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Abstract

Scientific opportunities are missed in planetary explorations due to the lack of communi-
cation and/or long-time communication delays between rovers and ground stations. By
enabling rovers to autonomously detect and explore targets the overall scientific outcome
of extraterrestrial missions can be increased.

In this paper, we have designed, developed, and evaluated unsupervised as well
as semi-supervised approaches to novelty detection based on Variational Autoencoders
(VAE). Our VAE model was trained on typical data from previous missions and tested to
infer the novelty of scientific targets. In an ablation study, we investigate the effectiveness
of different types of loss functions. We compare losses based on reconstruction errors,
losses obtained from the VAE’s latent space as well as a combination of both. In our
experiments, we have evaluated both unsupervised and semi-supervised approaches on
datasets obtained from NASA’s Mars Curiosity rover. Results show that our VAE-based
approaches are not only robust but also comparable, or better, than the state-of-the-art.

1 Introduction
Extraterrestrial surface missions are essential for scientific discoveries on other planets. In
general, these missions are planned well in advance: scientists identify places of interest
and engineers ensure that a robot can safely reach and investigate them. However, while
executing a mission plan, a robot might have an opportunity to make unplanned scientific
discoveries without compromising any of its mission goals [7]. By deviating from its orig-
inal mission plan and autonomously exploring the surroundings, a robot could identify and
probe novel, scientifically interesting targets. Hence, autonomous robots that perceive their
environment, interpret what they have seen, and act upon their analysis have a great potential
to increase the overall scientific return of expensive surface missions. ––

In this paper, we focus on the problem of novelty detection in camera data for the iden-
tification of potential targets in opportunistic science missions. We define novelty detection
as the task to identify unknown test data which is to some degree different from typical
training data. Our approach is based on Variational Autoencoders (VAE) [4] which are not
able to reconstruct image data of novel scenes without errors. By interpreting these errors,
VAE-based models can provide important information about the novelty of scenes. In this
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work, we consider this information in unsupervised as well as semi-supervised approaches
which are aimed for scenarios in which annotated data is either not available or very lim-
ited. In experiments, we evaluate the effectiveness of these approaches and compare them to
state-of-the-art methods. To this end, this paper makes the following contributions:

• a set of unsupervised and semi-supervised novelty detection methods based on Varia-
tional Autoencoders (VAE);

• an ablation study of VAE-based loss functions (based on reconstruction losses, latent
space losses, and their combination) for the task of novelty detection; and

• a state-of-the-art comparison of novelty detection methods based on a multi-spectral
camera dataset acquired by NASA’s Curiosity rover on Mars.

The remainder of the paper is structured as follows. First, we briefly discuss related work in
Section 2. Second, we describe our approach to novelty detection in Section 3. Finally, in
Section 4, we present the Mastcam dataset of NASA’s Curiosity rover, our ablation study, as
well as a comparison with state-of-the-art methods, before we conclude in Section 5.

2 Related Work

Novelty detection is an important task in many application domains including IT security,
medical diagnostics, industrial monitoring, video surveillance, and opportunistic science. A
review of different approaches to novelty detection is given by Pimentel et al. [9].

Some of the traditional methods use One-Class Support Vector Machine (OCSVM) [12]
and Support Vector Data Description (SVDD) [10]. Both methods are frequently used, but
do not scale up well with high dimensional data, such as images.

More recently, complex solutions involving deep neural networks have been used to de-
tect and analyse scenes. An approach to anomaly detection based on Autoencoders (AE) was
developed by Zong et al. [17]. Convolutional AE (CAE) have also been used successfully
for novelty detection in the context of extraterrestrial surface mission as shown by Kerner
et al. [3]. In this work, we present a similar approach based on a Variational Autoencoder
(VAE) [4]. The VAE provides us with additional probabilistic information of the data and
the latent space. This additional knowledge can be used to formulate more loss functions,
which can be stochastic rather than deterministic. Other papers ([1] and [16]) have also
studied the use of VAEs in the field of anomaly detection. These works however have only
used them in an unsupervised model on standard dataset such as MNIST and KDD99. Our
work, instead, develops both unsupervised and semi-supervised models and tests them on
significantly more challenging real-world multi-spectral image data (6-channels) from Mars.
Moreover, this papers provides an extensive ablation study on many different losses to deter-
mine their performances, while those papers used a single loss.

