
SU, QI, PANG, YANG, SONG: SKETCHHEALER: A GRAPH-TO-SEQUENCE NETWORK 1

SketchHealer: A Graph-to-Sequence
Network for Recreating Partial Human
Sketches
Guoyao Su1

sgybupt@bupt.edu.cn

Yonggang Qi�1

qiyg@bupt.edu.cn

Kaiyue Pang2

kaiyue.pang@qmul.ac.uk

Jie Yang1

janeyang@bupt.edu.cn

Yi-Zhe Song2

y.song@surrey.ac.uk

1 Beijing University of Posts and
Telecommunications, Beijing, China

2 SketchX, CVSSP
University of Surrey, UK

Abstract

To perceive and create a whole from parts is a prime trait of the human visual system.
In this paper, we teach machines to perform a similar task by recreating a vectorised
human sketch from its incomplete parts. This is fundamentally different to prior work on
image completion (i) sketches exhibit a severe lack of visual cue and are of a sequential
nature, and more importantly (ii) we ask for an agent that does not just fill in a missing
part, but to recreate a novel sketch that closely resembles the partial input from scratch.
Central to our contribution is a graph model that encodes both the visual and structural
features over multiple categories. A novel sketch graph construction module is proposed
that leverages the sequential nature of sketches to associate key parts centred around
stroke junctions. The intuition is then that message passing within the said graph will
naturally provide the healing power when it comes to missing parts (nodes). Finally, an
off-the-shelf LSTM-based decoder is employed to decode sketches in a vectorised fash-
ion. Both qualitative and quantitative results show that the proposed model significantly
outperforms state-of-the-art alternatives.

1 Introduction
The human visual system is so remarkable in its ability to reason. One of its important tricks
is to perceive a whole by reasoning on parts – the Kanizsa triangle [40] shown in Fig. 1(a)
being a famous example. This had partially motivated a recent line of research on image
completion [28, 32, 39, 44, 46, 51, 57] which aims at hallucinating missing pixels given
contextual regions. Great strides have been made to date, with algorithms able to produce
highly plausible filler patches. Such successes are however largely down to the data-driven
nature of these algorithms, without much insight given towards reasoning.

c© 2020. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Tallon, Bertrand, Bouchet, and Pernier} 1995

Citation
Citation
{Pathak, Krahenbuhl, Donahue, Darrell, and Efros} 2016

Citation
Citation
{Sagong, Shin, Kim, Park, and Ko} 2019

Citation
Citation
{Song, Yang, Shen, Wang, Huang, and Kuo} 2018{}

Citation
Citation
{Xiong, Yu, Lin, Yang, Lu, Barnes, and Luo} 2019

Citation
Citation
{Yang, Lu, Lin, Shechtman, Wang, and Li} 2017

Citation
Citation
{Yu, Lin, Yang, Shen, Lu, and Huang} 2018

Citation
Citation
{Zheng, Cham, and Cai} 2019

2 SU, QI, PANG, YANG, SONG: SKETCHHEALER: A GRAPH-TO-SEQUENCE NETWORK

Sk
et
ch
R
N
N

O
ur
s

(a) (b) (c)

Figure 1: (a) Kanizsa triangle: human can easily perform completion of missing visual parts.
(b) SketchRNN fails completely on sketch healing task. (c) Exemplary result on how partial
human sketches can be successfully recreated by our proposed SketchHealer.

Others have fixated on human sketches as a medium to gain insight into the human visual
system – to see is to sketch. That is, the sketching process to a large extent reflects the
visual perception of an object. This has triggered a large body of research on human sketch
understanding, some more application oriented [2, 3, 22, 34, 36, 53, 54], others starting to
tackle insightful problems such as sketch synthesis [37], sketch abstraction [31] and sketch
completion [24]. Sketch is commonly perceived to be a more challenging visual modality
compared with photo, because (i) they lack visual features, (ii) they are abstract and iconic,
and (iii) they are sequential in nature.

In this paper, we are also interested in studying sketches. In particular, we would like
to use sketches to understand the visual reasoning problem of devising the whole from parts
(albeit only to a superficial level). We differ significantly to the conventional problem of
image completion. First, we do not treat sketches as pixelated photos, but as a sequence
of strokes (represented in vector format) that reflects the actual drawing process. Further-
more, we require ourselves to generate a novel and complete sketch stroke-by-stroke that
best resembles the partial input, other than just filling in the missing parts. Together, these
constraints deviate us from image completion, and move towards a new problem which we
call sketch healing.

On the outset, sketch healing is akin to the well studied problem of vector sketch synthe-
sis. The pioneering work of SketchRNN [12], for example, already has the ability to generate
realistic human-like sketch drawings at stroke-level, either from a random vector or condi-
tioned on a partial sketch encoding. In hindsight though, we are completely different. We
are not sketching towards a recognisable concept, but a complete sketch that closely resem-
bles the partial input. For example, conditioned on the encoding of a partial butterfly sketch,
SketchRNN is interested in sketching a plausible butterfly; we on the other hand are focusing
on reproducing a complete version of the partial sketch, regardless of knowing whether it is
a butterfly (Fig. 1(b)). We further insist on solving for random droppings of sketch parts as
well, where more than one “hole” appear anywhere on a sketch. This setting is incompatible
with the “completion mode” of SketchRNN, which dictates a strict sequential ordering, i.e.,
the synthesised sketch must be on top of of existing input strokes.

