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Abstract

Quantization has long been studied as a compression and accelerating technique for
deep neural networks due to its potential on reducing model size and computational
costs, for both general hardware, such as DSP, CPU or GPU, and customized devices
with flexible bit-width configurations, including FPGA and ASIC. However, previous
works generally achieve network quantization by sacrificing on prediction accuracy with
respect to their full-precision counterparts. In this paper, we investigate the underlying
mechanism of such performance degeneration based on previous work of parameterized
clipping activation (PACT). We find that the key factor is the weight scale in the last
layer. Instead of aligning weight distributions of quantized and full-precision models, as
generally suggested in the literature, the main issue is that large scale can cause over-
fitting problem. We propose a technique called scale-adjusted training (SAT) by directly
scaling down weights in the last layer to alleviate such over-fitting. With the proposed
technique, quantized networks can demonstrate better performance than their full-preci-
sion counter-parts, and we achieve state-of-the-art accuracy with consistent improvement
over previous quantization methods for light weight models including MobileNet V1/V2
on ImageNet classification.

1 Introduction

Deep neural networks have gained rapid progress in tasks including computer vision, natural
language processing and speech recognition [25, 35, 36, 39, 48, 53, 56], and have been
applied to real-world systems such as robotics and self-driving cars [19, 27]. However,
it remains challenging to deploy the heavy deep models to resource-constrained platforms
such as mobile phones and wearable devices. To make deep neural networks more efficient
on model size, latency and energy, several approaches have been developed such as weight
prunning [14], model slimming [2, 29, 54], and quantization [6, 7]. Recent works even apply
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ResNet18 on ImageNet (Both Quantization) MobileNet V2 on ImageNet (Both Quantization)
73
RS O SRR o PP PSR *
040 e o 72 R i P
€ 0] L L Eq{ * ]
> B ey [ |
3 E 3
e g0
S 68 & 5
g S 69
< <
D 67 D68
o ©
> > [
2661 a7 e B OPACT 4 QKD
° ¢ | PACT @ Distillation 2 66 ® HAQ % TQT
651 A A LONet & QL DSQ * SAT
n DSQ * SAT 65 DQ
2 3 4 4 5 6 7 8
Bitwidth Bitwidth

Figure 1: Comparison of quantization approaches with ResNet18 and MobileNet V2 on Im-
ageNet under different quantization levels. Note that both weights and activations are quan-
tized in these two plots. Left: ResNetl18. Right: MobileNet V2. The bit-width represents
equivalent computation cost for mixed-precision methods (AutoQB and HAQ).

neural architecture search (NAS) algorithms to determine the architecture of the model, to
achieve the best trade-offs between resource budget and model performance [9, 26, 28, 33,
55]. As one of the promising methods, quantization provides the opportunity to embed bulky
and computation-intensive models onto platforms with limited resources. By sacrificing the
precision of weights [6, 14, 23, 24, 60] and even features [5, 7, 12, 17, 34, 37, 38, 40, 42, 52,
57, 58, 59, 62], model size can be shrunk to a large extent, and full-precision multiplication
is replaced by low-precision fixed-point multiplication, addition or even bitwise operations,
requiring much reduced latency and energy consumption during inference.

Despite these advantages on improving model efficiency, quantization is well known
to suffer from significant accuracy reduction [3, 5, 22, 42, 45]. Recent works tackle this
problem by adopting sophisticated training strategies [11, 18, 20, 21, 57] or by leveraging
mixed precisions which are automatically searched [10, 31, 47, 49, 51]. However, previous
works either lack a thorough study on a wide range of model structures, especially those light
models such as MobileNets [11, 20, 57], or do not show consistently better performance of
quantized models compared to their full-precision counterparts in all experiments [11, 18,
21]. It remains unclear whether we can achieve better performance from quantized neural
networks than their full-precision counterparts. More fundamentally, what is the underlying
reason of performance degeneration from network quantization.

In this paper, we study this problem by identifying the key factor impacting the predic-
tion accuracy of quantized neural networks. Specifically, we focus on a recently popular
technique of parameterized clipping activation (PACT) [5], which is based on the DoReFa
quantization scheme [59]. We first study the effect of the clamping operation, which is a
part of weight quantization in DoReFa, on weights in the last fully-connected layer. We find
this clamping operation will enlarge the weight scale, especially for layers with a large num-
ber of neurons. Moreover, large weight scale will cause over-fitting, even for full-precision
models, which is shown to be the main reason of performance degeneration for quantized
networks. Based on this, we propose a simple yet effective technique named scale-adjusted
training (SAT), with which the over-fitting problem is alleviated and quantized networks can
even outperform their full-precision counterparts.

