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Abstract

Deep convolutional neural networks are now mainstream for click-based interactive
image segmentation. Most frameworks refine false negatives and false positive regions
via a succession of positive and negative clicks placed centrally in these regions. We pro-
pose a simple yet intuitive two-in-one refinement strategy placing clicks on the boundary
of the object of interest. As boundary clicks are a strong cue for extracting the object of
interest and we find that they are much more effective in correcting wrong segmentation
masks. In addition, we propose a boundary-aware loss that encourages segmentation
masks to respect instance boundaries. We place our new refinement scheme and loss
formulation within a task-specialized segmentation framework and achieve state-of-the-
art performance on the standard datasets - Berkeley, Pascal VOC 2012, DAVIS, and MS
COCO. We exceed competing methods by 6.5%,9.4%,10.5% and 2.5%, respectively.

1 Introduction
The goal of interactive image segmentation is to obtain an accurate pixel-level mask for an
object with minimal user input. It is a fundamental processing stage for applications such
as image editing [4] and medical imaging analysis [40]. More recently, with the increased
popularity of deep learning, the demand for mask-level annotations for segmentation tasks
has risen dramatically. Manual labelling of such data is highly laborious; a single image can
take as long as 1.5 hours for Cityscapes [12]. Alternatively, one can leverage the advances
of automated segmentation and use human-in-the-loop frameworks [5, 34, 37].

The holy grail of interactive instance segmentation is to achieve single-click segmenta-
tion. The user places one click on the object of interest, and the system returns an accurate
mask. Despite significant progress, advanced deep learning-based frameworks [23, 28, 33]
still require multiple clicks: one to indicate the object of interest, and others to refine the
segmentation mask. In all interactive frameworks [20, 21, 27, 27, 31, 33, 41], refinement
is done via a succession of positive and negative clicks. Intuitively, the positive clicks

c© 2019. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Benard and Gygli} 2017

Citation
Citation
{Wang, Li, Zuluaga, Pratt, Patel, Aertsen, Doel, David, Deprest, Ourselin, and Vercauteren} 2018

Citation
Citation
{Cordts, Omran, Ramos, Rehfeld, Enzweiler, Benenson, Franke, Roth, and Schiele} 2016

Citation
Citation
{Benenson, Popov, and Ferrari} 2019

Citation
Citation
{Maninis, Caelles, Pont-Tuset, and Vanprotect unhbox voidb@x protect penalty @M  {}Gool} 2018

Citation
Citation
{Mykhaylo, Uijlings, and Ferrari} 2018

Citation
Citation
{Kontogianni, Gygli, Uijlings, and Ferrari} 2019

Citation
Citation
{Liew, Cohen, Price, Mai, Ong, and Feng} 2019

Citation
Citation
{Majumder and Yao} 2019{}

Citation
Citation
{Hu, Soltoggio, Lock, and Carter} 2019

Citation
Citation
{Jang and Kim} 2019

Citation
Citation
{Liew, Wei, Xiong, Ong, and Feng} 2017

Citation
Citation
{Liew, Wei, Xiong, Ong, and Feng} 2017

Citation
Citation
{Mahadevan, Voigtlaender, and Leibe} 2018

Citation
Citation
{Majumder and Yao} 2019{}

Citation
Citation
{Xu, Price, Cohen, Yang, and Huang} 2016



2 MAJUMDER ET AL.: TWO-IN-ONE REFINEMENT FOR INTERACTIVE SEGMENTATION

Figure 1: Two-in-One Refinement. Our two-in-one refinement strategy places refinement
clicks on the target boundary of error regions. The top row shows sample images with ground
truth masks in green. The second row shows an initial segmentation from the selection stage
overlaid in cyan, with yellow circles marking refinement click locations.

should add portions of missing foreground, while negative clicks remove falsely segmented
parts of the background. Users place clicks centrally in regions that directly corresponds
with false negatives and false positives. Distinguishing between the two forms of refine-
ment, however, requires separate input encodings, so there are always at least two guidance
maps [26, 27, 28, 41]. Additionally, a plateauing occurs, as the average per instance mIoU
tends to stagnate beyond 5-6 clicks [27, 31, 33, 41].

