
RAVI GANESH, CORSO: LABEL-BASED CURRICULUM LEARNING 1

Rethinking Curriculum Learning with
Incremental Labels and Adaptive
Compensation
Madan Ravi Ganesh
madantrg@umich.edu

Jason J. Corso
jjcorso@umich.edu

University of Michigan
EECS
Ann Arbor
Michigan, USA

Abstract

Like humans, deep networks have been shown to learn better when samples are orga-
nized and introduced in a meaningful order or curriculum [37]. Conventional curriculum
learning schemes introduce samples in their order of difficulty. This forces models to
begin learning from a subset of the available data while adding the external overhead of
evaluating the difficulty of samples. In this work, we propose Learning with Incremen-
tal Labels and Adaptive Compensation (LILAC), a two-phase method that incrementally
increases the number of unique output labels rather than the difficulty of samples while
consistently using the entire dataset throughout training. In the first phase, Incremental
Label Introduction, we partition data into mutually exclusive subsets, one that contains a
subset of the ground-truth labels and another that contains the remaining data attached to
a pseudo-label. Throughout the training process, we recursively reveal unseen ground-
truth labels in fixed increments until all the labels are known to the model. In the second
phase, Adaptive Compensation, we optimize the loss function using altered target vectors
for previously misclassified samples. The target vectors of such samples are modified to a
smoother distribution to help models learn better. On evaluating across three standard im-
age benchmarks, CIFAR-10, CIFAR-100, and STL-10, we show that LILAC outperforms
all comparable baselines. Further, we detail the importance of pacing the introduction of
new labels to a model as well as the impact of using a smooth target vector.

1 Introduction
Deep networks are a notoriously hard class of models to train effectively [10, 13, 21, 22].
A combination of high-dimensional problems, characterized by a large number of labels
and a high volume of samples, a large number of free parameters and extreme sensitivity to
experimental setups are some of the main reasons for the difficulty in training deep networks.
The go-to solution for deep network optimization is Stochastic Gradient Descent with mini-
batches [30] (batch learning) or its derivatives. There are two alternative lines of work which
offer strategies to guide deep networks to better solutions than batch learning: Curriculum
Learning [3, 12, 15] and Label Smoothing [9, 38].

Curriculum learning helps deep networks learn better by gradually increasing the dif-
ficulty of samples used to train networks. This idea is inspired by methods used to teach

c© 2020. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Weinshall, Cohen, and Amir} 2018

Citation
Citation
{Erhan, Manzagol, Bengio, Bengio, and Vincent} 2009

Citation
Citation
{Glorot and Bengio} 2010

Citation
Citation
{Larochelle, Erhan, Courville, Bergstra, and Bengio} 2007

Citation
Citation
{Larochelle, Bengio, Louradour, and Lamblin} 2009

Citation
Citation
{Robbins and Monro} 1951

Citation
Citation
{Bengio, Louradour, Collobert, and Weston} 2009

Citation
Citation
{Florensa, Held, Wulfmeier, Zhang, and Abbeel} 2017

Citation
Citation
{Graves, Bellemare, Menick, Munos, and Kavukcuoglu} 2017

Citation
Citation
{Elman} 1993

Citation
Citation
{Xie, Wang, Wei, Wang, and Tian} 2016

2 RAVI GANESH, CORSO: LABEL-BASED CURRICULUM LEARNING

Step T-i

Label 1

Label 2

Label 3

Label 4

Correct Incorrect

,

,

,

,

Step T-1 Step T

Pseudo-Label
One-hot Vector

Incremental Label Introduction Adaptive Compensation

Ground-truth
One-hot Vector

.....

...

Model at time t

.......

,

,

,

,

,

,

,

,

Step 1

,

,

,

,

...

.....

Figure 1: Illustration of the components of LILAC for a four label dataset case. The In-
cremental Label introduction (IL) phase introduces new labels at regular intervals while us-
ing the data corresponding to unknown labels (pseudo-label) as negative samples. Once all
the labels have been introduced, the Adaptive Compensation (AC) phase of training begins.
Here, a prior copy of the network is used to classify training data. If a sample is misclassified
then a smoother distribution is used as its ground-truth vector in the current epoch.

humans and patterns in human cognition and behaviour [1, 34]. The “difficulty” of samples
in the dataset, obtained using either external ranking methods or internal rewards [12, 16],
introduces an extra computational overhead while the setup itself restricts the amount of data
from which the network begins to learn.

Label smoothing techniques [27, 29, 38] regularize the outcomes of deep networks to
prevent over-fitting while improving on existing solutions. They penalize network outputs
based on criteria such as noisy labels, overconfident model outcomes, or robustness of a net-
work around a data point in the feature space. Often, such methods penalize the entire dataset
throughout the training phase with no regard to the prediction accuracy of each sample.