Summary of Contributions The main contributions of our work are summarized as
follows:
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1. We find that the large scale of weights caused by clamping operation in popular quanti-
zation schemes hampers the performance of the model, resulting in over-fitting issues.
This draws a new respective compared to the previous claims that improper distribu-
tion of weights is the major reason for performance degeneration in quantization.

2. We propose a simple yet effective technique for neural network quantization and
achieve state-of-the-art quantization performance for light weight models including
MobileNet V1/V2 on ImageNet classification.

3. We demonstrate experimentally that quantized neural networks can outperform their
full-precision counterparts and provide consistent results for MobileNet V1/V2 and
ResNet18/50 on ImageNet classification.

2 Related Work

Uniform-precision quantization. Quantization of deep models has long been discussed
since the early work of weight binarization [6, 7] and model compression [14]. Many pre-
vious methods enforce the same precision for weights/activations in different layers during
quantization. Early approaches focus on minimizing the difference in values [42] or distribu-
tions [14, 57] between quantized weights/activations and full-precision ones. Recently, [57]
proposes a learning-based quantization method, where the quantizer is trained from data.
Regularizer for quantization is also proposed to implement binarized weights [3]. Ensemble
of multiple models with low precision has also been studied [61], demonstrating improved
performance than individual models under the same computation budget. [11] proposes a
quantizer with trainable step size, and improves training convergence by balancing the mag-
nitude of step size updates with weight updates, based on some heuristic analysis. However,
this method focuses on training the step size, and scales the gradients, instead of analyzing
the impact of model weights themselves on the training dynamics. Previous works have
not shown consistently improved performance of quantized networks to their full-precision
counterparts.

Mixed-precision quantization. Recent work attempts to use mixed-precision in one model,
in which weights and activations in different layers are assigned different bit-widths, result-
ing in better trade-offs between efficiency and accuracy of neural networks. Towards this
end, automated algorithms are adopted to determine the most appropriate bit-width for each
layer. Reinforcement learning has been adopted to search for bit-width configurations with
guidance based on memory and computation cost [10, 31] or latency and energy produced
by hardware simulators [49]. [51] and [47] apply differentiable neural architecture search
methods to efficiently explore the search space. Although these methods result in more flex-
ible quantization architectures, their performances are still inferior to full-precision models.
Weight Scaling and Generalization. Previous works on quantization also apply scaling on
integer weights [14, 42, 57, 60]. However, these methods mainly focus on aligning weight
distributions of quantized and full-precision models. As another research topic, [41, 43]
suggest that weight normalization/standardization is able to improve neural network perfor-
mance, but their methods either require a trainable scale [43], or must have other normaliza-
tion operations following batch or group normalization [41]. Moreover, none of these has
studied the effect of weight scale on generalizability of neural networks. Neither do they
discuss neural network quantization. [1, 4, 32, 44, 50] theoretically analyze the impact of
weight scale on generalizability of neural networks but their analyses aim at general theoret-
ical guidance rather than being directly practical in real-world tasks.
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3 Scale Adjusted Training

3.1 DoReFa Scheme

Following previous work PACT [5], we adopt the DoReFa scheme [59] for weight quantiza-
tion, and the PACT technique for activation quantization. The DoReFa scheme [59] involves
two steps, clamping and quantization. Clamping transforms weights to values between 0 and
1, while quantization rounds weights to the nearest integers. We here analyze the impact of
both steps on model performance.

3.1.1 Impact of Clamping

Before quantization, the weights are first clamped to the interval between 0 and 1. For a
weight matrix W, we first clamp it to

Wy= 1 (tanh(wi") it 1) 1)

2 \ max |tanh(W,,
s

which is between 0 and 1. This transformation generally contracts the scale of large weights,
and enlarges the difference of small scale elements. Thus, this clamping operation makes
variables distributed more uniform in the interval [0, 1], which is beneficial for reducing
quantization error.