In this paper, we do away with positive and negative clicks and propose a novel two-in-
one refinement strategy. We ask users instead to place clicks on the instance boundary in
the vicinity of errors (see Fig. 1). Boundary clicks have more utility, as they provide a much
stronger cue than clicks placed centrally in regions of false positives and false negatives.
Furthermore, as more and more boundary refinement clicks become available, the instance
gets explicitly encircled with refinement clicks.

To accommodate our new refinement scheme, we use dedicated networks for object se-
lection versus refinement (see Fig. 2). Most previous works have used a single network [21,
27, 31, 33, 41], treating the initial selection click simply as any other positive click. In our
case, the initial selection click is placed centrally within the object [28], while refinement
clicks are placed on object boundaries. As a result, task separation becomes necessary. Hav-
ing two networks does add some computation overhead in training and inference. To mitigate
the impact, we share feature representations across the networks (see Fig. 2). The final re-
finement network is a lightweight block using three successive convolutions (see Sec. 3.2). In
return, separating the tasks allows more freedom for the networks to specialize and thereby
achieves state-of-the-art results.

For learning the selection network, we propose a new and highly effective boundary-
aware cross-entropy loss. This loss encourages predicted segmentation masks to remain
close to the instance boundaries, and through a single selection click, restricts the working
image space. In contrast, previous works require two to four clicks. We find that isolating the
region of interest for segmentation is particularly helpful for small objects, which previous
works [23, 33] have already shown are the most difficult to segment.

Citation
Citation
{Li, Chen, and Koltun} 2018

Citation
Citation
{Liew, Wei, Xiong, Ong, and Feng} 2017

Citation
Citation
{Liew, Cohen, Price, Mai, Ong, and Feng} 2019

Citation
Citation
{Xu, Price, Cohen, Yang, and Huang} 2016

Citation
Citation
{Liew, Wei, Xiong, Ong, and Feng} 2017

Citation
Citation
{Mahadevan, Voigtlaender, and Leibe} 2018

Citation
Citation
{Majumder and Yao} 2019{}

Citation
Citation
{Xu, Price, Cohen, Yang, and Huang} 2016

Citation
Citation
{Jang and Kim} 2019

Citation
Citation
{Liew, Wei, Xiong, Ong, and Feng} 2017

Citation
Citation
{Mahadevan, Voigtlaender, and Leibe} 2018

Citation
Citation
{Majumder and Yao} 2019{}

Citation
Citation
{Xu, Price, Cohen, Yang, and Huang} 2016

Citation
Citation
{Liew, Cohen, Price, Mai, Ong, and Feng} 2019

Citation
Citation
{Kontogianni, Gygli, Uijlings, and Ferrari} 2019

Citation
Citation
{Majumder and Yao} 2019{}



MAJUMDER ET AL.: TWO-IN-ONE REFINEMENT FOR INTERACTIVE SEGMENTATION 3

The key contributions of our approach are summarized as follows:

• We propose a novel two-in-one refinement strategy for interactive segmentation where
users refine segment masks by clicking on the instance boundary.

• We propose a boundary-aware cross-entropy loss which constrains the prediction and
allows us to integrate a crop mechanism without the use of bounding boxes [5] or
explicit confining clicks at extremal points [5, 34].

• A framework that separates selection and refinement tasks, with which we achieve
relative mIoU gains of 10-15% over state-of-the-art that use even deeper backbones.

2 Related Works

Deep-learning approaches [28, 31, 33] based on fully convolutional network architectures [10,
11, 30] now excel at producing good quality segmentation masks even for challenging large-
scale datasets [13, 29]. With user-provided cues such as bounding boxes [5], clicks [4,
31, 41], and scribbles [1], these approaches can generate instance segmentation masks with
over 90% mean Intersection over Union (mIoU) w.r.t ground truth with less than four user
clicks [23, 28, 33].