Solving this sketch healing task is non-trivial. It requires a sketch-specific representation
that not only accommodates the unique traits of sketches (abstract and sequential), but also
robust enough towards missing parts. This is made even more challenging since we are
after a more generic healer that works over multiple categories, other than training a single
model per category. In this paper, we resort to the power of Graph Convolutional Networks
(GCN) [10, 21] for that. To encapsulate the temporal trait of sketches, we introduce a novel
sketch graph construction module that organises key sketch parts in accordance with the

Citation
Citation
{Berger, Shamir, Mahler, Carter, and Hodgins} 2013

Citation
Citation
{Cao, Wang, Wang, Li, Zhang, and Zhang} 2010

Citation
Citation
{Li, Pang, Song, Song, Xiang, Hospedales, and Zhang} 2018

Citation
Citation
{Shen, Liu, Shen, and Shao} 2018

Citation
Citation
{Simo-Serra, Iizuka, and Ishikawa} 2018

Citation
Citation
{Yu, Liu, Song, Xiang, Hospedales, and Loy} 2016

Citation
Citation
{Yu, Yang, Liu, Song, Xiang, and Hospedales} 2017

Citation
Citation
{Song, Pang, Song, Xiang, and Hospedales} 2018{}

Citation
Citation
{Riazprotect unhbox voidb@x protect penalty @M {}Muhammad, Yang, Song, Xiang, and Hospedales} 2018

Citation
Citation
{Liu, Deng, Lai, Liu, Ma, and Wang} 2019

Citation
Citation
{Ha and Eck} 2017

Citation
Citation
{Gori, Monfardini, and Scarselli} 2005

Citation
Citation
{Kipf and Welling} 2016

SU, QI, PANG, YANG, SONG: SKETCHHEALER: A GRAPH-TO-SEQUENCE NETWORK 3

order of drawing. More specifically, we select representative stroke points as graph nodes,
and form the edge links via an adjacency matrix based on temporal proximity. To further
tackle the abstract nature of sketches, we sample candidate parts at key stroke junction points
to ensure each part captures the most visual information. At training, we randomly drop a
fixed percentage of nodes from this graph to produce a set of incomplete graphs. It follows
that these partial graphs which correspond to partial sketches are fed into a GCN network to
learn the final graph embedding. Finally we employ the same LSTM decoder as that used by
SketchRNN to output a vectorised sketch stroke-by-stroke. We show this seemingly simple
formulation can already solve the sketch healing problem well, and is able to synthesise
complete sketches better than state-of-the-arts (Fig. 1(c)). The effectiveness of our approach
is however intuitive: (i) the learned graph offers part-oriented and structure-aware sketch
representation that is robust to node removal, and (ii) at testing, the inherent node message
passing mechanism inside GCNs works naturally to fill in the missing gaps.

Our contribution can be summarised as follows: (i) we propose the problem of sketch
healing, as an interesting yet changeling alternative to conventional sketch synthesis, (ii) a
novel graph-to-sequence network is proposed to solve this problem, where an unique sketch
graph construction algorithm is introduced to tackle the unique traits of sketches. We eval-
uate our method on 17 categories selected from QuickDraw [12] dataset and validate its
superiority over two state-of-the-art vector sketch synthesis baselines. We also show inter-
esting vector arithmetic properties, on incomplete sketches and across object categories.

2 Related Work
Vector Sketch Generation Much progress [4, 5, 16, 17, 18, 19, 26, 29, 55, 58] has been
made on image generation tasks both in the supervised [15] and unsupervised settings [20,
50, 59]. Given a cat image, we can now translate to other category of animals [60], render it
in Monet style [23] or even make it 3D animated [35]. This is in stark contrast with the very
few existing works that focus on vector image generation, where its temporal and spatial
nature bring more challenges. The seminal work of [11] propose a sequence-to-sequence
model and for the first time achieved realistic vector handwritten digits generation in a wide
variety of styles. The once continuous data is discretised into a set of points and step-by-step
point prediction is enabled by mixture of density networks. With the availability of large-
scale crowd-sourced sketch datasets, this model is then adapted in [6, 12] and achieved both
unconditional and conditional vector sketch-to-sketch synthesis. Vector sketch generation
is also extended beyond a single domain. [37] propose the first deep stroke-level photo-to-
sketch synthesis model. To cope with the intrinsic noisy supervision of photo-sketch pairs,
they address the limitations of cross-domain image translation models based on multi-task
supervised and unsupervised hybrid learning. In this paper, we study a different problem
– sketch healing, that takes a partial sketch as input and output novel sketch that closely
resembles the input, while others focus on sketch synthesis (i.e., to sketch a recognisable
rendition) [6, 12], and photo-sketch synthesis [37].
Graphical Sketch Representation Graph convolutional network (GCN) [10, 21] was pro-
posed to extend deep neural networks to data with graph structures. By applying GCN-based
models, state-of-the-art performance has been achieved over a range of vision tasks, such as
image classification [7], image captioning [49], scene understanding [47] and 3D mesh de-
formation [30, 41]. The sequential nature of sketch and the visual sparsity it presents make it
an ideal data domain for graphical representations. But only until very recently, GCN-based

Citation
Citation
{Ha and Eck} 2017

Citation
Citation
{Chan, Ginosar, Zhou, and Efros} 2019

Citation
Citation
{Chen and Koltun} 2017

Citation
Citation
{Johnson, Alahi, and Fei-Fei} 2016

Citation
Citation
{Johnson, Gupta, and Fei-Fei} 2018

Citation
Citation
{Karras, Aila, Laine, and Lehtinen} 2017

Citation
Citation
{Karras, Laine, and Aila} 2019

Citation
Citation
{Miyato, Kataoka, Koyama, and Yoshida} 2018

Citation
Citation
{Pumarola, Agudo, Martinez, Sanfeliu, and Moreno-Noguer} 2018

Citation
Citation
{Zhang, Xu, Li, Zhang, Wang, Huang, and Metaxas} 2017{}

Citation
Citation
{Zhou, Liu, Liu, Luo, and Wang} 2019

Citation
Citation
{Isola, Zhu, Zhou, and Efros} 2017

Citation
Citation
{Kim, Cha, Kim, Lee, and Kim} 2017

Citation
Citation
{Yi, Zhang, Tan, and Gong} 2017

Citation
Citation
{Zhu, Park, Isola, and Efros} 2017{}

Citation
Citation
{Zhu, Zhang, Pathak, Darrell, Efros, Wang, and Shechtman} 2017{}