Inspired by an alternative outlook on Elman’s [9] notion of “starting small”, we propose
LILAC, Learning with Incremental Labels and Adaptive Compensation, a novel label-based
algorithm that overcomes the issues of the previous methods and effectively combines them.
LILAC works in two phases, 1) Incremental Label Introduction (IL), which emphasizes
gradually learning labels, instead of samples, and 2) Adaptive Compensation (AC), which
regularizes the outcomes of previously misclassified samples by modifying their target vec-
tors to smoother distributions in the objective function (Fig. 1).

In the first phase, we partition data into two mutually exclusive sets: S, a subset of
ground-truth (GT) labels and their corresponding data; and U, remaining data associated
with a pseudo-label (ρ) and used as negative samples. Once the network is trained using
the current state of the data partition for a fixed interval, we reveal more GT labels and their
corresponding data and repeat the training process. By contrasting data in S against the
entire remaining dataset in U, we consistently use all the available data throughout training,
thereby overcoming one of the key issues of curriculum learning. The setup of the IL phase,
inspired by continual learning, allows us to flexibly space out the introduction of new labels
and provide the network enough time to develop a strong understanding of each class.

Once all the GT labels are revealed, we initiate the AC phase of training. In this phase,

Citation
Citation
{Avrahami, Kareev, Bogot, Caspi, Dunaevsky, and Lerner} 1997

Citation
Citation
{Skinner} 1958

Citation
Citation
{Florensa, Held, Wulfmeier, Zhang, and Abbeel} 2017

Citation
Citation
{Hacohen and Weinshall} 2019

Citation
Citation
{Pereyra, Tucker, Chorowski, Kaiser, and Hinton} 2017

Citation
Citation
{Reed, Lee, Anguelov, Szegedy, Erhan, and Rabinovich} 2015

Citation
Citation
{Xie, Wang, Wei, Wang, and Tian} 2016

Citation
Citation
{Elman} 1993

RAVI GANESH, CORSO: LABEL-BASED CURRICULUM LEARNING 3

we replace the target one-hot vector of misclassified samples, obtained from a previous ver-
sion of the network being trained, with a smoother distribution. The smoother distribution
provides an easier value for the network to learn while the use of a prior copy of the net-
work helps avoid external computational overhead and limits the alteration of target vectors
to only necessary samples.

To summarize, our main contributions in LILAC are as follows:
• we introduce a novel method for curriculum learning that incrementally learns labels

as opposed to samples,
• we formulate Adaptive Compensation as a method to regularize misclassified samples

while removing external computational overhead,
• finally, we improve average recognition accuracy across all of the evaluated bench-

marks compared to batch learning, a property that is not shared by the other tested
curriculum learning and label smoothing methods.

Our code is available at https://github.com/MichiganCOG/LILAC_v2.

2 Related Works
Curriculum Learning Bengio et al. [3], Florensa et al. [12], and Graves et al. [15] are
some important works that have redefined and applied curriculum learning in the context
of deep networks. These ideas were expanded upon to show improvements in performance
across corrupted [19] and small datasets [11]. More recently, Hacohen and Weinshall [16]
explored the impact of varying the pace with which samples were introduced while Wein-
shall [37] used alternative deep networks to categorize difficult samples. To the best of our
knowledge, most previous works have assumed that samples cover a broad spectrum of dif-
ficulty and hence need to be categorized and presented in an orderly fashion. The closest
relevant work to ours, in terms of learning labels, gradually varies the GT vector from a
multimodal distribution to a one-hot vector over the course of the training phase [8].

Label Smoothing Label smoothing techniques regularize deep networks by penalizing the
objective function based on a pre-defined criterion. Such criteria include using a mixture of
true and noisy labels [38], penalizing highly confident outputs [27], and using an alternate
deep network’s outcomes as GT [29]. Bagherinezhad et al. [2] proposed the idea of using
logits from trained models instead of just one-hot vectors as GT. Complementary work by
Miyato et al. [26] used the local distributional smoothness, based on the robustness of a
model’s distribution around a data point, to smooth labels. The work closest to our method
was proposed in Szegedy et al. [35], where an alternative target distribution was used across
the entire dataset. Instead, we propose to only alter the GT vector for samples that are
misclassified. They are identified using a prior copy of the current model, which helps avoid
external computational overhead and only uses a small set of operations.

Incremental Learning and Negative Mining Incremental and Continual learning are
closely related fields that inspired the structure of our algorithm. Their primary concern
is learning over evolving data distributions with the addition of constraints on the storage
memory [5, 28], distillation of knowledge across different distributions [32, 33], assumption
of a single pass over data [6, 25], etc. In our approach, we depart from the assumption of
evolving data distributions. Instead, we adopt the experimental pipeline used in incremental
learning to introduce new labels at regular intervals. At the same time, inspired by negative

