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Abstract

The ability to accurately predict the motion of fencing athletes will help to improve
the competition techniques of the players and the viewing experience of the audience.
Most human-motion prediction methods only consider a single person, but in fencing,
the movement of the opponent greatly affects the future movements of the player. In
this paper, we propose a motion prediction model that takes into account the interaction
between the two players in the game by connecting the recurrent neural networks to each
other. In experiments, our model improved the accuracy of predicting movements in
response to the opposing player, such as retreating to avoid the opponent’s thrusts.

1 Introduction
Fencing is a sport where two athletes stand opposite each other and poke each other’s bodies
with their swords in one hand to decide the winner. A successful attack that touches the
opponent’s body with the sword results in a point, and a player with the specified number
of points wins the game. Sports analytics is one of the areas in which computer vision is
employed for purposes such as player tracking, video captioning, and action recognition [16,
20, 21, 26], while analyses conducted with cameras in stadiums have been used in popular
team sports. Applications of this technology to one-on-one fighting sports are an interesting
and valuable area to be explored. This paper analyzes fencing, one of the most famous one-
on-one sports, by predicting two players motion simultaneously. Highly accurate motion
prediction models can help to improve competition techniques and the viewing experience
by visualizing the causes of the movement and by detecting technically advanced movements
using deviations from predictions.

Most of the existing motion prediction methods consider only a single person and do not
take into account interactions with others [3, 14, 22, 23]. In fencing, however, the players
influence each other and change their movements, even within a second. Therefore, the study
reported here incorporates the interaction between players for accurate motion prediction. To
achieve this, we assign a prediction model formed from a recurrent neural network (RNN)
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Figure 1: Overview of our prediction model. Each player’s RNN observes the past few poses
while receiving the opponent’s information simultaneously. The connections are also used
for forecasting the future poses.

to each player and mutually connect these individual models. The reason for applying a
predictive model to each player in a match is that each player moves differently, which needs
to be predicted with some degree of individual focus. The encoder-decoder models, which
are suitable for motion prediction, are selected for the baseline prediction networks, and the
models are connected mutually, as illustrated in Fig. 1.

To demonstrate the effectiveness of this method, we applied it to several baselines that
predict the motion of a single person [3, 14, 22] and confirmed improvements in accuracy
for all of them. The performance gain was the highest at the most accurate model. In ex-
periments, a dataset of 2D joint positions of the two athletes was created based on match
videos provided by a national fencing federation [10]. The joint positions of the two athletes
in a 0.5-second period were input and those in the following 1-second period were predicted.
These short time periods were decided because fencing players move fast; making a thrust
and returning to the original posture happens in about one second. The results quantitatively
show that the proposed method improves the prediction accuracy, and particularly, the con-
tribution is large in the latter 0.5 second of the predicted 1-second period. Further analysis
shows that the proposed methods start outperforming baselines at about 200ms to 400ms in
1 second prediction, which is close to fencing experts’ reaction time. Thus, the prediction
by the proposed methods should reflect the players’ cognitive ability by considering interac-
tion between them. A qualitative evaluation shows that the proposed method could predict
movements that were difficult to predict without considering the interaction between players.

The contributions of this paper are summarized as follows: First, we propose a frame-
work that embeds the mutual effect of players in motion prediction and show its effectiveness
in fencing, where player interaction is immediately reflected in motion. Second, we show
that our framework improves existing motion prediction methods consistently, and the accu-
rate ones most effectively. Third, we show the performance improvement had by considering
interaction is higher in the distant future, the latter half of the predicted 1-second period.

2 Related Work

Human motion prediction Many studies on human motion prediction use RNNs [3,
4, 13, 14, 22, 23], which are effective for modeling time series information. The encoder-
decoder model, which predicts future movements from encoded information by observing
past movements of people, is the mainstream. Within this framework, Martinez et al. [14]
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have improved the accuracy by predicting the amount of pose change by using a residual net-
work architecture. In addition to RNNs, GANs and convolutional autoencoders are also used
[5, 11, 12], but the common denominator is that they observe only the movement information
of the target’s whole body in the past and predict the subsequent movements.

Some studies have focused on the dependence of each body part in order to make accu-
rate predictions [6, 9]. In Structural-RNN [9], the skeleton and interactions between body
parts are represented by a spatio-temporal graph and all factors in the graph, like the nodes,
are transformed into RNNs in order to learn and predict human motion. In addition to these
approaches, Corona et al. [2] have proposed a pose prediction model that is aware of the in-
teraction between humans and objects. In their model, not only information on human pose
but also the positions and types of objects in the environment are taken into account to im-
prove the prediction accuracy. However, the interactions between people are not considered
as deeply as in this paper, because of the different purpose of the learning dataset.