Citation
Citation
{Li, Fang, Yang, Wang, Lu, and Yang} 2017

Citation
Citation
{Shih, Su, Kopf, and Huang} 2020

Citation
Citation
{Graves} 2013

Citation
Citation
{Chen, Tu, Yi, and Xu} 2017

Citation
Citation
{Ha and Eck} 2017

Citation
Citation
{Song, Pang, Song, Xiang, and Hospedales} 2018{}

Citation
Citation
{Chen, Tu, Yi, and Xu} 2017

Citation
Citation
{Ha and Eck} 2017

Citation
Citation
{Song, Pang, Song, Xiang, and Hospedales} 2018{}

Citation
Citation
{Gori, Monfardini, and Scarselli} 2005

Citation
Citation
{Kipf and Welling} 2016

Citation
Citation
{Chen, Wei, Wang, and Guo} 2019

Citation
Citation
{Yao, Pan, Li, and Mei} 2018

Citation
Citation
{Yang, Lu, Lee, Batra, and Parikh} 2018

Citation
Citation
{Ranjan, Bolkart, Sanyal, and Black} 2018

Citation
Citation
{Wang, Zhang, Li, Fu, Liu, and Jiang} 2018{}

4 SU, QI, PANG, YANG, SONG: SKETCHHEALER: A GRAPH-TO-SEQUENCE NETWORK

sketch visual learning were attempted in [45] and [48] for the problem of sketch recognition
and segmentation respectively. They both construct their graph nodes based on the absolute
coordinates of the sampled sketch points and transform them via multi-layer perceptrons and
appropriate pooling methods. In contrast, our proposed SketchHealer uniquely embed the
temporal drawing order to build adjacency matrices.
Image Inpainting/Completion Image inpainting/completion is to synthesise visual con-
tents of a plausible hypothesis in a missing or damaged region. There are two broad lines
of work aiming to tackle this task: exemplary-based methods [1, 8, 9, 43] search and paste
visual patches from other known regions in the gallery. These algorithms work well for
stationary images (e.g., textures) but can lead to complete failure on non-stationary natural
images. Deep generative CNN-based methods [28, 32, 39, 44, 51] directly generate pix-
els inside the missing patch based on the semantics learned from large-scale dataset in an
end-to-end fashion. This usually involves an encoder-decoder paradigm with various key
modifications devised - including partial [25] and gated [52] convolutions, use of contextual
attention modules [38] and adversarial discriminators [14]. User guidance is also explored
to improve inpainting results including edge lines [33], semantic label maps [42] and colour
palettes [56]. To our best knowledge, the only inpainting work on sketches is [24], which
devises a cascade network to refine the completions in an iterative manner. SketchHealer is
fundamentally different in that we not only tackle vector sketches, but also in the very nature
of the problem itself – rather than just filling the holes, it heals a corrupted incomplete sketch
by generating a novel full counterpart.

3 Methodology
Our goal is to recreate a vector sketch S = (s1,s2, . . . ,sn) from its partial version Ŝ. A sketch
is a set of points, where each segment si is constructed between two consecutive points as
a 5 dimensional vector (∆x,∆y, ps1, ps2, ps3). (∆x,∆y) is the offset distance in the x and y
directions of the pen from the previous point. (ps1, ps2, ps3) is a one-hot vector describing
current pen states, where (1,0,0),(0,1,0),(0,0,1) denote touching, lifting and the end of
sketch drawing respectively. Ŝ is obtained from S by randomly removing a proportion n
points. Our key component is a GCN-based encoder, which maps a partial sketch Ŝ of its
graphical form G = (V,E) to a latent vector z ∈ Rdmodel . z is then leveraged as input to
sequentially sample the output sketch S in a LSTM decoder. A schematic illustration is
shown in Fig. 2.

3.1 Sketch Graph Construction
Graph Nodes V We consider two types of points as representative graph nodes: (i) the
starting point of each stroke, which determines the main structural layout; (ii) internal points
sparsely sampled within each single stroke in order to capture a rough path trace. We sample
one graph node in every four points in a stroke throughout this paper. Consequently, a set of
graph nodes V = (v1,v2, . . . ,vm) is a subset of S. While being more compact, V still preserve
the key geometric landmarks of input sketch.
Graph Edges E Temporal-based nearest neighbour strategy is used to construct the edge
links between nodes. That is, for each node vi, we will connect it with the graph nodes
nearby in accordance to their drawing orders in the original sequence of stroke points. We
link vi with its four nearest graph nodes, two prior to its rendering as parent nodes, and two

Citation
Citation
{Xu, Joshi, and Bresson} 2019

Citation
Citation
{Yang, Zhuang, Fu, Zhou, and Zheng} 2020

Citation
Citation
{Barnes, Shechtman, Finkelstein, and Goldman} 2009

Citation
Citation
{Efros and Freeman} 2001

Citation
Citation
{Efros and Leung} 1999

Citation
Citation
{Wilczkowiak, Brostow, Tordoff, and Cipolla} 2005

Citation
Citation
{Pathak, Krahenbuhl, Donahue, Darrell, and Efros} 2016

Citation
Citation
{Sagong, Shin, Kim, Park, and Ko} 2019

Citation
Citation
{Song, Yang, Shen, Wang, Huang, and Kuo} 2018{}

Citation
Citation
{Xiong, Yu, Lin, Yang, Lu, Barnes, and Luo} 2019

Citation
Citation
{Yu, Lin, Yang, Shen, Lu, and Huang} 2018

Citation
Citation
{Liu, Reda, Shih, Wang, Tao, and Catanzaro} 2018

Citation
Citation
{Yu, Lin, Yang, Shen, Lu, and Huang} 2019

Citation
Citation
{Song, Yang, Lin, Liu, Huang, Li, and Jayprotect unhbox voidb@x protect penalty @M {}Kuo} 2018{}