Several works proposed novelty detectors based on Generative Adversarial Networks
(GAN) [5, 8, 11]. Work by [5] showed that a multi-class discriminator trained with a gener-
ator (based on a mixture of nominal and novel data distributions) is optimal.

Vasilev et al. [15] employed VAEs for novelty detection and defined a range of detec-
tors. In their study, they evaluated these detectors based on different information metrics.
Similarly, we consider novelty detectors in both latent space and the original feature space.
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Figure 1: Novelty Detection Approach. First, a Variational Autoencoder, which was trained
on typical images, encodes and reconstructs a given test image. Second, reconstruction
losses as well as latent space losses are computed. Based on normalised losses we calculate
a novelty score in our unsupervised method. In our semi-supervised method, we have trained
convolutional neural networks (CNN) to classify images (losses) based on a small number
of training examples. Thereby, we can significantly improve the overall detection accuracy.

3 Novelty Detection
Our approach to novelty detection in images is based on a convolutional VAE (Figure 1). The
aim of a VAE is to reconstruct a given image through an encoder and a decoder network. In
this work, we consider a variety of losses that result from the encoder (in latent space) and the
decoder (reconstruction losses in image space). We present an unsupervised, threshold-based
approach to classify novel images based on one-dimensional losses, and a semi-supervised,
CNN-based approach that classifies images based on high-dimensional losses.

3.1 Variational Autoencoder-based Model
A VAE takes an image x as input, encodes it into a latent vector z and tries to output a
reconstructed image x̂ from it. This is shown in the top left part of Figure 1.

The VAE encoder (qφ ) architecture consists of 4 convolutional layers followed by 2 fully
connected layers. The kernel sizes of the convolutional layers are (32×7×7), (128×5×5),
(64×3×3), (6×3×3), all with single strides and ’same padding’. These are all followed by
a batch-normalization layer, a dropout layer with dropout rate of 0.25 and a MaxPool layer
with stride 2 (only for the middle two layers). The two fully connected layers both have a
size twice as big as z, in order to compute both the mean and the variance for each dimension.
The latent space was selected to be a vector of length 768, compared to the original image
dimensionality of 64×64×6 = 24,576. The decoder (pθ ) was built symmetrically and has
the same architecture.

The VAE was trained using the ELBO loss, shown in Equation 1, where KL corresponds
to the Kullback–Leibler divergence between two probability distributions.

LVAE =−ELBO =−Ez∼qφ
[logP(x|z)]+KL(qφ (z|x)||P(z)) (1)

The ELBO loss is made up of two terms, each of which guarantees that two requirements
are met during training. The first one is that the image should be reconstructed accurately,
the second one is that the latent space values should have a distribution similar to a normal
distribution N (0,1). This leads to the idea that different loss functions can be formulated.
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Figure 2: Visual explanation of reconstruction losses.

LossR1
Pixel-wise square error ∑(xtest −E[pθ (x|E[qφ (z|xtest)])])

2

LossR2
Encoder stochastic pixel-wise

square error (average) mean
zi∼qφ

∑(xtest −E[pθ (x|zi)])
2

LossR3
Encoder stochastic pixel-wise

square error (minimum) min
zi∼qφ

∑(xtest −E[pθ (x|zi)])
2

LossR4
Reconstruction probability −∑ log pθ (xtest |E[qφ (z|xtest)])

LossR5
Encoder stochastic reconstruction

probability (average) mean
zi∼qφ

−∑ log pθ (xtest |zi)

LossR6
Encoder stochastic reconstruction

probability (minimum) min
zi∼qφ

−∑ log pθ (xtest |zi)

LossR7
Closest training image pixel-wise
square loss (train reconstruction) min

y∈Y ∑(xtest −E[pθ (x|E[qφ (z|y)])])2

LossR8
Closest training image pixel-wise
square loss (test reconstruction) min

y∈Y ∑(E[pθ (x|E[qφ (z|xtest)])]− y)2

LossR9
Closest training image pixel-wise
square loss (both reconstruction) min

y∈Y ∑(E[pθ (x|E[qφ (z|xtest)])]−E[pθ (x|E[qφ (z|y)])])2

LossR10
Bhattacharyya distance between

reconstruction probabilities min
y∈Y ∑DB(pθ (x|E[qφ (z|xtest)]), pθ (x|E[qφ (z|y)]))

Table 1: Reconstruction losses (R1–R10).

