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Abstract

Zero-shot image retrieval allows to precisely retrieve candidates relevant to unob-
served queries, of which categories have never been seen during training. Recently,
research interests arise in exploring hashing methods to solve this problem due to its
storage and computational efficiency. However, existing methods only focus on lever-
aging semantic information, but omit to exploit the similarity structure of visual feature
space for knowledge transfer. Besides, the domain shift problem across seen and un-
seen classes further degrades the performance. To tackle these issues, in this paper, we
propose a novel deep zero-shot hashing method, named Marginalized Graph Attention
Hashing (MGAH). MGAH introduces the masked attention mechanism to construct a
joint-semantics similarity graph, which captures the intrinsic relationship from differ-
ent metric spaces, making it competent to transfer knowledge from seen classes into
unseen classes. Furthermore, we elaborately design an Energy Magnified Softmax (EM-
Softmax) loss, which is capable to alleviate the domain shift problem and encourage the
generalization ability of hash codes. By using marginalized strategy, EM-Softmax pro-
duces the shared decision margin for hard samples, thus can avoid overfitting on seen
classes and meanwhile cover more knowledge for the unseen ones. Extensive experi-
ments demonstrate that MGAH delivers superior performance over the state-of-the-art
zero-shot hashing methods.

1 Introduction
Zero-shot image retrieval (ZSIR) is a realistic and challenging problem in computer vision
[3, 16], which assumes that the categories of queries are unseen during training. Given an
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unobserved image, ZSIR attempts to find all relevant candidates of the same category as this
query. Recent decade has witnessed the rapid development of deep feature learning [2, 31]
for ZSIR. However, these real-valued image features in high dimension lead to huge storage
and computational costs, which is impractical for large-scale retrieval systems [27, 28, 29,
32, 34, 37].

Recently, zero-shot hashing [4, 5, 10, 15] is widely utilized to alleviate the problem,
in which high-dimensional image features are encoded into compact binary codes, thereby
improving both storage and computational efficiency. The crucial importance of zero-shot
hashing is to learn effective and compatible hash functions from seen categories so as to
facilitate the retrieval performance on unseen concepts. To achieve this goal, numerous
approaches [9, 33, 35, 36] have been proposed.

Although these methods have achieved promising performance, there still exist two chal-
lenging issues worthy of attention. First of all, semantic embeddings of seen classes are
insufficient to learn such effective and compatible hash function, since they are generally
learned from noisy text and not enough to span the visual feature space. Nonetheless, recent
works [9, 35] merely focus on associating categories through their class semantics, which
imposes restrictions on deducing helpful knowledge from seen concepts to the unseen ones.
Secondly, with no training data of unseen classes, the different visual distribution on seen
and unseen categories leads to the domain shift problem. This results in the learned hash
codes being overfitted to the limited data in seen classes and thus less capable of effectively
distinguishing samples of unseen categories. However, existing methods [33, 36] neglect
this generic challenge, leading to generalize poorly to unseen classes.

To solve the aforementioned problems, we propose a novel zero-shot hashing framework,
named Marginalized Graph Attention Hashing (MGAH). The overall framework is illus-
trated in Figure 1. We utilize the masked attention mechanism to construct a joint-semantics
similarity graph, which captures semantic relations from both semantic embeddings and vi-
sual features, making it more competent for knowledge transfer. Furthermore, in order to
better generalize the learned hash function to unseen concepts, we elaborately design an En-
ergy Magnified Softmax (EM-Softmax) loss that adopts marginalized strategy to optimize
our network. EM-Softmax is a flexible learning objective that generates the shared decision
margin for hard samples, which avoids overfitting on seen classes as well as covers more
potential metric space for unseen categories. Hence, even though our model never meets
unseen concepts, it still improves the retrieval performance for them.

Our contributions can be summarized as follows: 1) To the best of our knowledge,
MGAH is the first zero-shot hashing method to construct a joint-semantics similarity graph
for knowledge transfer, which integrates the intrinsic relationship from different metric spaces
and accordingly is capable to generate more semantic relevant hash codes. 2) To alleviate
the domain shift, we elaborately design an Energy Magnified Softmax loss, which utilizes
marginalized strategy to optimize hash learning, so that the learned hash function general-
izes well to unseen classes. 3) Extensive experiments on three widely used zero-shot image
retrieval datasets demonstrate that MGAH outperforms the state-of-the-arts.

