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Abstract

We present a novel Bipartite Graph Reasoning GAN (BiGraphGAN) for the chal-
lenging person image generation task. The proposed graph generator mainly consists of
two novel blocks that aim to model the pose-to-pose and pose-to-image relations, respec-
tively. Specifically, the proposed Bipartite Graph Reasoning (BGR) block aims to reason
the crossing long-range relations between the source pose and the target pose in a bipar-
tite graph, which mitigates some challenges caused by pose deformation. Moreover, we
propose a new Interaction-and-Aggregation (IA) block to effectively update and enhance
the feature representation capability of both person’s shape and appearance in an inter-
active way. Experiments on two challenging and public datasets, i.e., Market-1501 and
DeepFashion, show the effectiveness of the proposed BiGraphGAN in terms of objective
quantitative scores and subjective visual realness. The source code and trained models
are available at https://github.com/Ha0Tang/BiGraphGAN.

1 Introduction
In this paper, we mainly focus on translating a person image from one pose to another as
depicted in Fig. 1 and 2. Existing person image generation methods such as [1, 2, 4, 8, 16, 18,
20, 21, 29, 32, 41, 45] always rely on building convolution layers. Due to the physical design
of convolutional filters, convolution operations can only model local relations. To capture
global relations, existing methods such as [32, 45] inefficiently stack multiple convolution
layers to enlarge the receptive fields to cover all the body joints from both the source pose
and the target pose. However, none of the above-mentioned methods explicitly consider
modeling the cross relations between the source pose and the target pose.

In this paper, we propose a novel Bipartite Graph Reasoning GAN (BiGraphGAN),
which mainly consists of two novel blocks, i.e., Bipartite Graph Reasoning (BGR) block
and Interaction-and-Aggregation (IA) block. The BGR block aims to efficiently capture the
crossing long-range relations between the source pose and the target pose in a bipartite graph
(see Fig. 1). Specifically, the BGR block first projects both the source pose feature and the
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Figure 1: Illustration of our motivation. We propose a novel BiGraphGAN (Fig. (c)) for
capturing crossing long-range relations between the source pose Pa and the target pose Pb
in a bipartite graph. The node features from both source and target poses in the coordinate
space are projected into the nodes in a bipartite graph, thereby forming a fully-connected
bipartite graph. After cross-reasoning the graph, the node features are projected back to the
original coordinate space for further processing.

target pose feature in the original coordinate space onto a bipartite graph. Next, both source
and target pose features are represented by a set of nodes to form a fully-connected bipartite
graph, on which crossing long-range relation reasoning is performed by Graph Convolution
Networks (GCNs). To the best of our knowledge, we are the first to explore GCNs to model
the crossing long-range relations for solving the challenging person image generation task.
After reasoning, we project the node features back to the original coordinate space for further
processing.

Also, the proposed IA block is proposed to effectively and interactively enhance per-
son’s shape and appearance features. We also introduce an Attention-based Image Fusion
(AIF) module to selectively generate the final result using an attention network. Qualitative
and quantitative experiments on two challenging datasets, i.e., Market-1501 [44] and Deep-
Fashion [19], demonstrate that the proposed BiGraphGAN generates better person images
than several state-of-the-art methods, i.e., PG2 [20], DPIG [21], Deform [29], C2GAN [32],
BTF [1], VUnet [8] and PATN [45].

The contributions of this paper are summarized as follows,
• We propose a novel Bipartite Graph Reasoning GAN (BiGraphGAN) for person image

generation. The proposed BiGraphGAN aims to progressively reason the pose-to-pose
and pose-to-image relations via two novel proposed blocks.

• We propose a novel Bipartite Graph Reasoning (BGR) block to effectively reason the
crossing long-range relations between the source pose and the target pose in a bipartite
graph by using Graph Convolutional Networks (GCNs). Moreover, we present a new
Interaction-and-Aggregation (IA) block to interactively enhance both person’s appearance
and shape feature representations.