3.2 Loss Functions

While the model was trained using the ELBO loss, at test time we use a variety of different
losses (similar as in [15]): reconstruction losses, latent space losses, and mixed losses.

Reconstruction Losses (R). Table 1 lists several one-dimensional reconstruction losses
and Figure 2 gives a visual explanation of how they are computed.

LossR1 is the total pixel-wise difference between original and reconstructed image. LossR4
is the sum of the probability density function of the decoded distribution for each pixel, eval-
uated at the test image pixels values. This relates to the probability that the original image
comes from the probability distribution computed. In the above losses the reconstruction dis-
tribution is computed from the expected value of the latent vector. We can, however, sample
latent vectors from its probability distribution and obtain different losses each time. LossR2,
LossR3, LossR5 and LossR6 are the mean or minimum of these losses obtained.

The last four losses are based on the density of the data distribution. LossR7 is similar to
LossR1. The test image however is not subtracted to its own reconstruction but rather to the
reconstruction of whichever training image is closest to it. Y represents the training dataset
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Figure 3: Visual explanation of latent space losses.

LossL1
Kullback–Leibler divergence ∑KL(qφ (z|xtest)||N (0,1))

LossL2
Bhattacharyya distance between

distributions min
y∈Y ∑DB(qφ (z|xtest),qφ (z|y))

LossL3
Euclidean distance between means

of the distributions min
y∈Y ∑(E[qφ (z|xtest)]−E[qφ (z|y)])2

LossL4 Density latent space 1
|Y | ∑y∈Y

qφ (E[qφ (z|xtest)]|y)

Table 2: Latent space losses (L1–L4).

and y are the images in it. This ensures that if a novel image is composed of very simple
patterns which the VAE might have learnt to reconstruct well, it will still have a high loss
value because it is very different from all other images in the training set. Alternatively the
reconstruction of the test image could be compared to the reconstruction of the train images
(LossR9) or to the original train image itself (LossR8). LossR10 computes the Bhattacharyya
distance DB between the decoded probability distribution for the test image and a train image.
The loss of the closest distributions is picked.

Latent Space Losses (L). Table 2 and Figure 3 list and depict various latent space losses.
LossL1 is the sum of the Kullback–Leibler divergences between the encoded probability dis-
tribution of each pixel and a normal distribution. LossL2 and LossL3 measure the difference
between the latent space distribution of the test image, and the closest training image. The
first does so using the Bhattacharyya distance while the second calculates the Euclidean dis-
tance between the means. LossL4 represents a latent space density based loss. It is a measure
of how close the latent vector of a test image is to the the average latent space of the images
in the training set.

Mixed Losses (M). Lastly, we can use combinations of reconstruction and latent space
losses. For example the ELBO loss from Equation 1. Table 3 shows three variations of
the ELBO loss. LossM1 is based on the expected latent space, while losses M2 and M3 use
various samples of it and compute the average and minimum of losses obtained from them.

LossM1
ELBO − log pθ (xtest |E[qφ (z|xtest)])+KL(qφ (z|xtest)||N (0,1))

LossM2
Encoder stochastic ELBO (average) mean

zi∼qφ

− log pθ (xtest |zi)+KL(qφ (z|xtest)||N (0,1))

LossM3

Encoder stochastic ELBO
(minimum) min

zi∼qφ

− log pθ (xtest |zi)+KL(qφ (z|xtest)||N (0,1))

Table 3: Mixed losses (M1–M3).
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Figure 4: Typical and novel example images obtained by NASA’s Curiosity rover.