2 Related Work
We briefly introduce zero-shot hashing in both inductive setting and transductive setting. In
this paper, we investigate inductive zero-shot hashing, i.e, the most general setting in the
realistic scenario.
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Inductive zero-shot hashing assumes that samples of unseen classes are inaccessible in
the training phase. Representative inductive zero-shot hashing methods include [9, 33, 35,
36]. TSK [35] projects image features into word embedding space to generate effective hash
codes. Instead of using word vectors, AH [33] utilizes semantic attributes as an intermediate
layer between hash codes and image labels. In [36], an orthogonal projection constraint is
adopted to enhance the discriminative power. SitNet [9] introduces a multi-task architec-
ture which simultaneously employs a max-margin loss and a regularized center loss, thus
preserving the semantic similarity among concepts for knowledge transfer.

Transductive zero-shot hashing refers to the setting that unseen class instances are
available during training. [13, 19, 39] are remarkable transductive zero-shot hashing meth-
ods. In [13], a coarse-to-fine similarity mining method is proposed to find most presentative
target examples of each unseen class. Besides, some methods [19, 39] also consider multi-
label scenarios. The co-occurrence information is utilized in COSTA [19] to associate seen
and unseen categories. Moreover, ICRH [39] designs an instance-concept coherence rank-
ing algorithm to consider ranking relationship between relevant and irrelevant labels, which
preserves multi-level semantic similarity for multi-label images.

However, the aforementioned methods only focus on leveraging semantic information,
while the intrinsic structure in visual feature space is not fully exploited. Furthermore, the
different data distribution on seen and unseen classes is ignored by these methods, which
causes the domain shift problem and impedes the generalization ability of hash learning.

3 Proposed Approach

3.1 Problem Definition
Suppose we have N training images X = {xi}N

i=1 from seen concept set Cs, where xi ∈Rd is
the i-th sample, and d is the dimensionality of visual feature space. Y = {yi}N

i=1 denotes the
binary label, Yi j = 1 if the i-th training sample belongs to the j-th category, otherwise, Yi j =

0. Meanwhile, Z = {zi}N
i=1 is corresponding class semantics, which is obtained from either

semantic attributes or distributed word representations. There are a total of M categories in
the training set. In contrast with conventional hashing, our zero-shot scenario assumes that
testing data belongs to an unseen concept set Cu, which shares no common concepts with Cs,
i.e., Cs∩Cu = φ . By using training data X only from Cs, our goal is to learn a hash function:
X 7→ B ∈ {−1,1}N×K that can accurately encode images of both seen and unseen classes to
K-bits hash codes.

3.2 Binary Encoder
The binary encoder serves as hash function to generate desired hash codes. As is shown in
Figure 1, we firstly adopt the pre-trained AlexNet [12] as feature extractor to obtain image
representation x, and then the hash layer with an element-wise sign(·) function is employed
to produce K-bits binary code b, which can be denoted as follows:

b = sign( f (x;θh)) ∈ {−1,1}K , (1)

where f (·) is hash encoding function, and θh is the network parameters. However, the dis-
crete constraint induces difficulty to optimization. Suggested by [1, 24], we adopt the scaled
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Figure 1: Overview of the proposed framework. See section 3 for a detailed description.

tanh(·) function to tackle this problem and rewirte Eq. (1) as follows:

b = tanh(δ ∗ f (x;θh)) ∈ [−1,1]K , (2)

where δ > 0 is the scale parameter, which gradually increases in the training phase so as to
converge to the original binary encoding problem.

3.3 Attentive Relation Discovery Network
Constructing joint-semantics similarity graph. As an initial step, we establish a fixed
similarity graph pre-computed on class semantics, which preserves the original neighbor-
hood relations from the perspective of semantic embedding space. Given a pair of class
semantic zi and z j, their relation is measured by cosine similarity:

S f (i, j) =

〈
zi,z j

〉
‖zi‖‖z j‖

. (3)

In light of the topology structure determined by S f , the masked attention mechanism is
leveraged to produce an adaptive similarity graph, which is directly driven by image visual
features. In other words, for image xi, we only compute its attention score of images j ∈Ni ,
whereNi is the first-order neighborhood of image xi in the above graph S f . Firstly, to obtain
detailed information, we utilize an identical fully-connected layer to learn the latent variable
h as follows:

h = g(x;θs) ∈RL, (4)

where L refers to the dimensionality of h and θs indicates the network parameters. Suggested
by [26], we then calculate the attention coefficient and normalize them to obtain the adaptive
similarity graph Sa, which can be presented by:

Sa(i, j) = sigmoid
(

ReLU(W>
a [hi‖h j])

)
, (5)

where ‖ is concatenation operation and Wa is the network parameters. As observed in Eq.
(5), the attention score Sa(i, j) indicates the importance of image x j to image xi. Finally, we
combine graph S f and Sa to obtain the joint-semantics similarity graph S as follows:

S = αS f +(1−α)Sa, (6)
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where α is a trade-off parameter that balances the importance of the neighborhood relations
from different metric spaces. Since information from different perspectives are generally
complementary to each other, this graph S can provide more precise semantic relations than
previous methods that only consider class semantics.

Integrating semantic relations into binary codes. To generate semantic relevant codes,
the joint-semantics similarity graph S and original codes B are render into a graph convolu-
tional layer [11], which is defined as:

B′ = tanh
(

D−
1
2 SD−

1
2 BWg

)
, (7)

here, Wg refers to the linear transformation parameter, and D= diag(S1). We choose tanh(·)
function to restrict the output codes between -1 and 1. Furthermore, in order to better fulfill
our ultimate goal of binary coding, we introduce a shortcut connection architecture to link the
original binary codes B directly to the hidden codes B′ and combine them with an element-
wise sum, which is demonstrated as follows:

B̃ = λB+(1−λ )B′, (8)

where λ is the trade-off factor to control the effect of original codes.

3.4 Energy Magnified Softmax Loss
In our zero-shot scenario, it’s essential to learn an effective and compatible hash function
from seen classes so as to boost the performance on unseen classes. However, the differ-
ent distribution between seen and unseen categories seriously degrades this performance.
From the viewpoint of domain adaption [7, 18], we elaborately design an Energy Magnified
Softmax (EM-Softmax) loss with marginalized strategy to guide the learning of hash codes,
which is formulated as follows:

Lem =
1
N

N

∑
i=1
− log

exp
(

β ∗W>
j b̃i

)
exp
(

β ∗W>
j b̃i

)
+∑k 6= j exp

(
W>

k b̃i

) , (9)

where W j denotes the weight of j-th category, ∗ refers to the element-wise multiply op-
eration, β ≥ 1 is the energy factor that magnifies the prediction and encourages a flexible
margin. Note that, the value of β gradually increases during training to encourage both
discrimination and generalization ability.

Decision

Boundary

x

𝑊1

𝑊2

Decision Boundary

for Class 1
x

𝑊1

𝑊2

Decision Boundary

for Class 2

Shared Decision Margin
Class 1

Class 2

Class 1

Class 2

Traditional Softmax loss EM-Softmax loss

Figure 2: Geometric interpretation of Energy-Magnified Softmax loss.

As observed in Eq. (9), EM-Softmax loss produces a relaxation classification criteria,
which is loose to hard samples and accordingly avoid overfitting on seen classes. Intu-
itively, considering a sample b̃i belonging to j-th category, traditional softmax loss forces
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W>
j b̃i > W>

k b̃i (∀k 6= j) to classify xi correctly. In contrast, EM-Softmax loss requires
β ∗W>

j b̃i > W>
k b̃i (∀k 6= j). Hence, our EM-Softmax loss can not only guarantee the sepa-

rability between classes, but also improve the generalization ability.
Furthermore, EM-Softmax loss can produce a shared decision margin for hard samples,

which is supposed to cover more potential metric space for unseen classes. The geometric in-
terpretation is demonstrated in Figure 2. in which a binary classification case is analyzed. In
EM-Softmax loss, the decision boundary for class 1 can be computed as: (βW1−W2) b̃i = 0
and the decision boundary for class 2 is (βW2−W1) b̃i = 0. Consequently, the EM-Softmax
loss makes the decision boundaries for class 1 and class 2 different, while the decision bound-
aries are the same in traditional softmax loss. In essence, the EM-Softmax loss broadens the
feasible region for each class and expects to encompass potential space for the unseen ones.

3.5 Out-of-Sample Extension
After MGAH is trained, the networks can be used to generate K-bits hash codes for any
out-of-sample data. As discussed in section 3.2, the query image x(q) is fed into the binary
encoder to obtain its hash code:

b(q) = sign( f (x(q);θh)) ∈ {−1,1}K . (10)

When testing, only f (·) is required, which considerably eases the binary coding process.