• Extensive experiments on two challenging datasets, i.e., Market-1501 [44] and DeepFash-
ion [19], demonstrate the effectiveness of the proposed BiGraphGAN and show signifi-
cantly better performance compared with state-of-the-art approaches.

2 Related Work
Generative Adversarial Networks (GANs) [9] have shown the potential to generate realis-
tic images [3, 11, 28]. For instance, Shaham et al. propose an unconditional SinGAN [28]
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Figure 2: Overview of the proposed graph generator, which consists of a sequence of Bipar-
tite Graph Reasoning (BGR) blocks, a sequence of Interaction-and-Aggregation (IA) blocks
and an Attention-based Image Fusion (AIF) module. BGR blocks aim to reason the crossing
long-range relations between the source pose and the target pose in a bipartite graph. IA
blocks aim to interactively update person’s appearance and shape feature representations.
AIF module aims to selectively generate the final result via an attention network. The sym-
bols F i={F i

j}T
j=0, F pa={F pa

j }
T−1
j=0 , F pb={F pb

j }
T−1
j=0 , F̃ pa={F̃ pa

j }
T−1
j=0 , and F̃ pb={F̃ pb

j }
T−1
j=0

denote the appearance codes, the source shape codes, the target shape codes, the updated
source shape codes, and the updated target shape codes, respectively.

which can be learned from a single image. Moreover, to generate user-defined images, Con-
ditional GAN (CGAN) [23] has been proposed recently. A CGAN always consists of a
vanilla GAN and external guide information such as class labels [7, 39, 42], segmentation
maps [17, 24, 33, 36], attention maps [12, 22, 34], and human skeleton [1, 2, 31, 35, 45]. In
this work, we mainly focus on the challenging person image generation task, which aims to
transfer a person image from one pose to another one.
Person Image Generation is a challenging task due to the pose deformation between the
source image and the target image. Modeling the long-range relations between the source
pose and the target pose is the key to solving this challenging task. However, existing meth-
ods such as [1, 2, 4, 8, 16, 18, 20, 21, 29, 32, 41, 45] built through the stacking of convolu-
tional layers, which can only leverage the relations between the source pose and the target
pose locally. For instance, Zhu et al. [45] propose a Pose-Attentional Transfer Block (PATB),
in which the source and target poses are simply concatenated and then fed into an encoder to
capture their dependencies.

Unlike existing methods for modeling the relations between the source and target poses
in a localized manner, we show that the proposed Bipartite Graph Reasoning (BGR) block
can bring considerable performance improvements in the global view.
Graph-Based Reasoning. Graph-based approaches have shown to be an efficient way to
reason relation in many computer vision tasks such as semi-supervised classification [14],
video recognition [37], crowd counting [5], action recognition [26, 40] and semantic seg-
mentation [6, 43].

Compared to these graph-based reasoning methods which model the long-range relations
within the same feature map to incorporate global information, we focus on developing a
novel BiGraphGAN framework that reasons and models the crossing long-range relations
between different features of the source pose and target pose in a bipartite graph. Then the
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Figure 3: Illustration of the proposed Bipartite Graph Reasoning (BGR) Block t, which
consists of two branches, i.e., B2A and A2B. Each of them aims to model cross-contextual
information between shape features F pa

t−1 and F pb
t−1 in a bipartite graph via Graph Convolu-

tional Networks (GCNs).

crossing relations are further used to guide the image generation process (see Fig. 1). This
idea has not been investigated in existing GAN-based image translation methods.

3 Bipartite Graph Reasoning GANs

We start by introducing the details of the proposed Bipartite Graph Reasoning GAN (Bi-
GraphGAN), which consists of a graph generator G and two discriminators (i.e., appearance
discriminator Da and shape discriminator Ds). An illustration of the proposed graph gen-
erator G is shown in Fig. 2, which mainly contains three parts, i.e., a sequence of Bipar-
tite Graph Reasoning (BGR) blocks modeling the crossing long-range relations between the
source pose Pa and the target pose Pb, a sequence of Interaction-and-Aggregation (IA) blocks
interactively enhancing both person’s shape and appearance feature representations, and an
Attention-based Image Fusion (AIF) module attentively generating the final result I

′
b. In the

following, we first present the proposed blocks and then introduce the optimization objective
and implementation details of the proposed BiGraphGAN.