Citation
Citation
{Bengio, Louradour, Collobert, and Weston} 2009

Citation
Citation
{Florensa, Held, Wulfmeier, Zhang, and Abbeel} 2017

Citation
Citation
{Graves, Bellemare, Menick, Munos, and Kavukcuoglu} 2017

Citation
Citation
{Jiang, Zhou, Leung, Li, and Fei-Fei} 2018

Citation
Citation
{Fan, Tian, Qin, Li, and Liu} 2018

Citation
Citation
{Hacohen and Weinshall} 2019

Citation
Citation
{Weinshall, Cohen, and Amir} 2018

Citation
Citation
{Dogan, Deshmukh, Machura, and Igel} 2019

Citation
Citation
{Xie, Wang, Wei, Wang, and Tian} 2016

Citation
Citation
{Pereyra, Tucker, Chorowski, Kaiser, and Hinton} 2017

Citation
Citation
{Reed, Lee, Anguelov, Szegedy, Erhan, and Rabinovich} 2015

Citation
Citation
{Bagherinezhad, Horton, Rastegari, and Farhadi} 2018

Citation
Citation
{Miyato, Maeda, Koyama, Nakae, and Ishii} 2016

Citation
Citation
{Szegedy, Vanhoucke, Ioffe, Shlens, and Wojna} 2016

Citation
Citation
{Castro, Mar{í}n-Jim{é}nez, Guil, Schmid, and Alahari} 2018

Citation
Citation
{Rebuffi, Kolesnikov, Sperl, and Lampert} 2017

Citation
Citation
{Rolnick, Ahuja, Schwarz, Lillicrap, and Wayne} 2019

Citation
Citation
{Schwarz, Czarnecki, Luketina, Grabska-Barwinska, Teh, Pascanu, and Hadsell} 2018

Citation
Citation
{Chaudhry, Ranzato, Rohrbach, and Elhoseiny} 2019

Citation
Citation
{Lopez-Paz and Ranzato} 2017

https://github.com/MichiganCOG/LILAC_v2

4 RAVI GANESH, CORSO: LABEL-BASED CURRICULUM LEARNING

Step 1: Partition Data Step 2: Sample Mini-batch Step 3: Balance Mini-batch

Label 1

Label 2

Label 3

Label 4

Pseudo
Label

Figure 2: Illustration of the steps in the IL phase when (Top) only one GT label is in S
and (Bottom) when two GT labels are in S. The steps are 1) partition data, 2) sample a
mini-batch of data and 3) balance the number of samples from U to match those from S in
the mini-batch before training. Samples from U are assumed to have a uniform prior when
being augmented/reduced to match the total number of samples from S. Values inside each
pie represent the number of samples. Across both cases, the number of samples from S
determines the final balanced mini-batch size.

mining [4, 23, 36], we use the remaining training data, associated with a pseudo-label, as
negative samples. Overall, our setup effectively uses the entire training dataset, thus main-
taining the same data distribution.

3 LILAC

In LILAC, our main objective is to improve upon batch learning. We do so by first gradu-
ally learning labels, in fixed increments, until all GT labels are known to the network (Sec-
tion 3.1). This behaviour assumes that all samples are of equal difficulty and are available to
the network throughout the training phase. Further, we focus on learning strong representa-
tions of each class over a dedicated period of time. Once all GT labels are known, we shift
to regularizing previously misclassified samples by smoothing the distribution of their target
vector while maintaining the peak at the same GT label (Section 3.2). Using a smoother dis-
tribution leads to an increase in the entropy of the target vector and helps the network learn
better, as we demonstrate in Section 4.2.

3.1 Incremental Label Introduction Phase

In the IL phase, we partition data into two sets: S, a subset of GT labels and their corre-
sponding data; and U, the remaining data marked as negative samples using a pseudo-label
ρ . Over the course of multiple intervals of training, we reveal more GT labels to the network
according to a predetermined schedule. Within a given interval of training, the data partition
is held fixed and we uniformly sample mini-batches from the entire training set based on
their GT label. However, for samples from U, we use ρ as their label. There is no additional
change required in the objective function or the outputs of the model when we sample data
from U. By the end of this phase, we reveal all GT labels to the network.

Citation
Citation
{Bucher, Herbin, and Jurie} 2016

Citation
Citation
{Li, Snoek, Worring, Koelma, and Smeulders} 2013

Citation
Citation
{Wang and Gupta} 2015

RAVI GANESH, CORSO: LABEL-BASED CURRICULUM LEARNING 5

For a given dataset, we assume a total of L labels are provided in the ascending order of
their value. Based on this ordering, we initialize the first b labels, and their corresponding
data, as S, and the data corresponding to the remaining L−b labels as U. Over the course of
multiple training intervals, we reveal GT labels in increments of m, a hyper-parameter that
controls the schedule of new label introduction. Revealing a GT label involves moving the
corresponding data from U to S and using their GT label instead of ρ .

Within a training interval, we train the network for E epochs using the current state of
the data partition. First, we sample a mini-batch of data based on a uniform prior over their
GT labels. Then, we modify their target vectors based on the partition to which a sample
belongs. To ensure the balanced occurrence of samples from GT labels and ρ , we augment or
reduce the number of samples from U to match those from S and use this curated mini-batch
to train the network. After E epochs, we move m new GT labels and their corresponding
data from U to S and repeat the entire process (Fig. 2).