Human interaction Pedestrian path prediction often takes into account the interaction
between people [1, 17]; its accuracy is improved by recognizing the relationship between
pedestrians. Its effectiveness has also been confirmed in the field of action recognition [8,
18, 24]. One of the most common methods is to extract the features of each person by
using an RNN or CNN and update the features by considering the features of the other
person. For example, Sadeghian et al. proposed a trajectory prediction model in which the
movements of different pedestrians are represented by the intermediate output of the long-
short term memory (LSTM) [7] and are used to consider their interactions [17]. Ibrahim
et al. proposed a network that takes into account relationships between players for event
recognition in volleyball matches. Their method is based on a representation that a CNN
extracts from video of each player [8]. Wu et al.’s method uses a graph neural network
(GNN) to represent the characteristics of human interactions as nodes and edges of a graph;
it uses nodes to represent players in a volleyball game to help understand the interaction [24].

In this paper, we propose an architecture for human motion prediction inspired by Social
LSTM [1], which also considers interactions by using RNN, because fencing is a two-player
competition, and there is a possibility that the graph structure does not have much meaning
and an RNN is a reliable means of motion prediction.

3 Method

We present a two-player simultaneous human motion prediction model that takes into ac-
count the interaction between players. We assume that a single person’s motion model can
be represented by an RNN. The interaction between the RNNs can be realized by feeding
the outputs of the middle layers to each other. Namely, the output from one player’s model
is fed to the other player’s model by concatenating it with the input in the next time step.

Single-player motion prediction by RNNs In this study, one neural model is prepared
for a single player. We chose RNNs as the neural models, since they handle time series in-
formation well. To incorporate the interaction between players, one might consider a neural
model that takes all players together as input and models the game entirely. However, we
treat a single player as a single model that interacts with another model through the exchange
of intermediate outputs. This has several advantages. First, each neural model is more fo-
cused on a single player than one encoding all players, and this would reduce the number of
parameters. Second, a single-player model is easier to extend. There are generally individual
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differences in the same movement, which poses a challenge in predicting the movement. In
fencing, this difference manifests itself as a style of play, and it is desirable that each player
be understood individually in order to make accurate posture predictions. If a single model
can represent a single player, it would be easier to optimize it to individual players in the
future. Also, when such a model is extended to a multiplayer or team sport such as foot-
ball, it would be easier to represent the local interaction between players if a single model
represents a single player rather than an entire match.

Motion prediction by an RNN with interaction To consider the interaction of players,
we use the middle layer output of the RNNs as a feature that well represents the context of
the movement. The middle layer output includes past posture information; thus, that of the
opponent would contain not only its posture at that time but also its posture change, that is,
the context of his/her movement.

Figure 2 illustrates the core of this interaction realization. Let the input be p, which is a
vector of joint coordinates of the players in the x,y image plane, or a further encoded latent
representation of it. Suppose that at each time step t, the RNN model of a single player
outputs the hidden state ht as follows:

ht ← RNN(pt ,ht−1;Wr), (1)

where Wr is the set of parameters for this recurrent model. Our model that considers the
interaction can be expressed as follows:

hle f t
t ← RNN(ple f t

t
_hright

t−1 , hle f t
t−1 ;Wr), (2)

hright
t ← RNN(pright

t
_hle f t

t−1 , hright
t−1 ;Wr), (3)

where _ means concatenation, and left and right indicate each player. Wr are shared by the
players. Rather than concatenating ht−1 from the opponent with its own output, or specializ-
ing the RNN architecture, concatenating it with the input pt can be more natural because the
motion of the opponent is information that comes from outside the player’s neural model.

interaction in encoder-decoder models We are interested in generating a set of future
frames by observing a set of frames of the two players as inputs. Encoder-decoder models are
suitable for this problem setting, as they can encode the input frames into compact features
and can decode them for a variable number of future frames.

The algorithm is shown in Algorithm 1. The input is a set of p, a vector of joint coor-
dinates, or a further encoded latent representation of it, in K frames. The output is a set of
those for T frames. At each time step t, the hidden states ht for both players are obtained
from Eqs. 2 and 3. After observing K frames, the RNN outputs the predicted joint position
p̂t for T frames by f (ht ;Wf ), where f is a projection function and Wf is a projection matrix.