Of these, click-based interactive frameworks [20, 21, 26, 27, 31, 33, 41] have particularly
gained popularity in the last five years. The initial work of [41] encoded user clicks as
Euclidean distance maps; the maps are then concatenated with the RGB channels and fed
as input to an FCN [30]. Based on the previous prediction errors, further clicks are added,
usually on the center of the largest incorrect region [5, 28].

Across most of these approaches, user clicks are transformed guidance maps via Eu-
clidean distance [20, 26, 28, 41] or Gaussians [4, 31, 34]. Alternatively, superpixels [9, 32,
33] and region-based object proposals [33] have also been used to generate guidance maps.
Given an initial bounding box, Polygon-RNN [8] predicts the vertices of the polygon out-
lining the object. Other considerations for interactive segmentation frameworks include a
two-stream network [20] and backpropagation refinement scheme [21].

Historically, many classical approaches for interactive segmentation [15, 22, 24, 25, 36]
segmented objects by allowing users to interact with boundary pixels. Early variants used
boundary tracing [14, 36] but as such approaches relied solely on low-level image features
such as gradients [15], they do not work well on unconstrained images. More recently, the
DEXTR framework [34] proposed using extremal boundary clicks to select and enclose the
object. As DEXTR gives a minimum of four clicks at the outset, it requires significantly
more user input than state-of-the-art methods [21, 23, 28, 33].

Recently, Lu et al. [24] proposed a deep learning-based framework for interactively find-
ing object boundaries. Unlike [24] and DEXTR, we treat boundary clicks as a means of
refining or correcting prediction errors. Click locations are not arbitrary [24] nor constrained
to extremal points [34] but conditioned by prediction errors of the preceding selection net-
work (see Fig. 2). Additionally, we do not make use of traditional boundary prediction
losses [24, 44]. Finally, we report results on the more challenging Pascal VOC 2012 [13]
and MS COCO [29] datasets.
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Segmentation Backbone
 [ Deeplabv2-ResNet101-

PSP ]
Two-in-One
Refinement

512-d Feature Map

Figure 2: Outline. Given an initial selection click (shown in green) on the object of inter-
est, our selection network generates a full-image segmentation, cropping co-ordinates and
learned feature representations. Given the initial segmentation, the user refines with clicks
on the boundary of the object in the cropped image and the segmentation mask is updated.
Further refinement clicks (in yellow) can be added until a suitable mask is obtained.

3 Proposed Method
We follow the conventional paradigm of [4, 21, 27, 33, 41] which transforms user clicks into
‘guidance’ maps of the same size as the input image. The guidance maps are appended as ex-
tra channels to the RGB image and given as input to an FCN. To generate the guidance maps,
we use Gaussian transformations [4, 34] as it offers a favourable trade-off between simplicity
and performance. We initialize an image-sized channel of zeros and place Gaussians with a
small standard deviation of 10 pixels at each user click location.

During training, we pass the RGB image channels concatenated with the guidance map
from the first click through the selection network. The selection network returns the initial
segmentation mask and corresponding feature maps. Based on the initial masks, we crop
the prediction and the feature maps. We then determine refinement clicks from the crops,
transform them into a guidance map, and append the guidance maps with the cropped fea-
ture maps. Finally, we process with a lightweight refinement network to generate a refined
segmentation mask. Further refinement clicks can be added iteratively to reach an acceptable
segmentation quality. Fig. 2 illustrates this process.