4 Experiments

4.1 Datasets, Settings, Metrics, and Implementation Details
Datasets. Animals with Attributes2 [30] is a widely used zero-shot learning dataset

which has 37,322 images from 50 different animals. Besides, 85 human-annotated class at-
tributes are provided. CIFAR-10 [12] consists of 60,000 images which are manually labelled
with 10 classes, with 6,000 samples in each class. It is frequently utilized for evaluating the
hashing approaches. ImageNet [6] is a large-scale image dataset organized according to
WordNet hierarchy. The subset of ImageNet for ILSVRC2012 is used for our experiments,
which contains over 1.2 million images manually labeled by 1,000 concepts.

Settings. For Animals with Attributes2, we split 40 categories into seen concepts and the
other 10 categories into unseen concepts following [30]. For CIFAR-10, we use one category
as unseen concept and the other nine as seen categories, which leads to 10 seen-unseen splits.
For ImageNet, we randomly select 90 categories as seen concepts as well as 10 categories as
unseen concepts, giving us more than 130,000 images in total. For all datasets, we randomly
sample 10,000 images from seen concepts as the training set. When testing, 1,000 images
are randomly selected from the unseen concepts as the queries, while the remaining unseen
category images and all seen category images form the retrieval database. Besides, since
the initial model AlexNet is pretrained on ImageNet [6], it contain knowledge about the
100 categories (both seen and unseen) utilized in our experiment. To better evaluate the
zero-shot performance, we retrain the model on the other 900 categories as initial model for
experiments on ImageNet dataset.

Evaluation metrics. We adopted two widely used evaluation criteria for zero-shot
hashing, i.e., mean Average Precision (mAP) and Precision within Hamming distance 2
(P@H≤ 2). For above metrics, a larger value indicates better retrieval performance.
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Implementation details. We implemented our method by PyTorch on NVIDIA RTX
2080Ti. To train our model, Adam optimizer is applied with parameters β1 = 0.9, β2 = 0.999
and weight decay is 0.0005. The initial learning rate is 0.0001 and exponentially decayed
to 1e−6 during training. The mini-batch size is 64. For hyper-parameters, we set L = 512,
α = 0.3, and λ = 0.9. To provide the similarity graph S, we prepare class semantics Z as
follows. For Animals with Attributes2 dataset, 85 annotated attributes for each category are
scale-normalized as semantic vector of the concept. For CIFAR-10 dataset, the word2vec
tool [20] is adopted which takes the names of seen concepts as inputs and gives us 300
dimensional word representations as class semantics. For ImageNet dataset, we map each
category to a node in WordNet and use the path-similarity interface to directly set S f (i, j).

4.2 Comparison with Existing Methods

Baselines. We compare our MGAH with both shallow methods and deep methods. Shal-
low methods include ITQ [8], IMH [22], KSH [17], SDH [21], TSK [35], while deep meth-
ods include DHN [38], DNNH [14] and SitNet [9]. For a fair comparison, we utilize AlexNet
[12] to extract deep features for all shallow baselines.

Result on mAP. We compare our MGAH with all baseline methods, the mAP results
are presented in Table 1, from which we can get the following observations. (1) MGAH
achieves inspiring performance compared to the previous hashing methods. (2) Compared
to the conventional setting in [14, 21], the performance of several supervised approaches
drops significantly in the zero-shot scenario. The main reason is that these methods overfit
seen concepts, leading to a poor generalization on unseen concepts. (3) The unsupervised
approaches like IMH [22] gain competitive performance compared to some supervised meth-
ods. This is because unsupervised methods encode images with the distributional properties
that somewhat preserves data structures.

Method Animals with Attributes2 CIFAR-10 ImageNet
8 bits 16 bits 32 bits 48 bits 8 bits 16 bits 32 bits 48 bits 8 bits 16 bits 32 bits 48 bits

ITQ 0.0539 0.0936 0.1176 0.1392 0.1382 0.1613 0.2072 0.2321 0.1294 0.1801 0.2413 0.2648
IMH 0.0676 0.0887 0.1217 0.1417 0.1302 0.1611 0.1891 0.2002 0.1109 0.1694 0.2196 0.2597
KSH 0.0631 0.0846 0.1169 0.1379 0.1189 0.1519 0.1839 0.2104 0.1502 0.2018 0.2388 0.2761
SDH 0.0543 0.0969 0.1281 0.1471 0.1323 0.1678 0.2009 0.2092 0.1688 0.1992 0.2469 0.2936
DHN 0.0317 0.0572 0.0734 0.0986 0.1556 0.1722 0.1874 0.2034 0.1297 0.1984 0.1979 0.2037

