
from LGSA is more reasonable under the loss guidance.

5 Conclusions
In this paper, we propose CFS and LGSA to learn effectively from noisy supervision for
WSSS using bounding box annotations and achieve state-of-the-art results. CFS generates
high-quality proposals by considerably simplifying the segmentation problem. LGSA gen-
erates a reasonable affinity matrix to reweight deep features and segments under a novel loss
guidance, and obtains better performance and interpretability than the Non-local module.

Our current approach has some limitations. For example, the thresholds utilized for
generating a trimap in the proposal refinement are fixed and LGSA has O(n2) time and
space complexity. In the future, we will explore ways to adjust the thresholds adaptively and
reduce the computing complexity of LGSA.
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