Fig. 2 shows the proposed graph generator G, whose inputs are the source image Ia, the
source pose Pa and the target pose Pb. The generator G aims to transfer the pose of the person
in the source image Ia from the source pose Pa to the target pose Pb, generating the desired
image I

′
b. Firstly, Ia, Pa and Pb are separately fed into three encoders to obtain the appearance

code F i
0, the source shape code F pa

0 and the target shape code F pb
0 . Note that we used the

same shape encoder to learn both Pa and Pb, i.e., the two shape encoders for learning the two
different poses are sharing the weights.

3.1 Pose-to-Pose Bipartite Graph Reasoning

The proposed Bipartite Graph Reasoning (BGR) block aims to reason the crossing long-
range relations between the source pose and the target pose in a bipartite graph. All BGR
blocks have an identical structure as illustrated in Fig. 2. Consider the t-th block given in
Fig. 3, whose inputs are the source shape code F pa

t−1 and the target shape code F pb
t−1. The BGR

block aims to reason these two codes in a bipartite graph via Graph Convolutional Networks
(GCNs) and outputs new shape codes. The proposed BGR block contains two symmetrical
branches (i.e., B2A branch and A2B branch) because a bipartite graph is a bidirectional
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graph. As shown in Fig. 1(c), each node in the source nodes connects all the target nodes; at
the same time, each node in the target nodes connects all the source nodes. In the following,
we mainly describe the detailed modeling process of the B2A branch, and another A2B
branch is similar to this.
From Coordinate Space to Bipartite-Graph Space. Firstly, we reduce the dimension of
the source shape code F pa

t−1 with function ϕa(F
pa

t−1)∈RC×Da , where C is the number of feature
map channels, Da is the number of nodes of F pa

t−1. Then we reduce the dimension of the target
shape code F pb

t−1 with function θb(F
pb

t−1)=Hᵀ
b ∈R

Db×C, where Db is the number of nodes of
F pb

t−1. Next, we project F pa
t−1 to a new feature Va in a bipartite graph using the projection

function HT
b . Therefore we have,

Va = Hᵀ
b ϕa(F

pa
t−1) = θb(F

pb
t−1)ϕa(F

pa
t−1), (1)

where both functions θb(·) and ϕa(·) are implemented using 1×1 convolutional layer. This
results in a new feature Va∈RDb×Da in the bipartite graph, which represents the crossing
relations between the nodes of the target pose F pb

t−1 and the source pose F pa
t−1 (see Fig. 1(c)).

Cross Reasoning with Graph Convolution. After projection, we build a fully-connected
bipartite graph with adjacency matrix Aa∈RDb×Db . We then use a graph convolution to rea-
son the crossing long-range relations between the nodes from both source and target poses,
which can be formulated as,

Ma = (I−Aa)VaWa, (2)

where Wa∈RDa×Da denotes the trainable edge weights. We follow [6, 43] and use Laplacian
smoothing [6, 15] to propagate the node features over the bipartite graph. The identity ma-
trix I can be viewed as a residual sum connection to alleviate optimization difficulties. Note
that we randomly initialize both adjacency matrix Aa and the weights Wa, and then train both
by gradient descent in an end-to-end manner.
From Bipartite-Graph Space to Coordinate Space. After the cross-reasoning, the updated
new feature Ma is mapped back to the original coordinate space for further processing. Next,
we add the result to the original source shape code F pa

t−1 to form a residual connection [10].
This process can be expressed as,

F̃ pa
t−1 = φa(HbMa)+F pa

t−1, (3)

where we reuse the projection matrix Hb and perform a linear projection φa(·) to project Ma
back to the original coordinate space. Therefore, we obtain the new source feature F̃ pa

t−1,
which has the same dimension with the original one F pa

t−1.