3.3 CNN-based Classifiers

The functions in Table 1, 2, and 3 all yield one-dimensional losses since we sum over each
pixel or latent vector dimension. Removing this summation we obtain a multi-dimensional
loss of shape 64× 64× 6 for reconstruction losses and 768× 1 for latent space losses. We
refer to these as error-maps and error-vectors respectively.

We now introduce four CNN-based classifiers, each for different types of inputs. These
have been evaluated in experiments described in Section 4.2 and 4.3.

Classifier 1 is built for error-maps (top right of Figure 1). The input is passed through
two convolutional layers with kernel sizes (32×5×5) and (64×5×5), each followed by a
MaxPool layer with double stride. After flattening, two dense layers follow: the first has an
output of 512 (Relu activation function), the second has a single output (sigmoid activation).

Classifier 2 is built for error-vectors (bottom right of Figure 1). Having a vectorised
input of length 768, the model is simply composed of three fully connected layers with 800,
300 and 1 neurons. The last layer has a sigmoid activation function, the others a Relu one.

Classifier 3 is built for a mixture of all four latent space error-vectors, which are merged
into a matrix of shape 768×4. The classifier then consists of three convolutional layers and
three fully connected layers. The convolutional layers have kernels of sizes (64× 1× 1),
(16×1×1) and (1×1×1). The fully connected layers have outputs of 800, 300 and 1.

Classifier 4 is built for the mixed losses of Table 3, made up of an error-map and an
error-vector. These two losses cannot be easily merged due to the different shapes. Hence
the model runs the error-maps through the same convolutional layers of Classifier 1, after
which it is flattened and concatenated to the error-vector. This long intermediate layer is
then followed by a hidden layer with 500 neurons before reaching the output layer.

4 Experiments
4.1 Datasets

In this work, we have used the Mars novelty detection Mastcam labeled dataset1, which
consists of sub-sampled images (64× 64 pixels) of the Mars Science Laboratory (MSL)
Analyst’s Notebook [14] which were obtained by NASA’s Curiosity rover. The Mastcam is
a multi-spectral camera and captures images at different wavelengths giving each image six
channels. Two versions of the dataset are available, which we will refer to as DS1 and DS2.

DS1 is made up of a typical set with 98,800 images and a novel set with 332. Example
images are shown in Figure 4. DS2 consists of 9,302 typical training images, 426 typical
test images and 430 novel test images. In DS2, novel images are also split into eight classes:
DRT spot, Dump pile, Broken rock, Drill hole, Meteorite, Vein, Flat rock, and Bedrock.

1DOI 10.5281/zenodo.1486195
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Reconstruction losses Latent space losses
LOSS WACC TP (FN) TN (FP) AUC LOSS WACC TP (FN) TN (FP) AUC
R1 71.1 25 (7) 64 (36) 76.0 L1 65.6 18 (14) 75 (25) 62.9
R2 70.6 25 (7) 63 (37) 75.0 L2 64.9 22 (10) 61 (39) 61.7
R3 70.0 24 (8) 65 (35) 75.1 L3 72.3 29 (3) 54 (46) 79.1
R4 71.1 25 (7) 64 (36) 76.0 L4 61.3 29 (3) 32 (68) 61.8
R5 70.6 25 (7) 63 (37) 75.1
R6 70.7 27 (5) 57 (43) 75.3 Mixed Losses
R7 69.9 23 (9) 68 (32) 75.5 LOSS WACC TP (FN) TN (FP) AUC
R8 62.5 24 (8) 50 (50) 66.2 M1 72.1 25 (7) 66 (34) 76.6
R9 76.6 25 (7) 75 (25) 87.3 M2 72 24 (8) 69 (31) 75.6

R10 53.9 15 (17) 61 (39) 49.7 M3 70.5 24 (8) 66 (34) 75.5

Table 4: Experimental results for unsupervised method on dataset DS1.

4.2 Ablation Study of Loss Functions

To study different types of loss functions, images of DS1 were classified using an unsuper-
vised method (one-dimensional loss) and a semi-supervised method (high-dimensional loss).
As in [3], 132 images were randomly selected for testing (100 typical, 32 novel).