3.1 Selection Network
We initialize our selection network with the weights from Deeplab-v2 [10] pre-trained on
Pascal VOC 2012 [13] for semantic segmentation. Deeplab-v2 uses a ResNet-101 [18] as
the feature extraction backbone and PSP module [45] for performing multi-scale feature
aggregation. Extracted features from Deeplab-v2 has 512 channels. The final 1-channel
prediction logits come from a 1×1 convolution. We modify Deeplab-v2 final layer to addi-
tionally return the 512-channel features, which we later reuse in the refinement network. We
note that other backbones [11, 30] can be used for the selection network as well.

Typically, interactive frameworks are trained to minimize the standard class-balanced
binary cross-entropy loss is given by,

LCB-CE = ∑
p∈P

wyp ·BCE(yp, ŷp). (1)

Here P is the number of pixels in the image, BCE(·) is the standard cross-entropy loss be-
tween the label yp and the prediction ŷp at pixel location p [30]. wyp denotes the inverse
normalized frequency of ground truth labels yp ∈ {0,1} of the mini-batch. We observe that
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for Eqn. 1, all pixels, irrespective of their location, contribute equally to the loss function.
This often leads to noisy and non-continuous segment predictions [2, 42] that require further
post-processing [4, 41]. To circumvent this, several methods have explored learning from
the distance transform [41, 43] via additional regression losses [2, 42].

To this end, we propose a boundary-aware cross entropy loss (BA-CE) which selectively
increases the penalty for incorrect classification of background pixels lying within some
distance (in pixels) of the target instance. Unlike [7], we opt for asymmetric penalty formu-
lation. This focuses the network on learning instance-background transitions and prevents
disjoint predictions far-off from the target instance. Formally, let B (∈M) denote the set of
boundary pixels for the ground truth maskM. We define a per-pixel weighting factor w(B, p)
as a function of the minimum Euclidean distance from the set of boundary pixels pb ∈ B.

w(B, p) =

{
0 d(B, p)> τ or p ∈M
d(B, p)

k d(B, p)≤ τ and p /∈M
(2)

where d(B, p) = min‖p− pB‖2
2 ∀ pB ∈ B. τ denotes the width along the instance boundary

(in pixels) where the penalty term is enforced. In our experiments, we fix k = 255 and τ = 40.
Our proposed BA-CE loss function is given as,

LBA-CE = ∑
p∈P

wyp · (1+w(B, p)) ·BCE(yp, ŷp). (3)

3.2 Refinement Network

Given the first selection click, the selection network returns 512-channel feature map F ∈
Rh×w×512 and the predicted mask trimmed (see Fig. 2). Based on the trimmed predicted
mask, the user annotates additional refinement clicks to undo the prediction errors. We en-
code these user-provided refinement clicks using Gaussians in a single channel G ∈Rh×w×1.
We concatenate F and G along the feature-map dimension pass it through our lightweight
refinement network.

For cropping the initial prediction from the selection network to the target instance, we
make use of the RoIAlign layer [19] to obtain Ft from F . RoIAlign [19] takes as input the
region of interest (ROI) coordinates and the feature map and produces a fixed-size represen-
tation regardless of ROI size. Instead of RoIAlign [19], naive cropping is also an alternative.
We obtain the cropping coordinates by first applying a sigmoid operator on the initial pre-
diction logits and then selecting pixels with values higher than a specific threshold. We pass
these coordinates to the RoIAlign layer and obtain featuresFt for the cropped representation.
We then concatenate Ft with GFt and pass it through the refinement network. GFt denotes
the user click encoding on the cropped initial prediction. During training, we observed that
naively processing raw features Ft through the refinement network is detrimental. Thus, we
perform a channel-wise normalization of Ft before concatenating it with GFt .

Our refinement network consists of 3 convolutional blocks. We denote the i-th block as
Ci(m,n,k), which consists of a k× k×m× n convolution followed by batch normalization
and ReLU. Here, k refers to kernel size, m the number of input feature channels and n the
number of output feature channels. The architecture of our refinement layer is given by,[

C1(513,512,3)→ C2(512,256,3)→ C3(256,256,3)
]

(4)
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The final prediction logits are obtained via 1×1 convolution which squashes the 256-channel
into a single channel output. Threshold selection and instance recall are discussed in more
detail in Sec. 4.2. We note that our selection network is not trained to minimize the bounding
box regression loss [19] as per standard instance segmentation.