Similarly, the A2B branch outputs the new target shape feature F̃ pb
t−1. Note that the idea of

the proposed BGR block is inspired by the GloRe unit proposed by [6]. The main difference
is that the GloRe unit reasons the relations within the same feature map via a standard graph,
but the proposed BGR block reasons the crossing relations between feature maps of different
poses using a bipartite graph.

3.2 Pose-to-Image Interaction and Aggregation

As shown in Fig. 2, the proposed Interaction-and-Aggregation (IA) block receives the ap-
pearance code F i

t−1, the new source shape code F̃ pa
t−1 and the new target shape code F̃ pb

t−1 as
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inputs. IA block aims to simultaneously and interactively enhance F i
t , F pa

t and F pb
t . Specifi-

cally, both shape codes firstly concatenated and fed into two convolutional layers to produce
the attention map Ap. Mathematically,

Ap = σ(Conv(Concat(F̃ pa
t−1, F̃

pb
t−1))), (4)

where σ(·) denotes the element-wise Sigmoid function.
Appearance Code Enhance. After obtaining Ap, the appearance F i

t−1 is enhanced by,

F i
t = Ap⊗F i

t−1 +F i
t−1, (5)

where ⊗ denotes element-wise product. By multiplying with the attention map Ap, the new
appearance code F i

t at certain locations can be either preserved or suppressed.
Shape Code Enhance. Next, we concatenate F i

t , F pa
t−1 and F pb

t−1, and go through two convo-
lutional layers to obtain the updated shape code F pa

t and F pb
t by splitting the result along the

channel axis. This process can be performed by,

F pa
t ,F pb

t = Conv(Concat(F i
t ,F

pa
t−1,F

pb
t−1)). (6)

In this way, both new shape codes F pa
t and F pb

t can synchronize the changes caused by the
new appearance code F i

t .

3.3 Attention-Based Image Fusion
At the T -th IA block, we obtain the final appearance code F i

T . We then feed F i
T to an image

decoder to generate the intermediate result Ĩb. At the same time, we feed F i
T to an attention

decoder to produce the attention mask Ai.
The attention encoder consists of several deconvolutional layers and a Sigmoid activation

layer. Thus, the attention encoder aims to generate a one-channel attention mask Ai, in which
each pixel value is between 0 to 1. The attention mask Ai aims to selectively pick useful
content from both the input image Ia and the intermediate result Ĩb for generating the final
result I

′
b. This process can be expressed as,

I
′
b = Ia⊗Ai + Ĩb⊗ (1−Ai), (7)

where⊗ denotes element-wise product. In this way, both the image decoder and the attention
decoder can interact with each other and ultimately produce better results.

3.4 Model Training
Appearance and Shape Discriminators. We adopt two discriminators for adversarial train-
ing. Specifically, we feed image-image pair (Ia, Ib) and (Ia, I

′
b) into the appearance discrim-

inator Da to ensure appearance consistency. Meanwhile, we feed pose-image pair (Pb, Ib)
and (Pb, I

′
b) into the shape discriminator Ds for shape consistency. Both discriminators (i.e.,

Da and Ds), and the proposed graph generator G are trained in an end-to-end way, aiming to
enjoy mutual benefits from each other in a joint framework.
Optimization Objectives. We follow [35, 45] and use the adversarial loss Lgan, the pixel-
wise L1 loss Ll1 and the perceptual loss Lper as our optimization objectives,

L f ull = λganLgan +λl1Ll1 +λperLper, (8)
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Table 1: Quantitative comparison of different methods on Market-1501 and DeepFashion.
For all metrics, higher is better. (∗) denotes the results tested on our testing set.