3.2 Adaptive Compensation
Once all the GT labels have been revealed and the network has trained sufficiently, we be-
gin the AC phase. In the AC phase, we use a smoother distribution for the target vector of
samples which the network is unable to correctly classify. Compared to one-hot vectors,
optimizing over this smoother distribution, with an increased entropy, can bridge the gap
between the unequal distances in the embedding space and overlaps in the label space [31].
This overlap can occur due to common image content or close proximity in the embedding
space relative to other classes. Thus, improving the entropy of such target vectors can help
modify the embedding space in the next epoch and compensate for the predictions of mis-
classified samples.

For a sample (xi,yi) in epoch e ≥ T , we use predictions from the model at e− 1 to
determine the final target vector used in the objective function; specifically, we smoothen
the target vector for a sample if and only if it was misclassified by the model at epoch e−1.
Here, (xi,yi) denotes a training sample and its corresponding GT label for sample index i,
and T represents a threshold epoch value until which the network is trained without adaptive
compensation. We compute the final target vector for the ith instance at epoch e, te

i , based on
the model θ e−1 using the following equation,

te
i =

{
(εL−1

L−1)δyi +(1−ε

L−1)1, argmax
(

fθ e−1(xi)
)
6= yi

δyi , otherwise
. (1)

Here, δyi represents the one-hot vector corresponding to GT label yi, 1 is a vector of L
dimensions with all entries as 1 and ε is a scaling hyper-parameter.

4 Experiments
Datasets and Metrics We use three datasets, CIFAR-10, CIFAR-100 ([20]), and STL-
10 ([7]), to evaluate our method and validate our claims. CIFAR-10 and CIFAR-100 are
10 and 100 class variants of the popular image benchmark CIFAR while STL-10 is a 10
class subset of ImageNet. Average Recognition Accuracy (%) combined with their Standard
Deviation across 5 trials are used to evaluate the performance of all the algorithms.

Citation
Citation
{Rodr{í}guez, Bautista, Gonzalez, and Escalera} 2018

Citation
Citation
{Krizhevsky, Hinton, etprotect unhbox voidb@x protect penalty @M {}al.} 2009

Citation
Citation
{Coates, Ng, and Lee} 2011

6 RAVI GANESH, CORSO: LABEL-BASED CURRICULUM LEARNING

Experimental Setup For CIFAR-10/100, we use ResNet18 ([17]) as the architectural back-
bone while for STL-10, we use ResNet34. We set ρ as the last label and b as half the total
number of labels of a given dataset. In each interval of LILAC’s IL phase, we train the
model for 7, 3, and 10 epochs each, at a learning rate of 0.1, 0.01, and 0.1 for CIFAR-10,
CIFAR-100, and STL-10, respectively. In the AC phase epochs 150, 220, and 370 are used
as thresholds (epoch T) for CIFAR-10, CIFAR-100, and STL-10 respectively. Detailed ex-
planations of the experimental setups are provided in the supplementary materials.

Baselines
1. Stochastic Gradient Descent with mini-batches (Batch Learning).
2. Standard Baselines
• Fixed Curriculum: Following the methodology proposed in Bengio et al. [3], we create

a “Simple” subset of the dataset using data that is within a value of 1.1 as predicted by
a linear one-vs-all SVR model. The deep network is trained on the “Simple” dataset
for a fixed period of time, which mirrors the total length of the IL phase, after which
the entire dataset is used to train the network.

• Label Smoothing: We follow the method proposed in Szegedy et al. [35].
3. Custom Baselines
• Dynamic Batch Size (DBS): DBS randomly copies data available within a mini-batch

to mimic variable batch sizes, similar to the IL phase. However, all GT labels are
available to the model throughout the training process.

• Random Augmentation (RA): This baseline samples from a single randomly chosen
class in U, available in the current mini-batch, to balance data between S and U in the
current mini-batch. This is in contrast to LILAC, which uses samples from all classes
in U that are available in the current mini-batch.

4. Ablative Baselines
• Only IL: This baseline quantifies the contribution of incrementally learning labels when

combined with batch learning.
• Only AC: This baseline shows the impact of adaptive compensation, as a label smooth-

ing technique, when combined with batch learning.

4.1 Comparison Against Standard Baselines
Table 1 illustrates the improvement offered by LILAC over batch learning, with comparable
setups. Further, we break down the contributions of each phase of LILAC. Both Only IL
and Only AC improve over batch learning, albeit to varying degrees, which highlights their
individual strengths and importance. However, only when we combine both phases do we
observe a consistently high performance across all benchmarks. This indicates that these two
phases complement each other.

The Fixed Curriculum approach does not offer consistent improvements over the batch
learning baseline across CIFAR-100 and STL-10 while the Label Smoothing approach does
not outperform batch learning on the STL-10 dataset. While both of these standard baselines
fall short, LILAC consistently outperforms batch learning across all evaluated benchmarks.
Interestingly, Label Smoothing provides the highest performance on CIFAR-100. Since the
original formulation of LILAC was based on batch learning, we assume all GT vectors to be
one-hot. This assumption is violated in Label Smoothing. When we tailor our GT vectors
according to the Label Smoothing baseline, we outperform it with minimal hyper-parameter
changes, a testament to LILAC’s applicability on top of conventional label smoothing.