DNNH 0.0841 0.1112 0.1356 0.1587 0.1774 0.2012 0.2205 0.2326 0.1589 0.2268 0.2767 0.2964
TSK 0.0827 0.1193 0.1403 0.1528 0.1491 0.1881 0.2203 0.2401 0.1803 0.2231 0.2571 0.3096

SitNet 0.1138 0.1465 0.1673 0.1869 0.2198 0.2308 0.2574 0.2669 0.1905 0.2684 0.3192 0.3546
MGAH 0.1169 0.1780 0.1943 0.2451 0.2490 0.2757 0.3087 0.3307 0.1744 0.2651 0.3230 0.3697

Table 1: The mAP comparison results for different number of bits on three datasets.
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Figure 3: The P@H≤ 2 comparison results for different number of bits on three datasets.
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Result on precision curves. For further comparisons, we evaluate all the hashing meth-
ods with P@H ≤ 2, which are shown in Figure 3. We can observe that: (1) MGAH outper-
forms the baseline approaches with significant margins in most cases. It’s worth noting that
the results of 16-bits code length in MGAH are superior to those of 32-bits in other methods,
demostrating its inspiring performance. (2) As code length varies from 8 to 32, the P@H≤ 2
increases rapidly for all hashing methods. This is because when code length is short, more
codes are required to guarantee the descriptive power. (3) When code length is larger than 32,
the performance significantly deteriorates. As Hamming space becomes larger, fewer data
points will fall within Hamming distance 2, thereby declining the P@H≤ 2 performance.

Comparison with DOPH. DOPH [36] is one of the state-of-the-art zero-shot hashing
method, which adopts orthogonal projection constraint to project the information from dif-
ferent modalities into a common binary hash space. To fairly compare with DOPH, we
follow the experiment settings used in DOPH. Table 2 shows the experiment results. In par-
ticular, due to the pre-trained GoogLeNet [25] is adopted in DOPH, we also employ the same
architecture as backbone, which denotes as "MGAH†". It can be seen that our method out-
performs DOPH in most cases. The reason is that DOPH relies on the orthogonal projection
constraint to generate hash codes, while our MGAH explicitly exploits semantic similarity
to facilitate the transfer ability, thus can generalize well to unseen concepts.

Metric Method Animals with Attributes2 CIFAR-10 ImageNet
8 bits 16 bits 32 bits 48 bits 8 bits 16 bits 32 bits 48 bits 8 bits 16 bits 32 bits 48 bits

mAP DOPH 0.1578 0.1822 0.2407 0.2884 0.3402 0.3351 0.3491 0.3438 0.1579 0.2748 0.3413 0.4288
MGAH† 0.1611 0.2467 0.3036 0.3582 0.2716 0.3378 0.3862 0.4128 0.1459 0.2660 0.3526 0.4476

P@H≤ 2 DOPH 0.0671 0.2152 0.2743 0.4318 0.3227 0.3781 0.3844 0.3609 0.0669 0.2204 0.4186 0.6327
MGAH† 0.0738 0.2747 0.4734 0.4168 0.2515 0.3813 0.4830 0.5404 0.0736 0.2196 0.5028 0.4598

Table 2: The mAP and P@H≤ 2 results in comparison to DOPH.

4.3 Ablation Study

Effect of different components. We further investigate the impact of different compo-
nents on the performance of MGAH. We reconstruct the network architecture as follows:
(1) MGAH-1: we remove Energy Magnified Softmax loss from MGAH and train the net-
work with traditional softmax loss. (2) MGAH-2: we remove the fixed similarity graph S f
from MGAH. (3) MGAH-3: we remove the adaptive similarity graph Sa from MGAH. (4)
MGAH-4: we perform weighted average on binary codes B and similarity graph S, instead
of employing the graph convolutional layer. (5) MGAH-5: we remove the shortcut connec-
tion architecture from MGAH. The mAP results are presented in Table 3. Compare results
on MGAH-1 and MGAH, we can find out that EM-Softmax loss achieves an average of
3.34% improvement. The results of MGAH-2 and MGAH-3 demonstrates the improvement
brought by the joint-semantics similarity graph S. The performance of MGAH-4 shows that
the graph convolutional layer is more effective to incorporate semantic relations into hash
codes than weighted average. Moreover, the shortcut connection can further improve perfor-
mance, which can be observed from results on MGAH-4.