To understand the effect of clamping on prediction accuracy, we first analyze a model
using clamped weights without quantization, following the DoReFa scheme

Wij = 2W;; — 1 @

Fig. 2a gives the ratio between variances of the clamped and the original weights with respect
to the number of neurons. As a common practice [15], the original weights W are sampled
from a Gaussian distribution of zero mean and variance proportional to the reciprocal of the
number of neurons. We find that for large neuron numbers, the variance of weights can be
enlarged to tens of their original values.

To see the effect of such scale enlargement, we train a MobileNet V2 on ImageNet with
and without clamping, and compare their learning curves. As shown in Fig. 2b, clamping
impairs the training procedure significantly, reducing the final accuracy by as much as 1%.
Also, we notice that clamping makes the model more prone to the over-fitting issue, which
is consistent with the previous literature claiming that increasing weight variance in neural
networks might worsen their generalization property [1, 4, 32, 44, 50]. In S1 we provide
more detailed analysis on this problem. Moreover, since the number of output neurons of the
last linear layer is determined by the number of class labels, we expect large datasets such as
ImageNet [8] to be more vulnerable to this problem than small datasets such as CIFAR10.
This partially explains the situation that some of previous methods gave good results on
small datasets but failed to work on large datasets.

To deal with this problem, we propose a method named scale-adjusted training (SAT) to
restore the scale of weights. We directly multiplies the normalized weight with the square
root of the reciprocal of the number of neurons in the linear layer as in Eq. (3). Here

~

VAR[W,,] is the sample variance of elements in the weight matrix, calculated by averaging

~

the square of elements in the weight matrix. In back-propagation, VAR[W,| is viewed as
constant and receives no gradient. The factor /71,y in the denominator is inspired by the
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MobileNet V2 on ImageNet
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Figure 2: Effect of weight clamping. (a) The ratio of variances with respect to the number of
neurons. Note that the plot is only a sampling result and different samples can give different
results, but the order of magnitude remains meaningful. (b) Learning curves with different
settings. Here, “clamp only” refers to using clamped weight without quantization, following
the DoReFa scheme [59].

condition of Kaiming initialization [15], where 7,y represents the number of output features
of the last fully-connected layer. This simple strategy is named constant rescaling and works
well empirically across all of the experiments. Note that here we have ignored the difference
between weight variances across channels and just use variance of the weights in the whole
layer for simplicity.

* 1 (17
Wy = ————— W 3)
I’loutVAR [Wrs]

Fig. 2b compares the learning curves of the vanilla method, and weight clamping with
and without constant rescaling. It shows that SAT alleviates the over-fitting issue and im-
proves the validation accuracy significantly after weight clamping. We also experiment with
an alternative rescaling approach in S2 and notice similar performance. In the following ex-
periments we will always use constant rescaling. For MobileNet V2, we only need to apply
SAT to the last fully-connected layer. For other models where convolution is not directly
followed by BN such as full pre-activation ResNet [16], we find that it is important to also
apply SAT to all such convolution layers (see S3 for more details, and this also applies to
fully-connected layers without BN following, such as those in VGGNet [46]). Before fur-
ther discussion, we want to emphasize that the clamping is only a preprocessing step for
quantization and there is no quantization operation involved up to now.

3.1.2 Impact of Weight Quantization

With weights clamped to [0, 1], the DoReFa scheme [59] further quantizes weights with the
following function

au(x) =+ |a] @
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Figure 3: Impact of weight quantization on the variance of effective weight under different
channel numbers.

Here, | -] indicates rounding to the nearest integer, and a equals 2F — 1 where k is the number
of quantization bits. Quantized weights are given by

Qi = 2q(W;j) — 1 Q)

To see the impact of quantization on the model performance, we compare the variance of
the quantized weight Q;; with the variance of the full-precision clamped weight W ;. Fig. 3
shows the ratio between the standard deviations of them with respect to the number of bits
for different channel numbers, which determines the variances of the original non-clamped
weights W. We can find that for precision higher than 3 bits, quantized weights have nearly
the same variance as the full-precision weights, indicating quantization itself introduces little
impact on model performance. However, the discrepancy increases significantly for low
precision such as 1 or 2 bits, thus we should use the variance of quantized weights Q;;
for standardization, rather than that of the clamped weights W, ;. For simplicity, we apply
constant scaling to the quantized weights of linear layers without BN by

1

Y noutVAR[Qrs]

0ij (6)

We also notice that different channel numbers give similar results.