For the loss function to train the model, we used the Euclidean distance between the
predicted and the true joint positions for each player. Namely, it is the mean of the sum of
the squares of the errors:

Lpose =
1

T L

T

∑
t=1

L

∑
l=1

(‖ p̂l
K+t − pl

K+t‖2
2 +‖p̂′lK+t − p′lK+t‖2

2), (4)

where L is the total number of joints, p̂ and p̂′ are the predicted joint positions, and p and p′

are the ground truth of the joint position, for each athlete.
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Figure 2: At each time step t, the previ-
ous hidden state ht−1 of the opponent is
concatenated with the input pt , as shown
by the red and blue arrows.

Algorithm 1 Our basic algorithm

Input: ple f t
1:K , pright

1:K

Output: p̂le f t
K+1:K+T , p̂right

K+1:K+T
In encoder RNN:
for t = 1 to K do

hle f t
t ←RNN(ple f t

t
_hright

t−1 ,hle f t
t−1 ;Wr)

hright
t ←RNN(pright

t
_hle f t

t−1 ,h
right
t−1 ;Wr)

end for

In decoder RNN:
for t = K +1 to K +T do

hle f t
t ←RNN(ple f t

t
_hright

t−1 ,hle f t
t−1 ;Wr)

p̂le f t
t ← f (hle f t

t ;Wf )

hright
t ←RNN(pright

t
_hle f t

t−1 ,h
right
t−1 ;Wr)

p̂right
t ← f (hright

t ;Wf )
end for

Figure 3: The joint coordinates of each player are normalized by the minimum and maximum
positions appeared in the image.

To avoid low prediction accuracy due to accumulation of errors in the prediction values,
our RNN has a structure that reuses its own predictions as input at training.

Prediction target We predict the absolute movement in the scene to some extent, rather
than predict the change of each body part. This is because the change in movement due to
the interaction appears prominently in the player’s forward and backward movements. To
implement this, the input/output joint coordinates are normalized every K +T frames using
the maximum and minimum values of the joint coordinates in the K +T frames so that the
values are in the range from -1.0 to 1.0. Figure 3 shows the image of our normalization. For
each K +T frames, the bounding box for normalization has different size.

Implementation with three single-player models It is desirable for the proposed mutual
connections to work in any RNN model, and the proposed mechanism needs to be applied
and validated in multiple models to show its effectiveness. Therefore, we tested our mutual
connections with three types of single-person posture prediction models, LSTM-3LR’ [3],
LSTM [22], and rSA [14]. The network diagram of LSTM-3LR’, LSTM, and rSA are shown
from left to right in Figure 4. In these prediction models, the middle layer is connected at
each time step to the next inputs, as shown by the red and blue arrows. When there are
multiple layers in a time step, we only feed the output from the final layer to the next time
step. For LSTM-3LR’, we removed the noise scheduling and changed the learning method
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Figure 4: From left to right, diagrams of LSTM-3LR’ [3], LSTM [22], and rSA [14] are
illustrated. In each diagram, the networks above and below the dashed line are that of single
pose prediction models. The red and blue arrows show that the middle layers of the respective
models are connected to the opponent’s model. The black skeletons are the input pose of the
left and right players, and the red and blue skeletons are the predicted pose of them.

to free running because the original paper [3] was difficult to implement as is.

4 Experiment

4.1 Experimental setting
To demonstrate the effectiveness of the proposed method, we compared the accuracy of the
single-person motion prediction models, LSTM-3LR’ [3], LSTM [22], and rSA [14], with
the corresponding models that consider interactions. As baselines, the models were simply
applied to each athlete. Then, to validate the effectiveness of the proposed method, the
intermediate layers of the models were mutually connected.

To account for the fast movements of fencing athletes, the joint positions of the two
athletes in 30 frames, equivalent to 0.5 seconds, were entered as preliminary movements,
and the joint positions in 60 frames, equivalent to the subsequent 1 second, were predicted.
Namely, in Algorithm 1, the variable K was set to 30 and the variable T was set to 60.
Dataset A dataset was created from fencing match footage provided by a national Fenc-
ing Federation. The details after pre-processing and cleaning are shown in Table 1. First,
the joint positions of each athlete were obtained by using pose estimation with HRNet [19].
The estimated 17 joints were preprocessed and reclassified based on the dominant arm with
the epee and the dominant leg on the same side. In addition, we removed seven joint points:
the head, whose accuracy of position estimation is low because players wear masks, and the
non-dominant arm, whose accuracy is low because it is often occluded by the body. A filter
was used to remove fine noises, and the scenes were divided into clips which included about
135 frames and had a 45-frame overlap with the adjacent clips.