3.3 Click Sampling
Like previous works [4, 9, 20, 28, 31, 41], we simulate clicks for training and evaluation.

Selection click sampling. The initial selection click is typically assigned on the center of
the target object [28]. For convexly shaped instances, the center of mass computed using the
ground truth serves as a prior for click initialization. In concave shapes, we shift the initial-
ization to an interior point furthest from the instance boundary. To mimic humans in placing
clicks and make our training robust, we further add random displacements of up to 25 pix-
els to the sampled click location. Visualizations of selection click placements are shown in
Fig. 3.

Refinement click sampling. Refinement clicks are sampled according to segmentation out-
puts from the selection network. Given the prediction and ground truth masks, false positive
and false negative regions are computed. The erroneous regions are then clustered based on
connectivity [31] while discarding regions with pixels fewer than m% of the ground truth. We
then select a minimum of k1 clicks and a maximum of k2 from the remaining error regions.
In our experiments, we vary m between 1-5 while k1 and k2 fixed at 2 and 4 respectively i.e.,
the network sees 2-4 refinement clicks to refine each instance.

For sampling refinement clicks corresponding to the false negative regions, a one-sided
(directed) Hausdorff distance is used. Let BFN and πFN denote the set of ground truth bound-
ary pixels and the predicted boundary pixels outlining the false negative region respectively.
For the false positive clusters, we opt for the min−min formulation. Likewise, let BFP
and πFN denote the set of ground truth boundary pixels and the predicted boundary pixels
outlining the corresponding false positive region respectively. The sampled click locations
cb, FN ∈ BFN and cb, FP ∈ BFP corresponding to false negative and false positive regions are
given respectively by,

cb,FN = argmax
x∈BFN

min
y∈πFN

‖x− y‖2 and cb,FP = argmin
x∈BFP

min
y∈πFP

‖x− y‖2. (5)

During inference, it is unlikely that users clicks will align exactly with the object boundary.
During training, we randomly perturb the click location up to 10 pixels to compensate.

3.4 Implementation Details
Similar to [23, 27, 31, 33, 41], we simulate user click behavior and use the 1464 training
images from Pascal VOC 2012 [13] plus the additional instance annotations from SBD pro-
vided by [17]. We further augment with random scaling, flipping, and rotation operations.
Unlike [28, 31], we do not use training instances from MS COCO [29].

For training both the selection and refinement network, we minimize the BA-CE loss
(Eqn. 3) using stochastic gradient descent with Nesterov (0.9) and apply a fixed learning rate
of 10−8 across all epochs with weight decay of 0.0005. Training of the selection network
typically converges within 80 epochs. For training the refinement network, we pick training
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instances with 0.2− 0.6 mIoU based on predictions by the selection network. Training re-
quires 10−15 epochs; to make the network more responsive to refinement clicks, we increase
the pixel contribution to the loss by a scalar factor of 2 within a 40×40 neighbourhood of
the sampled refinement click location.

4 Experiments

4.1 Datasets & Evaluation
We evaluate our proposed approach on five publicly available datasets. Grabcut [39] and
Berkeley [35] are have 49 and 96 images respectively, and feature mostly a single prominent
foreground object. Pascal VOC 2012 [13] has 3427 instances across 1449 validation images
spread across 20 object categories. MS COCO has 5000 validation (val2017) images over
80 categories, 20 of which overlap with Pascal. Like [23, 27, 33, 41], we pick 10 images
randomly per category for evaluation and tabulate the 20 seen Pascal versus 60 other un-
seen categories separately. The DAVIS dataset [38] consists of 50 high-resolution videos;
following [21, 26], we randomly sample 10% of the frames to get 345 images.