Citation
Citation
{Iizuka, Simo-Serra, and Ishikawa} 2017

Citation
Citation
{Sangkloy, Lu, Fang, Yu, and Hays} 2017

Citation
Citation
{Wang, Liu, Zhu, Tao, Kautz, and Catanzaro} 2018{}

Citation
Citation
{Zhang, Zhu, Isola, Geng, Lin, Yu, and Efros} 2017{}

Citation
Citation
{Liu, Deng, Lai, Liu, Ma, and Wang} 2019

SU, QI, PANG, YANG, SONG: SKETCHHEALER: A GRAPH-TO-SEQUENCE NETWORK 5

GMM

LSTM

Nodes Embedding

Graph Propagation

C
onv2D

x6
R
eLU

M
axPooling

2x2
B
atchN

orm

CNN

[𝑧, (∆𝑥! , ∆𝑦! , 𝑝𝑠!,#, 𝑝𝑠!,$, 𝑝𝑠!,%)]

(∆𝑥!"#, ∆𝑦!"#, 𝑝𝑠!"#,#, 𝑝𝑠!"#,%, 𝑝𝑠!"#,&)

(a) (b) (c) (d) (e)

Patches

Graph

…

…
MLP

Figure 2: A schematic illustration of SketchHealer. (a) A full sketch s in its graph form. For
each graph node vi, a visual patch is cropped out as pi. (b) A corrupted partial sketch Ŝ in
its graph form by masking out a fractional of nodes from S. The associated edge links are
removed as well. (c) Model input: graph G and the visual patches P for Ŝ. (d) GCN-based
encoder. A graph node (green) will attend to its nearest neighbourhood (blue) and the second
nearest (yellow) through graph propagation. (e) LSTM decoder. More details in text.

after its presence as child nodes. An adjacency matrix A ∈Rm×m can then be formed, where
each entry ai j represents the link strength between nodes vi and v j. We empirically found
ai j = 0.3 for edge link between two nearest nodes and ai j = 0.2 for its linkage to a second
nearest node to work well. ai j is zero-valued to indicate no inter-node connections and for
self-connection aii, we simply take its value to 0.5 for regularisation purpose.
Visual Patch P To assign each graph node vi in V = (v1,v2, . . . ,vm) with its associated
visual cue, a local image patch centred around each node is acquired. Specifically, we first
render out a raster sketch image of size 640×640 from its vector format and crop a square
visual patch pi of size 128× 128 based on the normalised coordinate of vi. The relatively
large patch size is to make sure enough informative visual cues are still captured given the
sparse nature of human sketches. A set of node-driven patches P = (p1, p2, . . . , pm) is thus
obtained.
From Full S to Partial Ŝ To form a graph for partial sketch as final input, we randomly
remove a fraction of graph nodes by a probability of pmask and cut the connections in the
resulting edge links. The corresponding image patch pi in P will also become void.

3.2 Model Architecture

GCN-based Encoder Our proposed SketchHealer encoder consists of six convolutional
layers with kernel size 2×2 followed by max pooling and batch normalisation. By feeding
each pi into the encoder, we produce a visual feature vector fvi ∈ Rd for each node vi. Then
feature propagation is executed to form an updated node feature uvi ∈ Rd , where a node
vi attends to all its linked neighbours defined in the adjacency matrix A. Such a spatial-
dependent approach is natural to provide a healing effect for the absence of certain parts and
enables more robust representation. Formally, we formulate this as follows:

uvi =
m

∑
j=1

ai j fv j (1)

We then integrate all node features into a single vector h ∈ Rdmodel for representing Ŝ:

h = (w1,w2, . . . ,wm)× [g(uv1),g(uv2), . . . ,g(uvm)]
T (2)

6 SU, QI, PANG, YANG, SONG: SKETCHHEALER: A GRAPH-TO-SEQUENCE NETWORK

where m is set as the maximum number of nodes among all training sketches (m = 25 in our
case), g : Rd →Rdmodel is a multilayer perceptron (MLP) unit, (w1,w2, . . . ,wm) is a learnable
weight vector to linearly combine the MLP-produced node vectors [g(uv1),g(uv2), . . . ,g(uvm)].
To introduce generative components, h is further projected into two vectors, µ ∈ Rdmodel and
σ ∈Rdmodel , along with a vector of IID Gaussian variablesN (0,1) of size dmodel , to construct
the final latent vector z:

z = µ +σ �N (0,1), µ =Wµ h, σ = exp(
Wσ h

2
) (3)

LSTM Decoder Taking latent vector z as condition, a LSTM decoder is used to sequen-
tially sample output sketch strokes. Concretely, the previous point si−1 together with the
latent vector z are formed as input at each time step, i.e. xi = [si−1;z]. Then the next hidden
state is obtained by [hi;ci] = LST M f orward(xi, [hi−1;ci−1]). Hence, the output is given by
yi = wyhi +by, where vector yi ∈ R6M+3 is then unpacked into a set of parameters:

yi = [(Π,µx,µy,δx,δy,ρxy)1 . . .(Π,µx,µy,δx,δy,ρxy)M(q1,q2,q3)] (4)

where the first M sets of parameters are used to form a Gaussian mixture model (GMM) with
M normal distributions to predict (∆x,∆y) by:

p(∆x,∆y) =
M

∑
j=1

Π jN (∆x,∆y|µx, j,µy, j,δx, j,δy, j,ρxy, j) s.t.
M

∑
j=1

Π j = 1 (5)

The last three parameters (q1,q2,q3) are used to estimate pen state (ps1, ps2, ps3) via a cat-
egorical distribution, i.e. psk =

exp(qk)

∑
3
j=1 exp(qk)

,k = 1,2,3. Refer to [12] for more details.