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Bengio, Louradour, Collobert, and Weston} 2009

Citation
Citation
{Szegedy, Vanhoucke, Ioffe, Shlens, and Wojna} 2016

RAVI GANESH, CORSO: LABEL-BASED CURRICULUM LEARNING 7

Types Training Performance (%)
CIFAR 10 CIFAR 100 STL 10

Batch Learning 95.19 ± 0.190 78.32 ± 0.175 72.88 ± 0.642

Standard Fixed Curriculum [3] 95.27 ± 0.112 77.89 ± 0.287 72.18 ± 0.601
Label Smoothing [35] 95.27 ± 0.111 79.06 ± 0.179 72.55 ± 0.877

Custom Random Augmentation 95.27 ± 0.076 75.37 ± 0.480 73.67 ± 0.708
Dynamic Batch Size 95.22 ± 0.131 78.73 ± 0.264 72.66 ± 1.081

Ablative Only IL (ours) 95.38 ± 0.135 78.73 ± 0.139 73.43 ± 0.903
Only AC (ours) 95.38 ± 0.170 78.94 ± 0.179 72.94 ± 0.530

Overall LILAC (ours) 95.52 ± 0.072 78.88 ± 0.201 73.77 ± 0.838
LS + LILAC (ours) 95.34 ± 0.080 79.08 ± 0.307 73.59 ± 0.623

Table 1: Under similar setups, LILAC consistently achieves higher mean accuracy than batch
learning across all evaluated benchmarks, a property not shared by other baselines.

Method CIFAR-10

Wide Residual Networks [40] 96.11
Multilevel Residual Networks [41] 96.23
Fractional Max-pooling [14] 96.53
Densely Connected Convolutional Networks [18] 96.54
Drop-Activation [24] 96.55
Shake-Drop [39] 96.59
Shake-Drop + LILAC (ours) 96.79

Table 2: LILAC easily outperforms the Shake-Drop network ([39]) as well as other top
performing algorithms on CIFAR-10 with standard pre-processing (random crop + flip).

The RA baseline highlights the importance of using all of the data in U as negative sam-
ples in the IL phase as opposed to using data from individual classes. This is reflected in
the boost in performance offered by LILAC. The DBS baseline is used to highlight the im-
portance of fluctuating mini-batch sizes, which occur due to the balancing of data in the IL
phase. Even with the availability of all labels and fluctuating batch sizes, the DBS baseline
is easily outperformed by LILAC. This indicates the importance of the recursive structure
used to introduce data in the IL phase as well as the use of data from U as negative sam-
ples. Overall, LILAC consistently outperforms batch learning across all benchmarks while
existing comparable methods fail to do so. When we extend LILAC to the Shake-Drop [39]
network architecture, with only standard pre-processing, we easily outperform other existing
approaches with comparable setups, as shown in Table 2.

4.2 Key Properties of LILAC

Smoothness of Target Vector (ε) Throughout this work, we maintained the importance
of using a smoother distribution as the alternate target vector during the AC phase. Ta-
ble 3 (Top) illustrates the change in performance across varying degrees of smoothness in
the alternate target vector. There is a clear increase in performance when ε values are be-

Citation
Citation
{Bengio, Louradour, Collobert, and Weston} 2009

Citation
Citation
{Szegedy, Vanhoucke, Ioffe, Shlens, and Wojna} 2016

Citation
Citation
{Zagoruyko and Komodakis} 2016

Citation
Citation
{Zhang, Sun, Han, Yuan, Guo, and Liu} 2017

Citation
Citation
{Graham} 2014

Citation
Citation
{Huang, Liu, Van Derprotect unhbox voidb@x protect penalty @M {}Maaten, and Weinberger} 2017

Citation
Citation
{Liang, Kwoo, and Yang} 2018

Citation
Citation
{Yamada, Iwamura, Akiba, and Kise} 2018

Citation
Citation
{Yamada, Iwamura, Akiba, and Kise} 2018

Citation
Citation
{Yamada, Iwamura, Akiba, and Kise} 2018

8 RAVI GANESH, CORSO: LABEL-BASED CURRICULUM LEARNING

Property Performance (%)
CIFAR-10 CIFAR-100 STL-10

ε = 0.9 95.30 ± 0.072 78.48 ± 0.328 73.57 ± 0.980
ε = 0.8 95.34 ± 0.141 78.52 ± 0.118 73.54 ± 0.984
ε = 0.7 95.42 ± 0.189 78.72 ± 0.356 73.59 ± 0.872
ε = 0.6 95.36 ± 0.096 78.75 ± 0.180 73.77 ± 0.838
ε = 0.5 95.49 ± 0.207 78.88 ± 0.227 73.61 ± 0.810
ε = 0.4 95.52 ± 0.072 78.88 ± 0.201 73.54 ± 0.959
ε = 0.3 95.31 ± 0.125 78.66 ± 78.66 73.59 ± 0.955
ε = 0.2 95.36 ± 0.095 78.47 ± 0.093 73.57 ± 0.963

m: 1 95.32 ± 0.156 78.73 ± 0.139 73.27 ± 0.220
m: 2 (4) 95.38 ± 0.135 78.34 ± 0.209 73.43 ± 0.903
m: 4 (8) 95.29 ± 0.069 78.37 ± 0.114 72.30 ± 0.543