In existing literature, non-interactive semantic segmentation [10, 11, 30] frameworks are
evaluated with mean intersection over union (mIoU) [13] by comparing the ground truth
mask with the segmentation predictions of the network. Unlike semantic segmentation, in
interactive segmentation, user interactions aimed to improve the current network prediction
are available. Typically, such interactions come in the form of clicks and should increase the
mIoU of the predicted mask by fixing errors in foreground or background areas.

We evaluate our framework with the two standard metrics [4, 31, 41] (a) clicks@mIoU%
which is the average number of clicks needed to reach fixed mIoU on each instance and
(b) mIoU%@clicks, the mean intersection over union given k user-assigned selection and/or
refinement clicks per instance. In keeping with existing approaches [4, 27, 28, 31, 33, 41],
we threshold the number of clicks per instance to 20. The minimum mIoU threshold is set
at 90% for the GrabCut and Berkeley dataset. For the more challenging DAVIS, Pascal and
MS COCO datasets, the threshold is 85% mIoU [4, 20, 27, 33, 41].

4.2 Selection Network
We train two selection networks to minimize the standard class-balanced BCE (Eqn. 1) and
our proposed variant (Eqn. 3). We observe an outright gain of 2.4% over the Pascal VOC
2012 val set [13] and significant mIoU gains over recent state-of-the-art methods [31] across
the three datasets for the network trained with the BA-CE loss (Eqn. 3). The most significant

iFCN[41] ITIS[31] CAG[33] with CB-CE with BA-CE

Grabcut [39] 62.9 82.1 83.2 84.0 84.8
Berkeley [35] 61.3 - - 82.9 85.3
VOC12 [13] 53.6 71.0 74.0 78.2 80.6

Table 1: Selection network. Average mIoU for the target for competing methods and our
framework using a standard class-balanced cross-entropy loss (CB-CE) and our boundary-
aware cross-entropy (BA-CE) given only one (selection) click. Best results in bold.
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(a) VOC Instance Recall in % vs padding (b) Prediction results with CB-CE (Row 1) vs BA-CE (Row 2)

Figure 3: CB-CE vs BA-CE. Comparison of the class balanced cross-entropy (CB-CE) with
our boundary aware cross-entropy (BA-CE) loss. Green points denote initial selection clicks.

aspect of the BA-CE loss function is its ability to constrain the network prediction; this is a
desirable and necessary property which allows us to crop to the target instance. With a single
click, we achieve 80.6% mIoU averaged over Pascal VOC 2012 [13].

For further evaluation, we apply the sigmoid operation on the 1-channel logits predicted
by both variants of the selection networks and crop the image region to pixel values > 0.001.
To avoid tight cropping, which can lead to undesired boundary artifacts, we relax the cropped
region via padding. The instance recall rate for all the validation instances in the Pascal [13]
dataset vs padding in pixels is shown in Fig. 3(a). The BA-CE network successfully recalls
99.6% instances, i.e. the cropped feature map retains the entire object 3414 times out of
3427; for the other 13 instances, we assume a penalty of 20 clicks.

We additionally plot the area reduction (in %-age of the image area) after cropping given
a fixed padding (shown in Fig. 3(a)). We observe that the network trained to minimize the
CB-CE loss (Eqn. 1) offers more area reduction at the cost of a lower recall. However,
this network is undesirable, as we intend to segment all annotated instances in the Pascal
VOC 2012 val set [13]. Qualitative results are shown in Fig. 3(b). We observe that BA-CE
encourages spatially coherent segmentation masks.

4.3 Comparison to the state-of-the-art

We comparing the clicks@mIoU% performance of our method against competing meth-
ods [21, 27, 28, 32, 41] in see Table 2. As an ablation study to verify the effectiveness of
task separation in the interactive workflow, we also test a variant where the refinement net-
work is trained to accept iterative positive and negative clicks, as per [27, 28, 31, 32, 33, 41]
(Ours-PNR). In Ours-PNR, based on an initial mask from the selection network, users itera-
tively provide positive and negative clicks; the clicks are then encoded as Gaussians in two
separate channels. The rest of the pipeline is unchanged.