3.3 Model Learning and Deployment
Learning Objectives To train a multi-class generator, we follow [6] to remove the KL-
divergence term, and only seek to maximise the posterior probability qφ (z|Ŝ) of the generated
data points to the target data distribution pθ (S|z). The objective function is defined as:

minEqφ (z|Ŝ)[log pθ (S|z)] (6)

SketchHealer Deployment Once trained, it is straightforward to apply the SketchHealer.
Given a latent vector z encoded from a corrupted sketch input, we feed it together with a
manually-defined starting point (∆x = 0,∆y = 0, ps1 = 1, ps2 = 0, ps3 = 0) into the LSTM
decoder. The generated data point will be fed again with z to produce the next data point in
a recurrent manner, until the stop signal is reached, i.e. (ps1 = 0, ps2 = 0, ps3 = 1).

4 Experiment

4.1 Experimental Setting
Dataset We evaluate our proposed model on QuickDraw [13], which is the largest human
sketch drawing dataset to date. It provides over 50M vector sketches across 345 object
categories, where we select a subset for our experiments. In particular, the 17 categories
we choose generally respect the following rules: (i) both complex and simple drawings

Citation
Citation
{Ha and Eck} 2017

Citation
Citation
{Chen, Tu, Yi, and Xu} 2017

Citation
Citation
{Ha and Eck} 2018

SU, QI, PANG, YANG, SONG: SKETCHHEALER: A GRAPH-TO-SEQUENCE NETWORK 7

are included, e.g. angel and belt; (ii) instances inside categories exhibit similar global
appearances but only differ in very local subtle details. e.g. cat and pig; (iii) common life
object category contains diverse sub-category variations, e.g. bus, umbrella and clock.
A full list can be found in Fig. 6(a). For each class, 70,000 sketches are used for training,
and 2,500 for testing for each class.
Baselines To our best knowledge, there are two conditional vector sketch generation frame-
works publicly available, SketchRNN [12] and SketchPix2seq [6], both of which we com-
pare with. SketchRNN is a sequence-to-sequence model that takes in the offset distance
between consecutive points as temporal input. For fair comparison, we retrain SketchRNN
without KL-divergence term, which is shown to be beneficial for multi-class scenario. Sketch-
Pix2seq differs in its convolutional encoder, which scraps the temporal sequential point rep-
resentation of sketches and accepts raster sketch image input instead, with the hope for better
visual learning via CNNs. We note these baselines were not specifically designed for the
sketch healing task, yet they still represent the closest alternatives and are procedural-wise
compatible once re-purposed.
Evaluation protocol Apart from qualitative comparisons, we design two metrics to allow
quantitative evaluations. Our measures specifically answer two questions: (i) how recognis-
able are the vector sketches generated by different models? (ii) how recognisable are the
latent vectors encoded by different type of encoders? A good score for the former requires
the sketches healed from their partial parts to be realistic and diverse, while the latter calls
for a strong healing ability from encoders to produce robust feature representations. More
specifically, we formulate two metrics: (i) sketch recognition accuracy: we train a multi-
category classifier by AlexNet using the all the training split of 345 categories in QuickDraw
dataset. The classifier is then used to assign a class label to measure how recognisable a gen-
erated sketch is. 2500 testing sketches from each of 17 categories are used for this purpose.
(ii) sketch-to-sketch retrieval accuracy: The resulting feature from an encoder is expected
to retrieve sketches of the same label in the gallery. We form our query with 500 testing
sketches from each of the 17 categories and the rest as gallery.
Implementation details Our model is implemented on PyTorch [27] with a single Nvidia
Tesla T4 GPU. The Adam optimiser is used with the parameters β1 = 0.9, β2 = 0.999 and
ε = 10−8. The learning rate is set to 10−3 with a decay rate of 0.999 every iteration.
The proportion of stroke points to mask out during model training is set as a fixed value
of pmask = 10%, and tested for different level of sketch corruptions. Code is available at
https://github.com/sgybupt/SketchHealer.

4.2 Results

Qualitative results We illustrate some examples produced by our SketchHealer under dif-
ferent values of pmask in Fig. 3. The following observations can be made: (i) SketchHealer
is not only able to render a novel sketch just like humans do, but can also faithfully recreate
the essential subtle visual elements even when the majority part of specific visual cues are
missing in the partial input. For example, the halo over the head of angle keeps presented up
to pmask = 70%, despite the input sometimes only shows very weak evidence of halo visual
signals. (ii) Given one human sketch and different random removals of visual elements on
different levels, SketchHealer delivers consistent generation results - albeit subtle details are
uniquely rendered, global appearances and structures are unanimously kept. (iii) The sen-
sitiveness of our proposed model to different corruption levels of inputs vary across object
categories. But overall, the model performs reasonably well when pmask ≤ 50%. We further

Citation
Citation
{Ha and Eck} 2017

Citation
Citation
{Chen, Tu, Yi, and Xu} 2017

Citation
Citation
{Paszke, Gross, Chintala, Chanan, Yang, DeVito, Lin, Desmaison, Antiga, and Lerer} 2017

https://github.com/sgybupt/SketchHealer

8 SU, QI, PANG, YANG, SONG: SKETCHHEALER: A GRAPH-TO-SEQUENCE NETWORK

𝑃!"#$

10%

30%

50%

70%

90%

Input Output Input Output Input Output Input Output Input Output

Angle Butterfly Cake Bus Sheep

Input Output

Alarm
Clock

Figure 3: Exemplary results of SketchHealer under different corruption values of pmask.