Effect of the EM-Softmax loss. To evaluate the impact of different margins in EM-
Softmax loss, the mAP results are presented in Table 3. When β increases, the performance
first upgrades and then degrades with β > 4. This is because the shared margin is too large
to impede the discriminative power for distinguishing unseen categories. Besides, MGAH
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Method Animals with Attributes2
8 bits 16 bits 32 bits 48 bits

MGAH-1 0.1090 0.1343 0.1732 0.1840
MGAH-2 0.0870 0.1657 0.1885 0.2184
MGAH-3 0.1137 0.1618 0.1817 0.2269
MGAH-4 0.0837 0.1457 0.1793 0.2180
MGAH-5 0.0766 0.1374 0.1882 0.2161
MGAH 0.1169 0.1780 0.1943 0.2451

Margin Animals with Attributes2
8 bits 16 bits 32 bits 48 bits

β = 1 0.1090 0.1343 0.1732 0.1840
β = 2 0.0933 0.1315 0.1737 0.2124
β = 3 0.1040 0.1438 0.1809 0.2127
β = 4 0.0971 0.1585 0.1857 0.2150
β = 5 0.0984 0.1646 0.1811 0.2060

MGAH 0.1169 0.1780 0.1943 0.2451
Table 3: Ablation Study on Animals with Attributes2. Contributions of different components
(left) and different margins of the EM-Softmax loss (right).

achieves inspiring performance compared to other variants, because the gradual growth of β

improves both discrimination and generalization ability of our model.
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Figure 4: Similarity graphs on Animals with Attributes2 with 32-bits. (a) fixed graph S f , (b)
adaptive graph Sa, and (c) joint-semantics graph S.

Effect of the joint-semantics similarity graph. We show the effectiveness of the joint-
semantics similarity graph in Figure 4. 20 random samples are selected from a training batch
to plot the similarity graphs. In contrast to graph S f , graph S is asymmetric, which allows
for assigning different importance to the same image pair. Moreover, compared with graph
Sa, graph S is much smoother that may enable a leap in model generalization ability.
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Figure 5: Parameter sensitivity analysis of L, α and λ on Animals with Attributes2.

4.4 More Analysis
Sensitivity study. We further analyze the effect of hyper-parameter L, α and λ . Figure

5 shows the mAP results under different values of these parameters. When L is small, the
retrieval performance is poor since low-dimensional features cannot fully describe the details
of visual images. When α varies from 0 to 0.3, the performance remains in a relatively
stable range, while fluctuates slightly with α > 0.4. When λ increases, the performance first
upgrades and degrades with λ > 0.4.
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Figure 6: Further analysis on MGAH. (a) different unseen categories, (b) training numbers,
(c) extremely short codes, and (d) convergency analysis.

Impact of different unseen categories. We list the corresponding mAP of different un-
seen categories on CIFAR-10 with 32-bits in Figure 6(a). Intuitively, if an unseen class is
semantically closer to other seen categories, more relevant semantic knowledge can be trans-
ferred from our joint-semantics similarity graph, thus boosting the retrieval performance.

Impact of training numbers. We further investigate the impact of training numbers,
which is presented in Figure 6(b). As we can see, when the size increases from 1000 to
10,000, the mAP rapidly increases, which implies that as training samples grow, our model
is able to learn more visual knowledge.

Effect of extremely short codes. Inspired by [23], we illustrate the retrieval performance
with extremely short code length in Figure 6(c). We can find out that, MGAH works well
even when the code length is set to K = 5. The reason is that the joint-semantic similarity
graph complements the information discarded by the binary codes.

Convergency analysis. We conduct empirical study on the convergence property using
ImageNet dataset. In Figure 6(d), we plot the loss in Eq. (9) w.r.t. the number of training
epochs. We can observe that, as margin β increases, the loss descends dramatically, which
demonstrates the efficiency of our algorithm.

5 Conclusion

In this work, we propose a novel deep hashing method, named Marginalized Graph Attention
Hashing (MGAH), for zero-shot image retrieval. The joint-semantics similarity graph well
captures semantic relations from both semantic embedding and visual feature space, which
is essential for recognizing unseen categories. Furthermore, the elaborately designed Energy
Magnified Softmax loss employs marginalized strategy to generate a shared decision margin,
which encourages the transfer ability of our hash function. Experiments on three widely
used datasets compared with state-of-the-art methods show that MGAH achieves inspiring
performance.
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