Method Market-1501 DeepFashion

SSIM IS Mask-SSIM Mask-IS PCKh SSIM IS PCKh
PG2 [20] 0.253 3.460 0.792 3.435 - 0.762 3.090 -
DPIG [21] 0.099 3.483 0.614 3.491 - 0.614 3.228 -
Deform [29] 0.290 3.185 0.805 3.502 - 0.756 3.439 -
C2GAN [32] 0.282 3.349 0.811 3.510 - - - -
BTF [1] - - - - - 0.767 3.220 -
PG2∗ [20] 0.261 3.495 0.782 3.367 0.73 0.773 3.163 0.89
Deform∗ [29] 0.291 3.230 0.807 3.502 0.94 0.760 3.362 0.94
VUnet∗ [8] 0.266 2.965 0.793 3.549 0.92 0.763 3.440 0.93
PATN∗ [45] 0.311 3.323 0.811 3.773 0.94 0.773 3.209 0.96
BiGraphGAN 0.325 3.329 0.818 3.695 0.94 0.778 3.430 0.97
Real Data 1.000 3.890 1.000 3.706 1.00 1.000 4.053 1.00

where λgan, λl1 and λper control the relative importance of the three objectives. For the
perception loss, we follow [35, 45] and use the Conv1_2 layer.
Implementation Details. In our experiments, we follow previous work [35, 45] and rep-
resent the source pose Pa and the target pose Pb as two 18-channel heat maps that encode
the locations of 18 joints of a human body. Adam optimizer [13] is employed to learn the
proposed BiGraphGAN for around 90K iterations with β1=0.5 and β2=0.999.

In preliminary experiments, we found that as T increases, the performance is getting
better and better. When T is equal to 9, the proposed model achieves the best results, and
then the performance begins to decline. Thus we set T=9 in the proposed graph generator.
Moreover, λgan, λl1, λper in Eq. (8), and the number of feature map channels C are set to 5,
10, 10, and 128, respectively. The proposed BiGraphGAN is implemented in PyTorch [25].

4 Experiments
Datasets. We follow previous works [20, 29, 45] and conduct extensive experiments on
two public datasets, i.e., Market-1501 [44] and DeepFashion [19]. Specifically, we adopt
the train/test split used in [35, 45] for a fair comparison. In addition, images are resized to
128×64 and 256×256 on Market-1501 and DeepFashion, respectively.
Evaluation Metrics. We follow [20, 29, 45] and employ Inception score (IS) [27], Structure
Similarity (SSIM) [38] and their masked versions (i.e., Mask-IS and Mask-SSIM) as our
evaluation metrics to quantitatively measure the quality of the generated images by different
approaches. Moreover, we employ the PCKh score proposed in [45] to explicitly evaluate
the shape consistency of the generated person images.

4.1 State-of-the-Art Comparisons
Quantitative Comparisons. We compare the proposed BiGraphGAN with several leading
person image synthesis methods, i.e., PG2 [20], DPIG [21], Deform [29, 30], C2GAN [32],
BTF [1], VUnet [8], and PATN [45]. Quantitative comparison results are shown in Table 1,
we can see that the proposed method achieves the best results on most metrics such as SSIM,
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Figure 4: Qualitative comparisons of different methods on Market-1501.

Table 2: Quantitative comparison of user study (%) on Market-1501 and DeepFashion.
‘R2G’ and ‘G2R’ represent the percentage of real images rated as fake w.r.t. all real images,
and the percentage of generated images rated as real w.r.t. all generated images, respectively.

Method Market-1501 DeepFashion

R2G G2R R2G G2R
PG2 [20] 11.20 5.50 9.20 14.90
Deform [29] 22.67 50.24 12.42 24.61
C2GAN [32] 23.20 46.70 - -
PATN [45] 32.23 63.47 19.14 31.78
BiGraphGAN 35.76 65.91 22.39 34.16