For typical models such as MobileNets and ResNets, only the last fully-connected layer
needs to be rescaled, and such rescaling is only necessary during training.For inference, the
scaling factor (which is positive) can be discarded, with the bias term being modified accord-
ingly, introducing no additional operations. For models with several fully-connected layers
such as VGGNet [46], or with convolution layers not followed by BN layers, such as fully
pre-activation ResNet, the scaling factors for these layers can be applied after computation-
intensive convolutions or matrix multiplications, adding marginal computational cost.
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4 Experiments

4.1 Basic Quantization Strategy

Historically, quantization of neural networks follows different conventions and settings [22].
Here we describe the settings adopted in this paper to avoid unnecessary ambiguity. We
first train the full-precision model, which is used as the baseline for comparison. For quan-
tized models, we use the pretrained full-precision model as the initialization, and apply the
same training hyperparameters and settings as full-precision model training (including ini-
tial learning rate, learning rate scheduler, weight decay, the number of epochs, optimizer,
batch size, etc.) to finetune the quantized model. For the input images to the model, we
use unsigned 8bit integer (uint8) without standardization (neither demeaning nor normaliza-
tion). Previous works sometimes avoid quantizing the first and last layers due to accuracy
drop [51, 59]. We follow a more practical setting to quantize weights in both layers with a
minimum precision of 8bit [5] in our main results. To investigate the effect of quantization
levels in these two layers, additional results are shown in S3. The input to the last layer is
quantized with the same precision as other layers. As a widely adopted convention [5, 49],
bias in the last fully-connected layer(s) and the batch normalization (BN) layers (including
weight, bias and the running statistics) are not quantized. Note that no bias term is used in
convolution layers.

4.2 [Experiment Details & Discussion

We apply the SAT technique to popular models including MobileNet V1, MobileNet V2,
ResNet18, ResNet50 on ImageNet. For all experiments, we use the cosine learning rate
scheduler [30] without restart. Learning rate is initially set to 0.05 and updated every iteration
for 150 epochs. We use SGD optimizer, Nesterov momentum with a momentum weight of
0.9 without damping, and weight decay of 4 x 107>, The batch size is set to 2048 , and we
adopt the warmup strategy suggested in [13] by linearly increasing the learning rate every
iteration to a larger value (batch size/256 x 0.05) for the first five epochs before using the
cosine annealing scheduler. The input image is randomly cropped to 224 x 224 and randomly
flipped horizontally, and is kept as 8 bit unsigned integer with no standardization applied.
Note that we use full-precision models with clamped weights as initial points to fine tune
quantized models.

We compare our method with techniques in recent publications, including uniform-pre-
cision quantization algorithms such as PACT [5], LQNet [57], LSQ [11], QKD [21], and
mixed-precision approaches such as HAQ [49]. Validation accuracy with respect to quanti-
zation levels for ResNet18 and MobileNet V2 where both weights and activations are quan-
tized is plotted in Fig. 1. It is obvious that our method gives significant and consistent
improvement over previous methods under the same resource constraint. More thorough
comparisons for quantization on MobileNets with or without quantized activation are listed
in Table 1 and 2, respectively. Surprisingly, the quantized models with our approach not only
outperform all previous methods under all quantization levels, including mixed-precision al-
gorithms, but even outperform full-precision ones when the quantization is moderate ( > 5
bits for both quantization and 4 bits for weight-only quantization).

Table 3 compares different quantization techniques on ResNet18 and ResNet50. Results
of compared methods are from corresponding papers [5, 11, 20, 57]. Since the topology
of ResNets has several different versions with significantly different performance even for
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the full-precision models, we think the accuracy gap between quantized and full-precision
models is a more reasonable metric for comparison. Thus, in Table 3, we also list accuracy
drop next to the absolute value for each quantization level, where a positive value indicates
that the quantized model achieves better performance. We find that our technique is better
than existing ones for deeper architectures such as ResNet50, and among the top two in all
the experiments. Moreover, our method is able to give consistent improvement over full-
precision counterparts for moderate quantization of 4bits.

Table 1: Comparison of quantization techniques with both weights and activation quantized.