Table 3: (Top) The mid-range of ε values, 0.7-0.4, show an increase in performance while
the edges, due to either too sharp or too flat a distribution, show decreased performance.
(Bottom) Only IL model results illustrate the importance of introducing a small number of
new labels in each interval of the IL phase. Values in brackets are for CIFAR-100.

tween 0.7-0.4 (mid-range). On either side of this band of values, the GT vector is either too
sharp or too flat, leading to a drop in performance.

Size of Label Groups (m) LILAC is designed to introduce as many or as few new labels
as desired in the IL phase. We hypothesized that developing stronger representations can be
facilitated by introducing a small number of new labels while contrasting it against a large
variety of negative samples. Table 3 (Bottom) supports our hypothesis by illustrating the
decrease in performance with an increase in the number of new labels introduced in each
interval of the IL phase. Thus, we introduce two labels each for CIFAR-10 and STL-10 and
only one new label per interval for CIFAR-100 throughout the experiments in Table 1.

5 Discussion: Impact of Each Phase
In this section, we take a closer look at the impact of each phase of LILAC and how they
affect the quality of the learned representations. We extract features from the second to last
layer of ResNet18/34 from 3 different baselines (Batch Learning, LILAC, and Only IL) and
use these features to train a linear SVM model.

Fig. 3 highlights the two important phases in our algorithm. First, the plots on the left-
hand side show a steady improvement in the performance of LILAC and the Only IL baseline
once the IL phase is complete and all the labels have been introduced to the network. When
we compare the plots of CIFAR-10 and STL-10 against CIFAR-100, we see that all baselines
follow the learning trend shown by batch learning, with CIFAR-100 being slightly delayed.
Since there are a large number of epochs required to introduce all the labels of CIFAR-100
to the network, the plots are significantly delayed compared to batch learning. Conversely,
since there are very few epochs in the IL phase of CIFAR-10 and STL-10, we observe that the
performance trend of Only IL and LILAC quickly matches that of batch learning. Overall, the

RAVI GANESH, CORSO: LABEL-BASED CURRICULUM LEARNING 9

0 20 40 60 80 100 120 140
Epochs

30

40

50

60

70

80

90

100
Re

co
gn

iti
on

 A
cc

ur
ac

y
(%

)
Supervised Clustering Performance: CIFAR10

Baseline (94.57%)
Only IL (94.68%)
LILAC (94.80%)
End of IL

100 150 200 250 300
Epochs

90

92

94

96

98

100

Re
co

gn
iti

on
 A

cc
ur

ac
y

(%
)

Supervised Clustering Performance: CIFAR10
Baseline (94.57%)
Only IL (94.68%)
LILAC (94.80%)
Beginning of AC

0 50 100 150 200 250 300 350
Epochs

10

20

30

40

50

60

70

80

Re
co

gn
iti

on
 A

cc
ur

ac
y

(%
)

Supervised Clustering Performance: STL10

Baseline (72.79%)
Only IL (73.24%)
LILAC (73.60%)
End of IL

200 250 300 350 400 450
Epochs

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

Re
co

gn
iti

on
 A

cc
ur

ac
y

(%
)

Supervised Clustering Performance: STL10
Baseline (72.79%)
Only IL (73.24%)
LILAC (73.60%)
Beginning of AC

0 25 50 75 100 125 150 175 200
Epochs

10

20

30

40

50

60

70

80

Re
co

gn
iti

on
 A

cc
ur

ac
y

(%
)

Supervised Clustering Performance: CIFAR100

Baseline (76.95%)
Only IL (77.32%)
LILAC (77.62%)
End of IL

150 200 250 300 350 400 450
Epochs

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

Re
co

gn
iti

on
 A

cc
ur

ac
y

(%
)

Supervised Clustering Performance: CIFAR100

Baseline (76.95%)
Only IL (77.32%)
LILAC (77.62%)
Beginning of AC

Figure 3: Plots on the (Left) show the common learning trend between all baselines, albeit
slightly delayed for CIFAR-100, after the IL phase while those on the (Right) show steady
improvement in performance after applying AC when compared to the Only IL baseline.
Final supervised classification performances on representations collected from LILAC easily
outperform those from batch learning and Only IL methods.

final performances of both LILAC and the Only IL baseline are higher than batch learning,
which supports the importance of the IL phase in learning strong representations.

(a) CIFAR-10 (b) CIFAR-100 (c) STL-10

Figure 4: Illustration of 8 randomly chosen samples that were incorrectly labelled by the
Only IL baseline and correctly labelled by LILAC. This highlights the importance of AC.