This variant outperforms several competing methods, suggesting that existing frame-
works can also benefit by task splitting across dedicated networks. Our full variant using the
two-in-one refinement (Ours-BRC) achieves state-of-the-art on almost all the benchmarks.
Our boundary-based refinement offers a 10% improvement in comparison to Ours-PNR.

We significantly raise the bar on the Berkeley, Pascal VOC 2012 val set, and DAVIS
datasets by 6.5%, 9.4% and 10.5% respectively. Additionally, we outperform current state-
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Method Grabcut Berkeley VOC-2012 DAVIS COCO-20 COCO-60
@90% @90% @85% @85% @85% @85%

iFCN [41]CVPR’16 6.04 8.65 6.88 - 8.31 7.82
RIS [27]ICCV’17 5.00 6.03 5.12 - 5.98 6.44
ITIS [31]BMVC’18 5.60 - 3.80 - - -
CAG [33]CVPR’19 3.58 5.60 3.62 - 5.40 6.10
LIS [32]GCPR’19 3.46 5.18 3.70 - 5.15 5.70
BRS [21]CVPR’19 3.60 5.08 - 5.58 - -
LFC [23]arXiv’19 3.07 4.94 3.18 5.57 9.14 9.87
MSG [28]ICCV’19 1.96 4.00 3.51 - - -

Ours-PNR 2.62 4.08 3.27 5.11 5.26 6.31
Ours-BCR 2.30 3.74 2.88 4.98 5.02 5.65

Table 2: Average number of clicks required to achieve a fixed mIoU across state-of-the-art
deep-learning -based interactive frameworks. Best results in bold.
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Figure 4: mIoU%@clicks across 3 datasets for our approach vs 8 competing methods.

of-the-art [32] on MS COCO [29] seen and unseen by around 2.5% and 1% respectively. On
Grabcut [39], we are comparable with current state-of-the-art MSG [28].

In Fig. 4, we plot our average mIoU vs the number of clicks against competing methods
RW [16], GC [6], GM [3], iFCN [41], RIS [27], ITIS [31], CAG [33]. Task-separation
give us a head-start w.r.t all existing approaches for the first click placement. Overall, our
approach shows better performance in most cases.

4.4 User study

We validate the use of boundary clicks for refinement with a user study, using 50 images
from Pascal VOC val-set with mIoU between 60%-75% as predicted by the selection net-
work. We overlay the prediction of the selection network and also presented the ground truth
mask as a separate image. Our 5 participants are tasked with providing refinement clicks
on the boundary pixels corresponding to the largest error regions. On average, participants
correctly identified the largest erroneous region with a mean accuracy of 88%. Errors may
arise when multiple blobs have similar sizes; for example, in Fig. 2, the erroneous region on
the left and right boundary of the bus is almost similar in size. Click placements were typ-
ically fast, with a mean ± standard deviation of 3.38±0.8 seconds. Click placements were
quite accurate and fell within 2-5 pixels of the instance boundary. For comparison, for each
instance, DEXTR [34] acquired 4 extremal clicks within 7 seconds.
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5 Conclusion
In this paper, we have proposed a new two-in-one refinement strategy for interactive object
segmentation. Instead of conventional positive and negative clicks to fix false negative and
false positive segmentations, we ask users to click on object boundaries. To accompany
this new refinement scheme, we propose a new boundary-aware loss formulation and a task-
specialized framework where dedicated networks are applied to select and refine the object.
The refinement network is lightweight and reuses feature maps from the selection network,
so additional computational overhead minimal. We find that boundary clicks coupled with
our boundary-aware loss provide a strong cue for interactive segmentation and raises state-
of-the-art on several benchmark datasets.
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