Sk
et
ch
R
N
N

O
ur
s

Sk
et
ch
Pi
x2
se
q

Figure 4: Qualitative comparisons between the proposed SketchHealer and two other state-
of-the-art baseline methods. pmask = 10% throughout.

qualitatively compare with two baselines in Fig. 4. Even under a corruption level of 10%,
SketchRNN completely fails to recreate a desired vector sketch. And while SketchPix2seq
performs considerably better, its gap with SketchHealer is significant: see how the wings
of the angle and butterfly get healed in multiple generative renderings using our proposed
method.
Quantitative results We compare the performance of different models under the two met-
rics (Sec. 4.1) in Table. 1 and Table. 2: (i) Under the recognition metric, SketchHealer beats
two baselines when pmask 6= 0. Interestingly, when the un-corrupted full sketch is fed as
input, SketchRNN achieves the best score, but collapses dramatically even when only 10%
of stroke points are masked out and a complete failure when the proportion rises to 30%.
(ii) Under the retrieval metric, our model still outperforms all baselines. However, this time,
the significant improvement over SketchRNN even manifests in the full sketch input. This
suggests that our GCN-based encoder is not limited to the scenario for healing partial vec-
tor data input, but applicable to discriminative modelling of sequential data at large. (iii)
Compared with baseline methods, our GCN-based encoder also shows surprisingly stable
behaviour when the corrupted level of sketch input increases. In particular, its discrimina-
tive power seems not to be affected at all. We also visualise some sketch-to-sketch retrieval

SU, QI, PANG, YANG, SONG: SKETCHHEALER: A GRAPH-TO-SEQUENCE NETWORK 9

Ours@10% Ours@30%

SketchPix2seq@10% SketchRNN@10%

Figure 5: Qualitative comparisons for sketch-to-sketch retrieval results. Top 5 is returned.
Red bounding box indicates false positive from wrong category.

Table 1: Recognition result(%) obtained from generated sketch.

Competitor Top1 Top3 Top5 Top10
Human 71.99 87.42 91.48 94.86
SketchRNN@0% 57.98 75.59 81.92 88.02
SketchPix2seq@0% 22.14 30.11 34.46 40.56
Ours@0% 50.64 65.63 70.61 76.71
SketchRNN@10% 24.41 39.12 46.23 56.28
SketchPix2seq@10% 21.88 28.50 31.92 36.91
Ours@10% 49.77 64.76 69.92 76.08
SketchRNN@30% 3.14 7.14 10.25 15.91
SketchPix2seq@30% 9.51 13.40 16.06 20.26
Ours@30% 42.25 56.81 62.14 68.75

Table 2: Retrieval result(%) obtained on encoded z.

Competitor Top1 Top3 Top5 Top10
SketchRNN@0% 64.59 79.61 84.92 90.82
SketchPix2seq@0% 61.29 79.48 85.14 91.54
Ours@0% 85.68 93.45 94.98 96.86
SketchRNN@10% 50.65 69.76 77.60 86.21
SketchPix2seq@10% 45.20 68.34 77.54 87.09
Ours@10% 85.74 93.08 95.01 96.89
SketchRNN@30% 43.48 63.67 72.03 82.39
SketchPix2seq@30% 27.66 51.82 63.52 78.99
Ours@30% 85.47 93.01 94.89 96.79

results in Fig. 5. Even under mild condition where pmask = 10%, SketchRNN and Sketch-
Pix2seq have clearly many more false positives. In contrast, our GCN-based encoder is not
only category-discriminative in the more challenging setting (pmask = 30%), but also learns
to respect finer-grained details (e.g. the dense side-by-side windows of the bus).
Human Study We further conduct a human study to verify the subjective quality of syn-
thesised sketches. We first recruit a total of 10 human judges. 50 sketch samples are then
randomly selected across all 17 categories, where each sample has two corrupted versions
associated, at mask ratio pmask = 10% and pmask = 30%, respectively. For each corrupted
sketch, we generate a triplet of healed sketches using different methods (Ours, SketchRNN
[12], SketchPix2seq [6]), where the ordering is randomised. We show each participant, the
corrupted input sketch, and the triplet of healed ones at once. Each participant is then asked
to mark one from the triplet that they think the best resembles the corrupted sketch. Results
in Table. 3 show where the selected best healed sketches come from. It clearly reveals that
sketches recreated by ours are more likely to be chosen as the best, and the superiority is
further enhanced when increasing the corruption level of input sketch.

Table 3: Human study results(%).

SketchRNN SketchPix2seq Ours
pmask = 10% 15.05 14.97 69.98
pmask = 30% 11.16 12.72 76.12

Citation
Citation
{Ha and Eck} 2017

Citation
Citation
{Chen, Tu, Yi, and Xu} 2017

10 SU, QI, PANG, YANG, SONG: SKETCHHEALER: A GRAPH-TO-SEQUENCE NETWORK

airplane
alarm clock
angel
apple
belt
bus
butterfly
cake
cat
clock
eye
fish
pig
sheep
spider
umbrella
The Great Wall

=+

=+

=+

=+

=+

(a) (b)

Figure 6: (a) Latent space visualisation by t-SNE. (b) Sketch drawing analogy.