The total number of clips was 2,326. The number of athletes, though not unique, were
4,652, as each clip included two players. We used 1,628 of the 2,326 clips in the dataset for
learning and 698 scenes for testing, so the ratio of training and testing data was 7:3.
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Table 1: Details of the fencing
dataset

Total numbers
Matches 21
Athletes 34
Clips 2,326
Players for train/test 4,652

Table 2: Implementation details
Pose x coordinate ×10 joints
representation y coordinate ×10 joints
# of frames for input 30
# of frames for output 60
Reference value Athlete’s torso distance
for PCK@0.2

Evaluation Metric Percentage of correct key points (PCK) [25] was used to evaluate
the prediction accuracy, as in Wu et al. [23]. This is an index to calculate the percentage of
correct answers, and if the predicted joint position is within the threshold radius from the
true value, the joint is judged to be correct. We use 20% of the trunk distance (PCK@0.2),
which is the distance between the player’s dominant shoulder and non-dominant hip, as the
threshold. The higher the value of this index, the better the accuracy. It is often used in pose
estimation. We did not use this measure for the loss function because it allows for a certain
amount of error in the evaluation as the correct answer.
Implementation Details During training, we randomly selected 90 consecutive frames
from each clip and predicted the joint positions from the 31-st to 90-th frames by using those
from the 1-st to 30-th frames as input. After training, a quantitative evaluation was performed
using the first 90 frames of the test scenes and a qualitative evaluation was performed using
the first and last 90 frames of the same scenes.

The methods were implemented by TensorFlow. The batch size in training was 128,
the learning rate was set to 0.001, and the Adam optimizer was used. To prevent an RNN
gradient explosion, we applied gradient clipping with a threshold of 25 to all networks.
The parameters of the rSA and LSTM layers were in accordance with the original paper
[14, 22]. For LSTM-3LR’, the number of LSTM units is set to 512 and the output of the
linear encoding layer is set to 100 dimensions.

4.2 Results
Quantitative Evaluation The values of PCK@0.2 of the baselines and the proposed
method are shown in Table 3. The proposed variant of LSTM-3LR’, LSTM, and rSA im-
proved accuracy by 1.7%, 1.6%, and 2.3% over that of the original models. This indicates
that the proposed RNN connections are effective regardless of the baseline network structure.
The most accurate method is the one using rSA, with an accuracy of 77.1%, which is influ-
enced by the high prediction accuracy of rSA itself. While the accuracy of all joint points
was improved, a comparison of the accuracy of each joint point shows that the accuracies of
the dominant hand, dominant elbow, and dominant foot joint points were lower. These areas
have larger movements than other parts, especially for the dominant hand and the dominant
elbow, which are faster and more difficult to predict because they belong to the epee arm.

Next, we evaluated whether the prediction accuracy changes with the prediction time.
The prediction accuracy in the first 30 frames of the 60 predicted frames is shown in Table 4.
In general, the closer the predicted time is to the input, the more accurate the prediction be-
comes, so the PCK@0.2 for each method is higher than in Table 3. Looking at the degree of
improvement in prediction accuracy numerically, it is noteworthy that LSTM-3LR’, LSTM,
and rSA are 0.5%, 0.5%, and 1.2%, respectively, which are smaller than the prediction of
the entire 60 frames. It has been shown that the prediction of times close to the input can
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Table 3: Prediction accuracy for all 60 frames
Method 10 Coordinates dominant hand dominant elbow dominant foot
LSTM-3LR’ [3] 70.7 66.0 59.2 65.7
LSTM-3LR’ cross 72.4 66.6 59.9 67.1
LSTM [22] 71.4 66.7 60.0 67.0
LSTM cross 73.0 68.1 61.2 67.8
rSA [14] 74.8 69.7 64.2 70.5
rSA cross 77.1 71.8 66.4 72.4

Table 4: Prediction accuracy for the first
30 frames

Method 10 Coordinates
LSTM-3LR’ [3] 79.3
LSTM-3LR’ cross 79.8
LSTM [22] 80.4
LSTM cross 80.9
rSA [14] 82.8
rSA cross 84.0

Table 5: Prediction accuracy for the last
30 frames

Method 10 Coordinate
LSTM-3LR’ [3] 62.2
LSTM-3LR’ cross 65.0
LSTM [22] 62.4
LSTM cross 65.2
rSA [14] 66.8
rSA cross 70.2

be made with high accuracy from the movements of only one player without considering the
interaction between the players.