Mask-SSIM and PCKh on Market-1501, and SSIM and PCKh on DeepFashion. For other
metrics such as IS, the proposed method still achieves better results than the most related
model PATN on both datasets. These results validate the effectiveness of our method.
Qualitative Comparisons. We also provide visualization comparison results on both datasets
in Fig. 4 and 5. As shown in the left of both figures, the proposed BiGraphGAN generates
remarkably better results than PG2 [20], VUnet [8] and Deform [29] on both datasets. To
further evaluate the effectiveness of the proposed method, we compare the proposed Bi-
GraphGAN with the most state-of-the-art model, i.e., PATN [45], in the right of both figures.
We still observe that our proposed BiGraphGAN generates more clear and visually plausible
person images than PATN on both datasets.
User Study. We also follow [20, 29, 45] and conduct a user study to evaluate the quality of
the generated images. Specifically, we follow the evaluation protocol used in [45] for a fair
comparison. Comparison results of different methods are shown in Table 2, we can see that
the proposed method achieves the best results on all metrics, which further validates that the
generated images by the proposed BiGraphGAN are more photo-realistic.
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Figure 5: Qualitative comparisons of different methods on DeepFashion.

Table 3: Ablation study of the proposed BiGraphGAN on Market-1501. For both metrics,
higher is better.

Baselines of BiGraphGAN SSIM ↑ Mask-SSIM ↑
B1: Our Baseline 0.305 0.804
B2: B1 + B2A 0.310 0.809
B3: B1 + A2B 0.310 0.808
B4: B1 + A2B + B2A (Sharing) 0.322 0.813
B5: B1 + A2B + B2A (Non-Sharing) 0.324 0.813
B6: B5 + AIF 0.325 0.818

4.2 Ablation Study

Baselines of BiGraphGAN. We perform extensive ablation studies to validate the effective-
ness of each component of the proposed BiGraphGAN on Market-1501. The proposed Bi-
GraphGAN has 6 baselines (i.e., B1, B2, B3, B4, B5, B6) as shown in Table 3 and Fig. 6(left).
B1 is our baseline. B2 uses the proposed B2A branch for modeling the crossing relations
from the target pose to the source pose. B3 adopts the proposed A2B branch to model the
crossing relations from the source pose to the target pose. B4 uses the combination of both
A2B and B2A branches to model the crossing relations between the source pose and the tar-
get pose. Note that both GCNs in B4 are sharing the parameters. B5 employs a non-sharing
strategy between the two GCNs to model the crossing relations. B6 employs the proposed
AIF module to make the graph generator attentively select which part is more useful for
generating the final person image.
Ablation Analysis. The results of the ablation study are shown in Table 3 and Fig. 6(left).
We observe that both B2 and B3 achieve significantly better results than B1, which proves
our initial motivation that modeling the crossing relations between the source pose and the
target pose in a bipartite graph will boost the generation performance. In addition, we see
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Figure 6: (left) Qualitative comparisons of ablation study on Market-1501. (right) Visual-
ization of the learned attention masks and intermediate results.

that B4 performs better than B2 and B3, demonstrating the effectiveness of modeling the
symmetric relations between the source and target poses. B5 achieves better results than B4,
which means that two GCNs are constructed separately to model the symmetric relations
will improve the generation performance in the joint network. B6 is better than B5, which
clearly proves the effectiveness of the proposed attention-based image fusion strategy.

Moreover, we show several examples of the learned attention masks and intermediate
results in Fig. 6(right) We can see that the proposed module attentively selects useful content
from both the input image and intermediate result to generate the final result, thus verifying
our design motivation.

5 Conclusions
In this paper, we propose a novel Bipartite Graph Reasoning GAN (BiGraphGAN) frame-
work for the challenging person image generation task. We introduce two novel blocks, i.e.,
Bipartite Graph Reasoning (BGR) block and Interaction-and-Aggregation (IA) block. The
first is employed to model the crossing long-range relations between the source pose and
the target pose in a bipartite graph. The second block is used to interactively enhance both
person’s shape and appearance features. Extensive experiments of both human judgments
and automatic evaluation demonstrate that the proposed BiGraphGAN achieves remarkably
better performance than the state-of-the-art approaches.
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