Unsupervised method. To classify the images as novel or typical, we used different
discrimination thresholds for each one-dimensional loss. In Figure 5, we show resulting
ROC curves for selected losses. The loss threshold used to categorise novel from typical
images was the one that maximised the weighted accuracy (WACC), which is preferred over
a simple accuracy (ACC) since it is unbiased to class imbalances:

WACC = 0.5
(

T P
T P+FP

+
T N

T N +FN

)
.

Figure 5: ROC curves for selected losses.

Complete results are shown in Table
4. The best performance in terms
of WACC and AUC (area under the
ROC curve) was achieved by loss R9.
Reconstruction losses not based on
the training data density (R1–R6) all
achieved very similar results, which
were slightly improved by the addition
of latent space information in the mixed
losses (M1–M3). This latent space in-
formation when used on its own, how-
ever, yielded worse results. Finally,
the density-based reconstruction losses
(R7–R10) generally produced worse
accuracies except for LossR9, which
achieved a weighted accuracy of 76.6%
and an area under the curve of 87.3%, better than any other losses.

Semi-supervised method. For the semi-supervised method we used the high-dimensional
version of each loss. This time the losses of each training image need to be computed, in
order to train the CNNs. For the losses based on the typical training dataset, we can split the
latter into two equal subsets, and use one to compute the losses of the other, which will then
be used to train the classifier. A downside of these losses however is the much larger time
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LOSS WACC TP FP TN FN AUC WACC (unsu-
pervised)

AUC (unsu-
pervised)

Classifier 1
R1 83.4 22 2 98 10 88.5 71.1 76.0
R2 81.9 23 8 92 9 86.9 70.6 75.0
R3 78,8 20 5 95 12 82.6 70.0 75.1
R4 91.8 29 7 93 3 96.5 71.1 76.0
R5 90.8 28 6 94 4 94.3 70.6 75.1
R6 89.2 27 6 94 5 93.6 70.7 75.3

Classifier 2
L1 66.2 12 5 95 20 68.9 65.6 62.9
L2 81.2 28 25 75 4 89.6 64.9 61.7
L3 80.6 25 17 83 7 84.4 72.3 79.1
L4 67.8 20 27 73 12 70.4 61.3 61.8

Classifier 3
L1-L4 90.8 29 9 91 3 94.7 – –

Classifier 4
R4,L1 92.9 30 8 92 2 95.9 – –

Table 5: Experimental results for semi-supervised method on dataset DS1.

complexity, since an image has to be compared to all training images. The code run-time
grows from O(n) to O(n∗m), where n is the number of losses to be computed and m is the
number of typical training data to compare it to. A space rover such as the Mars 2020 Rover
only operates at 200 MHz speed with 0.25MB of RAM [6] (1/10th and 1/8th of an iPhone
8 [13]), this method could quickly become too computationally expensive. Moreover these
losses would require the storage of all the training data, definitely not possible in the 2 GB
of flash memory [6]. For these reasons the reconstruction losses R7–R10 were omitted.

When training the classifiers there is a large class imbalance between the 98,700 typical
images and the 300 novel images. We used Random Over-Sampling (ROS) in conjunction
with a cost-sensitive training loss function to solve this bias problem. A smaller dataset was
created by combining all the 300 novel images to 3,000 typical ones (hence reducing the
dataset class imbalance ration to just 1:10). This smaller dataset was used to train the model,
after which the typical images were replaced by the following 3,000 ones to obtain a new
dataset used to train the model again. This process was repeated until all 98,700 typical
images were used, at which point the typical dataset was shuffled and a new epoch started.
During training, the class imbalance ratio of 10:1 was fixed using a Weighted Cross-Entropy
(WCE) loss function:

LWCE =−∑yi ∗ log(ŷ)∗W +(1− yi)∗ log(1− ŷ) (2)

whereby y is the true class (0,1), ŷ is the classifier output and W is the penalty for the positive
class (here W = 10). This scales the importance of correctly classifying a class and the
assigns penalties corresponding to it based on the relative size of the class.