Table 5 shows PCK@0.2 for each method, calculated using only the last 30 frames from
the 60 predicted frames. Compared to the results in Table 4, the prediction accuracy of each
method is lower because the prediction time is farther away from the input. However, it
should be noted here that the degree of improvement in numerical prediction accuracy of
each method is 2.8% for LSTM-3LR’, 2.8% for LSTM, and 3.4% for rSA, which is greater
than that of predicting the entire 60 frames. Hence, this shows that the accuracy of the
prediction over a long period of time can be improved by taking the interaction into account.

We also analyzed at which point the accuracy difference appears between the baselines
and the proposed variants of them. We calculated the prediction accuracy of the methods
while increasing the evaluation frames from 1 to 60. We observed that, in the first few
frames, our methods and baselines had almost the same accuracy or baselines outperformed
our methods. However, from the particular time point, the accuracy of our methods start to
outperform baselines: 250ms in rSA, 360ms in LSTM, and 380ms in LSTM-3LR’. These
timings are close to the reaction time of skilled fencers [15], and it implies our methods make
prediction results which reflect fencing players’ cognitive ability. More details are included
in our videos.
Qualitative Evaluation

Next, we visualized and qualitatively evaluated the prediction results of rSA with the
best prediction accuracy. In the following, the true value of the motion position is depicted
in black, the baseline prediction results are depicted in yellow without any relation to left
and right, and the left and right players are depicted in red and blue, respectively, for the
prediction results of the proposed method that takes into account the interaction.

Figure 5 shows a scene where the left player (red) retreats to avoid the thrust of the right
player (blue). Although simply applying the single-person motion prediction model does
not predict the regression of the left-handed player (yellow), it can be seen that the proposed
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Figure 5: In response to an attack on the right flank, the player on the left fell back slightly.
The true motion is depicted in black, the baseline prediction is in yellow, and the results by
the proposed method are in red and blue.

method accurately predicts the regression of the player by considering the interaction (red).
Such a spur-of-the-moment move in response to an opponent’s attack would be a move with
little or no reserve action, and thus, the predicted result would deviate significantly from the
true value in the baseline without considering opponent information.

Figure 6: The left player stays in place to keep the distance between them as the right player
backs away.

In Figure 6, both players approached once, and then the right player retreated signifi-
cantly, so the left player can be seen to stay in place to keep the distance between them.
The baseline (yellow) predicts that the player on the left who released the thrust will retreat,
while the proposed method (red) predicts that the player will stay in place just like the actual
player. Although the distance between players is not entered into the network, the proposed
method predicts the behavior of players who maintain a certain distance by taking into ac-
count the forward and backward movement of the opponent. The video which shows more
details of Figures 5 and 6 is provided in our supplementary material.

While there were results that improved the prediction accuracy by considering the in-
teraction, there were also cases where the prediction results were incorrect as a result of
considering the information of the opposing players. Figure 7 shows a scene in which the
right athlete retreats in response to the left athlete’s thrust, but the proposed method (blue)
overreacts to the left athlete’s thrust, causing the athlete to retreat farther than he actually
did. One of the reasons why the information of opposing players may have a bad effect
is that the distance between players is not taken into account. When an opponent makes a
poking motion, the network has no information as to whether it is close or far away. Thus,
even when the opponent pokes the player from a certain distance, as shown in the figure, the
player is predicted to react as if he/her was poked from nearby. The same is true not only for
thrusts, but also for other moves; to prevent this, the distance between players needs to be
presented to the network.
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Figure 7: Example of poor prediction accuracy by the proposed method. The predicted result
for the left player’s thrust is excessively backward.

5 Conclusion
We proposed a motion prediction model for fencing athletes that considers their interaction
through RNN connections. An athlete joint position dataset for fencing matches based on
pose estimation by HRNet was created, and a quantitative evaluation using it showed that
the prediction accuracy could be improved by taking into account the interaction between
the athletes. In addition, a qualitative comparison between the baseline using rSA and the
visualized prediction results of the proposed method showed that it is possible to predict
the change in the player’s movement when the motion prediction takes into account the
information of the opposing players. Issues to be resolved in the future include improving
the prediction accuracy of the epee hand and considering the distance between players.
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