10 RAVI GANESH, CORSO: LABEL-BASED CURRICULUM LEARNING

The plots on the right-hand side highlight the similarity in behaviour of Only IL and LILAC
before AC. However, afterward, we observe that the performance of LILAC overtakes the
Only IL baseline. This is a clear indicator of the improvement in representation quality when
AC is applied. Additionally, from Fig. 3 we observe that inherently the STL-10 dataset re-
sults have a high standard deviation, which is reflected in the middle portion of the training
phase, between the end of the IL and the beginning of the AC phase and it is not a con-
sequence of our approach. To further support the importance of the AC phase, we provide
examples in Fig. 4 of randomly sampled data from the testing set that were incorrectly clas-
sified by the Only IL baseline and were correctly classified by LILAC.

6 Conclusion
In this work, we proposed LILAC, which rethinks curriculum learning based on incremen-
tally learning labels instead of samples. This approach helps kick-start the learning pro-
cess from a substantially better starting point while making the learned embedding space
amenable to adaptive compensation of target vectors. Both these techniques combine well in
LILAC to show the highest performance on CIFAR-10 for simple data augmentations while
easily outperforming batch and curriculum learning and label smoothing methods on com-
parable network architectures. The next step in unlocking the full potential of this setup is
to include a confidence measure on the predictions of the network so that it can handle the
effects of dropout or partial inputs. In further expanding LILAC’s ability to handle partial
inputs, we aim to explore its effect on standard incremental learning (memory-constrained)
while also extending its applicability to more complex neural network architectures.

7 Acknowledgements
This work was in part supported by NSF NRI IIS 1522904 and NIST 60NANB17D191. The
findings and views represent those of the authors alone and not the funding agencies. The
authors would also like to thank members of the COG lab for their invaluable input in putting
together and refining this work.

References
[1] Judith Avrahami, Yaakov Kareev, Yonatan Bogot, Ruth Caspi, Salomka Dunaevsky,

and Sharon Lerner. Teaching by examples: Implications for the process of category
acquisition. The Quarterly Journal of Experimental Psychology Section A, 50(3):586–
606, 1997.

[2] Hessam Bagherinezhad, Maxwell Horton, Mohammad Rastegari, and Ali Farhadi.
Label refinery: Improving imagenet classification through label progression. arXiv
preprint arXiv:1805.02641, 2018.

[3] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum
learning. In Proceedings of the 26th annual international conference on machine learn-
ing, pages 41–48. ACM, 2009.

RAVI GANESH, CORSO: LABEL-BASED CURRICULUM LEARNING 11

[4] Maxime Bucher, Stéphane Herbin, and Frédéric Jurie. Hard negative mining for met-
ric learning based zero-shot classification. In Gang Hua and Hervé Jégou, editors,
Computer Vision – ECCV 2016 Workshops, pages 524–531, Cham, 2016. Springer In-
ternational Publishing. ISBN 978-3-319-49409-8.

[5] Francisco M Castro, Manuel J Marín-Jiménez, Nicolás Guil, Cordelia Schmid, and
Karteek Alahari. End-to-end incremental learning. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 233–248, 2018.

[6] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach, and Mohamed Elhoseiny.
Efficient lifelong learning with a-GEM. In International Conference on Learning Rep-
resentations, 2019.

[7] Adam Coates, Andrew Ng, and Honglak Lee. An analysis of single-layer networks in
unsupervised feature learning. In Proceedings of the fourteenth international confer-
ence on artificial intelligence and statistics, pages 215–223, 2011.

[8] Urun Dogan, Aniket Anand Deshmukh, Marcin Machura, and Christian Igel. Label-
similarity curriculum learning. arXiv preprint arXiv:1911.06902, 2019.

[9] Jeffrey L Elman. Learning and development in neural networks: The importance of
starting small. Cognition, 48(1):71–99, 1993.

[10] Dumitru Erhan, Pierre-Antoine Manzagol, Yoshua Bengio, Samy Bengio, and Pascal
Vincent. The difficulty of training deep architectures and the effect of unsupervised
pre-training. In Artificial Intelligence and Statistics, pages 153–160, 2009.

[11] Yang Fan, Fei Tian, Tao Qin, Xiang-Yang Li, and Tie-Yan Liu. Learning to teach. In
International Conference on Learning Representations, 2018.

[12] Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel.
Reverse curriculum generation for reinforcement learning. In Proceedings of the 1st
Annual Conference on Robot Learning, volume 78 of Proceedings of Machine Learning
Research, pages 482–495. PMLR, 13–15 Nov 2017.

[13] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pages 249–256, 2010.

[14] Ben Graham. Fractional max-pooling (2014). arXiv preprint arXiv:1412.6071, 2014.

[15] Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray
Kavukcuoglu. Automated curriculum learning for neural networks. In Proceedings of
the 34th International Conference on Machine Learning-Volume 70, pages 1311–1320.
JMLR. org, 2017.

[16] Guy Hacohen and Daphna Weinshall. On the power of curriculum learning in train-
ing deep networks. In Proceedings of the 36th International Conference on Machine
Learning, Proceedings of Machine Learning Research, pages 2535–2544, Long Beach,
California, USA, 09–15 Jun 2019. PMLR.