Table 5 shows the results obtained from each of the classifiers. Each individual loss
performs better using the semi-supervised method. While the performance of the latent
space based losses is inferior to the reconstruction ones, this is increased significantly when
they are combined together in Classifier 3. The best overall solution however turns out to be
a mixture of both kinds of losses. This is proven to be the case by combining LossR4 and
LossL1 in Classifier 4.
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Model ACC WACC TP (FN) TN (FP) AUC Precision Recall

VAE Classifier 4 (Worst) 0.886 0.893 29 (3) 88 (12) 0.90 0.71 0.91
VAE Classifier 4 (Mean) 0.907 0.908 29 (3) 91 (9) 0.93 0.77 0.91
VAE Classifier 4 (Best) 0.955 0.949 30 (2) 96 (4) 0.96 0.88 0.94

CAE (Semi-supervised) [3] 0.962 0.933 28 (4) 99 (1) 0.98 0.97 0.88

Table 6: Comparison of our VAE approach with CAE [3]. To demonstrate the robustness of
our classifier, we report the best, worst, and average results on 20 randomised test sets.

Figure 6: Comparison of our unsupervised method (VAE) with state-of-the-art on DS2.

4.3 State-of-the-Art Comparisons

Dataset 1: In [3], a CAE was used in a semi-supervised method to detect novel images
from DS1. A comparison of those results with our semi-supervised Classifier 4 can be used
to assess the performance of our model. All the results discussed previously, however, were
obtained by randomly selecting 132 test images from the dataset: this means that the results
will vary based on the images selected. To fairly assess the performance and robustness of
Classifier 4 we have repeated the tests 20 times with differently randomised test sets.

Table 6 shows our best, worst, and average results and compares them to [3]. Our model
achieves better WACC and recall values, while under-performs in the ACC and precision.
This is because our model detects more novel images (TP=30), but produces more false
positives (FP=4). However in this situation, due to the importance of novel targets, we could
argue that detecting 2 more novelties at the expense of 3 more error is preferred.

Dataset 2: In [2], a variety of different unsupervised methods for novelty detection (CAE,
GAN, RX Detector, SVD) were evaluated on DS2. Here we compare our best-performing
unsupervised model (VAE + LossR9) to those methods. Figure 6 shows that, overall, our
VAE approach outperforms the Autoencoder (CAE) and is on par with GAN and SVD.

When using our best-performing semi-supervised model (VAE + Classifier 4) on DS2
we significantly improve the accuracy, especially for the poor performing classes. To adopt
this approach the novel dataset was split into two sets for training and testing of equal sizes.
Table 7 shows how AUC values from the VAE increase when comparing our both methods.
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Allo
o o

DRT spot

Dump pile

Broken rock

Drill
hole

Meteorite

Veino o o

Float rock

Bedrock

Unsupervised model 0.70 0.53 0.63 0.85 0.70 0.74 0.95 0.82 0.88
Semi-supervised model 0.90 0.94 0.89 0.85 0.95 0.87 0.87 0.82 0.85

Table 7: Comparison of our unsupervised and semi-supervised methods on dataset DS2.

5 Conclusion
In this work, we have shown the benefits of using a VAE over a convolutional AE (CAE)
for novelty detection: the probabilistic nature of the model gives the ability to formulate
different types of loss functions and consider useful information from the latent space. Our
unsupervised, threshold-based approach was very effective and outperformed other methods.
In the context of opportunistic science missions, unsupervised approaches are very important
considering the absence of labelled training data.

However, if a limited amount of labelled data is available, we have shown how a semi-
supervised approach can significantly improve the performance using high-dimensional VAE
losses. Best results were obtained when reconstruction and latent space losses were com-
bined. Our approach achieved results comparable to [3], being able to detect more novel
images at the expense of a few additional false positives.

Overall, the methods described yielded good results in repeated experiments on multiple
datasets, which demonstrates their robustness. This also gives confidence about the possibil-
ity of creating autonomous robot systems that can deviate from their intended plan if targets
of interests (e.g. novel objects) are detected.
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