MobileNet V1 MobileNet V2
Quant. Method Bit-widths Acc.-1 Acc.-5 Acc.-1  Acc.-5

PACT [5] 4bits 70.3 89.2 70.4 89.4
HAQ [49] flexible 6740 8790 6699  87.33
SAT (Ours) 4bits 71.3 89.9 71.1 90.0
PACT [5] Sbits 71.1 89.6 71.2 89.8
HAQ [49] flexible 70.58  89.77 7090  89.91
SAT (Ours) Sbits 71.9 90.3 72.0 90.4
PACT [5] 6bits 71.2 89.2 71.5 90.0
HAQ [49] flexible 7120  90.19  71.89  90.36
SAT (Ours) 6bits 72.3 90.4 72.3 90.6
PACT [5] 8bits 71.3 89.7 71.7 89.9
HAQ [49] flexible 70.82  89.85  71.81  90.25
SAT (Ours) 8bits 72.6 90.7 72.5 90.7
PACT [5] FP 72.1 90.2 72.1 90.5
SAT (Ours) FP 71.7 90.2 71.8 90.2

From another view, compared with model pruning techniques, our results prove that
quantization is more effective on reducing model size and computational cost, and intro-
duces much less impairment on the predicting capability of the compressed model. As a
simple comparison, quantizing MobileNet V2 to 6-bit compresses the model size by roughly
4.74x and reduces the BitOPs by 14.25x, while scaling the model’s channel numbers by a
width-multiplier of 0.35x only shrinks the model size by 2.06x and cuts down the FLOPs
by 5.10x [54]. 6-bit MobileNet V2 demonstrates better predictive accuracy than the full-
precision model, while reducing the channel numbers to 0.35x will significantly impair its
performance [54]. A recent pruning method Knapsack Pruning with Inner Distillation [2]
shows 0.27% accuracy drop with 40.64% reduction of FLOPs for ResNet50 on ImageNet,
and another work Network Pruning via Transformable Architecture Search [9] obtains 1.26%
accuracy drop with FLOPs pruning ratio of 43.5%. In comparison, our technique pro-
duces 0.4% accuracy improvement with BitOPs reduction ratio of roughly 96.8% for 4-bit
ResNet50 on ImageNet (67.32B for 4-bit and 2.16T for floating point). Although it is not
completely fair to compare quantization with model pruning due to different hardware im-
plementations, this point highlights that network quantization can serve as a strong proxy for
complexity-performance trade-offs.

Our method reveals that over-fitting caused by large weight scale in the last fully-con-
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Table 2: Comparison of quantization techniques with only weights quantized.

MobileNet V1 MobileNet V2

Quant. Method Weights Acc.-1 Acc.-5 Acc.-1  Acc.-5
Deep Compression [14] 2bits 37.62 6431 58.07 81.24
HAQ [49] flexible 57.14  81.87 66.75  87.32
SAT (Ours) 2bits 66.3 86.8 66.8 87.2
Deep Compression [14] 3bits 6593 86.85 68.00 87.96
HAQ [49] flexible 67.66  88.21 7090  89.76
SAT (Ours) 3bits 70.7 89.5 71.1 89.9
Deep Compression [14] 4bits 71.14 89.84 71.24  89.93
HAQ [49] flexible 71.74 9036  71.47  90.23
SAT (Ours) 4bits 72.1 90.2 72.1 90.6
Deep Compression [14] FP 7090 8990  71.87  90.32
HAQ [49] FP 7090 8990 71.87  90.32
SAT (Ours) FP 71.7 90.2 71.8 90.2

nected layer is indeed the main reason for performance degeneration of network quantization.
With proper scaling, the quantized models achieve comparable or even better performance
than their full-precision counterparts. In this case, we have to rethink about the doctrine in
the model quantization literature that quantization itself hampers the capacity of the model.
It seems with mild quantization, the generated models do not sacrifice in capacity, but benefit
from the quantization procedure. The clamping and rescaling technique does not contribute
to the gain in quantized models since they are already used in full-precision training. One
potential reason is that quantization acts as a favorable regularization during training and
help the model to generalize better. The underlying mechanism is not clear yet. We left
in-depth exploration as future work.

5 Conclusion

This paper studies the main reason for performance degeneration of quantized neural net-
works. By investigating the impact of clamping operation on weight scale and the learning
curve of the full-precision model, we find that enlargement of weight scale in the last fully-
connected layer will cause over-fitting issue, regardless of the weight/activation precision in
the model. Based on this, we propose a scale-adjusted training technique to alleviate this
problem. Our method yields state-of-the-art performance on quantized neural network for
light models such as MobileNet V1/V2, and consistently better performance than the full-
precision counterparts for MobileNet V1/V2 and ResNet18/50 under moderate bit-widths.
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