12 RAVI GANESH, CORSO: LABEL-BASED CURRICULUM LEARNING

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[18] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017.

[19] Lu Jiang, Zhengyuan Zhou, Thomas Leung, Li-Jia Li, and Li Fei-Fei. MentorNet:
Learning data-driven curriculum for very deep neural networks on corrupted labels. In
Proceedings of the 35th International Conference on Machine Learning, Proceedings
of Machine Learning Research, pages 2304–2313. PMLR, 10–15 Jul 2018.

[20] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. Technical report, Citeseer, 2009.

[21] Hugo Larochelle, Dumitru Erhan, Aaron Courville, James Bergstra, and Yoshua Ben-
gio. An empirical evaluation of deep architectures on problems with many factors of
variation. In Proceedings of the 24th international conference on Machine learning,
pages 473–480. ACM, 2007.

[22] Hugo Larochelle, Yoshua Bengio, Jérôme Louradour, and Pascal Lamblin. Exploring
strategies for training deep neural networks. Journal of machine learning research, 10
(Jan):1–40, 2009.

[23] Xirong Li, CeesG M Snoek, Marcel Worring, Dennis Koelma, and Arnold WM Smeul-
ders. Bootstrapping visual categorization with relevant negatives. IEEE Transactions
on Multimedia, 15(4):933–945, 2013.

[24] Senwei Liang, Yuehaw Kwoo, and Haizhao Yang. Drop-activation: Implicit parameter
reduction and harmonic regularization. arXiv preprint arXiv:1811.05850, 2018.

[25] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient episodic memory for continual
learning. In Advances in Neural Information Processing Systems, pages 6467–6476,
2017.

[26] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, Ken Nakae, and Shin Ishii. Dis-
tributional smoothing by virtual adversarial examples. In 4th International Conference
on Learning Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Con-
ference Track Proceedings, 2016.

[27] Gabriel Pereyra, George Tucker, Jan Chorowski, Lukasz Kaiser, and Geoffrey E. Hin-
ton. Regularizing neural networks by penalizing confident output distributions. CoRR,
2017.

[28] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lam-
pert. icarl: Incremental classifier and representation learning. In Proceedings of
the IEEE conference on Computer Vision and Pattern Recognition, pages 2001–2010,
2017.

RAVI GANESH, CORSO: LABEL-BASED CURRICULUM LEARNING 13

[29] Scott E. Reed, Honglak Lee, Dragomir Anguelov, Christian Szegedy, Dumitru Erhan,
and Andrew Rabinovich. Training deep neural networks on noisy labels with boot-
strapping. In 3rd International Conference on Learning Representations, ICLR 2015,
San Diego, CA, USA, May 7-9, 2015, Workshop Track Proceedings, 2015.

[30] Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals
of mathematical statistics, pages 400–407, 1951.

[31] Pau Rodríguez, Miguel A Bautista, Jordi Gonzalez, and Sergio Escalera. Beyond one-
hot encoding: Lower dimensional target embedding. Image and Vision Computing, 75:
21–31, 2018.

[32] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy Lillicrap, and Gregory
Wayne. Experience replay for continual learning. In Advances in Neural Information
Processing Systems, pages 348–358, 2019.

[33] Jonathan Schwarz, Wojciech Czarnecki, Jelena Luketina, Agnieszka Grabska-
Barwinska, Yee Whye Teh, Razvan Pascanu, and Raia Hadsell. Progress & compress:
A scalable framework for continual learning. In International Conference on Machine
Learning, pages 4535–4544, 2018.

[34] Burrhus F Skinner. Reinforcement today. American Psychologist, 13(4):94, 1958.

[35] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2818–2826, 2016.

[36] Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual representations
using videos. In Proceedings of the IEEE International Conference on Computer Vi-
sion, pages 2794–2802, 2015.

[37] Daphna Weinshall, Gad Cohen, and Dan Amir. Curriculum learning by transfer learn-
ing: Theory and experiments with deep networks. In Proceedings of the 35th Interna-
tional Conference on Machine Learning, Proceedings of Machine Learning Research,
pages 5238–5246, Stockholmsmässan, Stockholm Sweden, 2018. PMLR.

[38] Lingxi Xie, Jingdong Wang, Zhen Wei, Meng Wang, and Qi Tian. Disturblabel: Reg-
ularizing cnn on the loss layer. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 4753–4762, 2016.

[39] Yoshihiro Yamada, Masakazu Iwamura, Takuya Akiba, and Koichi Kise. Shakedrop
regularization for deep residual learning. arXiv preprint arXiv:1802.02375, 2018.

[40] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine
Vision Conference 2016. British Machine Vision Association, 2016.

[41] Ke Zhang, Miao Sun, Tony X Han, Xingfang Yuan, Liru Guo, and Tao Liu. Residual
networks of residual networks: Multilevel residual networks. IEEE Transactions on
Circuits and Systems for Video Technology, 28(6):1303–1314, 2017.