4.3 Further analysis

Visualisation of z To further visualise the discriminative power of GCN-based encoder, we
randomly select 100 sketches for each class in the test set, and visualise their latent vectors
z using t-SNE in Fig. 6(a). We can observe that (i) Intra-category instances tend to cluster
together, indicating category-level discriminative understanding has been achieved yet in an
unsupervised way. (ii) Semantically similar categories sit closer and partly overlap, e.g. cat
and pig, while distinct categories, e.g. bus and umbrella, are pushed further away.
Vector Arithmetic on z The result in Fig. 3 suggests that latent vector z encodes control-
lable conceptual feature for corrupted partial sketch. In this section, we want to find out
whether we can use the features in z to augment another z without such feature. We con-
duct vector addition on z from two visually distinct partial sketches and feed the sum to the
decoder. Fig. 6(b) shows some successful examples. See how a corrupted pig sketch plus a
partial sheep transforms into a novel rendering with visual traits from both.

5 Conclusion

We introduced the problem of sketch healing that asks a new question: given a partial sketch,
can we synthesise a complete and novel sketch that best resembles the partial input. We
achieved this by introducing a graph model that importantly gives us both feature robust-
ness and flexibility in handling missing information. On graph construction, we uniquely
encapsulated two unique traits of sketches (temporal and abstract) to make the graph model
more sketch-specific. By experiments, we show SketchHealer is able to consistently produce
complete sketches that closely resemble the partial input, whereas alternatives re-purposed
for the problem work less well.

6 Acknowledgement

This work was supported by the National Natural Science Foundation of China (NSFC)
under 61601042 and 61671078, and conducted while Yonggang Qi was visiting SketchX
Lab under China Scholarship Council (CSC) funding 201906475001.

SU, QI, PANG, YANG, SONG: SKETCHHEALER: A GRAPH-TO-SEQUENCE NETWORK 11

References
[1] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B Goldman. Patchmatch:

A randomized correspondence algorithm for structural image editing. In ACM Trans-
actions on Graphics (ToG), 2009.

[2] Itamar Berger, Ariel Shamir, Moshe Mahler, Elizabeth Carter, and Jessica Hodgins.
Style and abstraction in portrait sketching. ACM Transactions on Graphics (TOG),
2013.

[3] Yang Cao, Hai Wang, Changhu Wang, Zhiwei Li, Liqing Zhang, and Lei Zhang.
Mindfinder: interactive sketch-based image search on millions of images. In ACMMM,
2010.

[4] Caroline Chan, Shiry Ginosar, Tinghui Zhou, and Alexei A Efros. Everybody dance
now. In ICCV, 2019.

[5] Qifeng Chen and Vladlen Koltun. Photographic image synthesis with cascaded refine-
ment networks. In ICCV, 2017.

[6] Yajing Chen, Shikui Tu, Yuqi Yi, and Lei Xu. Sketch-pix2seq: a model to generate
sketches of multiple categories. arXiv preprint arXiv:1709.04121, 2017.

[7] Zhao-Min Chen, Xiu-Shen Wei, Peng Wang, and Yanwen Guo. Multi-label image
recognition with graph convolutional networks. In CVPR, 2019.

[8] Alexei A Efros and William T Freeman. Image quilting for texture synthesis and trans-
fer. In Proceedings of the 28th annual conference on Computer graphics and interactive
techniques, 2001.

[9] Alexei A Efros and Thomas K Leung. Texture synthesis by non-parametric sampling.
In ICCV, 1999.

[10] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in
graph domains. In IJCNN. IEEE, 2005.

[11] Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013.

[12] David Ha and Douglas Eck. A neural representation of sketch drawings. arXiv preprint
arXiv:1704.03477, 2017.

[13] David Ha and Douglas Eck. The quick, draw! dataset. https://github.com/
googlecreativelab/quickdraw-dataset, 2018.

[14] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. Globally and locally consis-
tent image completion. ACM Transactions on Graphics (ToG), 2017.

[15] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image trans-
lation with conditional adversarial networks. In CVPR, 2017.

[16] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Perceptual losses for real-time style
transfer and super-resolution. In ECCV, 2016.

https://github.com/googlecreativelab/quickdraw-dataset
https://github.com/googlecreativelab/quickdraw-dataset

12 SU, QI, PANG, YANG, SONG: SKETCHHEALER: A GRAPH-TO-SEQUENCE NETWORK

[17] Justin Johnson, Agrim Gupta, and Li Fei-Fei. Image generation from scene graphs. In
CVPR, pages 1219–1228, 2018.

[18] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of
gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196,
2017.

[19] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for
generative adversarial networks. In CVPR, 2019.

[20] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, and Jiwon Kim. Learning
to discover cross-domain relations with generative adversarial networks. In ICML,
2017.

[21] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolu-
tional networks. ICPR, 2016.

[22] Ke Li, Kaiyue Pang, Jifei Song, Yi-Zhe Song, Tao Xiang, Timothy M Hospedales, and
Honggang Zhang. Universal sketch perceptual grouping. In ECCV, 2018.

[23] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin Lu, and Ming-Hsuan Yang.
Universal style transfer via feature transforms. In NIPS, 2017.

[24] Fang Liu, Xiaoming Deng, Yu-Kun Lai, Yong-Jin Liu, Cuixia Ma, and Hongan Wang.
Sketchgan: Joint sketch completion and recognition with generative adversarial net-
work. In CVPR, 2019.

[25] Guilin Liu, Fitsum A Reda, Kevin J Shih, Ting-Chun Wang, Andrew Tao, and Bryan
Catanzaro. Image inpainting for irregular holes using partial convolutions. In ECCV,
2018.

[26] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral
normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957,
2018.

[27] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. 2017.

[28] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros.
Context encoders: Feature learning by inpainting. In CVPR, 2016.

[29] Albert Pumarola, Antonio Agudo, Aleix M Martinez, Alberto Sanfeliu, and Francesc
Moreno-Noguer. Ganimation: Anatomically-aware facial animation from a single im-
age. In ECCV, 2018.

[30] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and Michael J Black. Generating 3d
faces using convolutional mesh autoencoders. In ECCV, 2018.

[31] Umar Riaz Muhammad, Yongxin Yang, Yi-Zhe Song, Tao Xiang, and Timothy M
Hospedales. Learning deep sketch abstraction. In CVPR, 2018.

SU, QI, PANG, YANG, SONG: SKETCHHEALER: A GRAPH-TO-SEQUENCE NETWORK 13

[32] Min-cheol Sagong, Yong-goo Shin, Seung-wook Kim, Seung Park, and Sung-jea Ko.
Pepsi: Fast image inpainting with parallel decoding network. In CVPR, 2019.

[33] Patsorn Sangkloy, Jingwan Lu, Chen Fang, Fisher Yu, and James Hays. Scribbler:
Controlling deep image synthesis with sketch and color. In CVPR, 2017.

[34] Yuming Shen, Li Liu, Fumin Shen, and Ling Shao. Zero-shot sketch-image hashing.
In CVPR, 2018.

[35] Meng-Li Shih, Shih-Yang Su, Johannes Kopf, and Jia-Bin Huang. 3d photography
using context-aware layered depth inpainting. In CVPR, 2020.

[36] Edgar Simo-Serra, Satoshi Iizuka, and Hiroshi Ishikawa. Mastering sketching: adver-
sarial augmentation for structured prediction. ACM Transactions on Graphics (TOG),
2018.

[37] Jifei Song, Kaiyue Pang, Yi-Zhe Song, Tao Xiang, and Timothy M Hospedales. Learn-
ing to sketch with shortcut cycle consistency. In CVPR, 2018.

[38] Yuhang Song, Chao Yang, Zhe Lin, Xiaofeng Liu, Qin Huang, Hao Li, and C-C
Jay Kuo. Contextual-based image inpainting: Infer, match, and translate. In ECCV,
2018.

[39] Yuhang Song, Chao Yang, Yeji Shen, Peng Wang, Qin Huang, and C-C Jay Kuo.
Spg-net: Segmentation prediction and guidance network for image inpainting. arXiv
preprint arXiv:1805.03356, 2018.

[40] Catherine Tallon, Olivier Bertrand, Patrick Bouchet, and Jacques Pernier. Gamma-
range activity evoked by coherent visual stimuli in humans. European Journal of Neu-
roscience, 7(6):1285–1291, 1995.

[41] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Liu, and Yu-Gang Jiang.
Pixel2mesh: Generating 3d mesh models from single rgb images. In ECCV, 2018.

[42] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and Bryan
Catanzaro. High-resolution image synthesis and semantic manipulation with condi-
tional gans. In CVPR, 2018.

[43] Marta Wilczkowiak, Gabriel J Brostow, Ben Tordoff, and Roberto Cipolla. Hole filling
through photomontage. In BMVC, 2005.

[44] Wei Xiong, Jiahui Yu, Zhe Lin, Jimei Yang, Xin Lu, Connelly Barnes, and Jiebo Luo.
Foreground-aware image inpainting. In CVPR, 2019.

[45] Peng Xu, Chaitanya K Joshi, and Xavier Bresson. Multi-graph transformer for free-
hand sketch recognition. arXiv preprint arXiv:1912.11258, 2019.

[46] Chao Yang, Xin Lu, Zhe Lin, Eli Shechtman, Oliver Wang, and Hao Li. High-
resolution image inpainting using multi-scale neural patch synthesis. In CVPR, 2017.

[47] Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi Parikh. Graph r-cnn for
scene graph generation. In ECCV, 2018.

14 SU, QI, PANG, YANG, SONG: SKETCHHEALER: A GRAPH-TO-SEQUENCE NETWORK

[48] Lumin Yang, Jiajie Zhuang, Hongbo Fu, Kun Zhou, and Youyi Zheng. Sketchgcn:
Semantic sketch segmentation with graph convolutional networks. CVPR, 2020.

[49] Ting Yao, Yingwei Pan, Yehao Li, and Tao Mei. Exploring visual relationship for
image captioning. In ECCV, 2018.

[50] Zili Yi, Hao Zhang, Ping Tan, and Minglun Gong. Dualgan: Unsupervised dual learn-
ing for image-to-image translation. In ICCV, 2017.

[51] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang. Gener-
ative image inpainting with contextual attention. In CVPR, 2018.

[52] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang. Free-
form image inpainting with gated convolution. In ICCV, 2019.

[53] Qian Yu, Feng Liu, Yi-Zhe Song, Tao Xiang, Timothy M Hospedales, and Chen-
Change Loy. Sketch me that shoe. In CVPR, 2016.

[54] Qian Yu, Yongxin Yang, Feng Liu, Yi-Zhe Song, Tao Xiang, and Timothy M
Hospedales. Sketch-a-net: A deep neural network that beats humans. IJCV, 2017.

[55] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xiaogang Wang, Xiaolei Huang,
and Dimitris N Metaxas. Stackgan: Text to photo-realistic image synthesis with stacked
generative adversarial networks. In ICCV, 2017.

[56] Richard Zhang, Jun-Yan Zhu, Phillip Isola, Xinyang Geng, Angela S Lin, Tianhe Yu,
and Alexei A Efros. Real-time user-guided image colorization with learned deep priors.
arXiv preprint arXiv:1705.02999, 2017.

[57] Chuanxia Zheng, Tat-Jen Cham, and Jianfei Cai. Pluralistic image completion. In
CVPR, 2019.

[58] Hang Zhou, Yu Liu, Ziwei Liu, Ping Luo, and Xiaogang Wang. Talking face generation
by adversarially disentangled audio-visual representation. In AAAI, 2019.

[59] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-
image translation using cycle-consistent adversarial networks. In ICCV, 2017.

[60] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell, Alexei A Efros, Oliver
Wang, and Eli Shechtman. Toward multimodal image-to-image translation. In NIPS,
2017.

