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Abstract

Current anchor-free object detectors label all the features that spatially fall inside a
predefined central region of a ground-truth box as positive. This approach causes la-
bel noise during training, since some of these positively labeled features may be on the
background or an occluder object, or they are simply not discriminative features. In this
paper, we propose a new labeling strategy aimed to reduce the label noise in anchor-free
detectors. We sum-pool predictions stemming from individual features into a single pre-
diction. This allows the model to reduce the contributions of non-discriminatory features
during training. We develop a new one-stage, anchor-free object detector, PPDet, to em-
ploy this labeling strategy during training and a similar prediction pooling method during
inference. On the COCO dataset, PPDet achieves the best performance among anchor-
free top-down detectors and performs on-par with the other state-of-the-art methods. It
also outperforms all major one-stage and two-stage methods in small object detection
(APS 31.4). Code is available at https://github.com/nerminsamet/ppdet.

1 Introduction
Early deep learning based object detectors were two-stage, proposal driven methods [7, 22].
In the first stage, a sparse set of object proposals are generated and a convolutional neural
network (CNN) categorizes them in the second stage. Later, the idea of unified detection in
a single stage has gained increasing attention [6, 14, 16, 21], where proposals were replaced
with predefined anchors. On the one hand, anchors have to cover the image densely (in
terms of location, shape and scale) so as to maximize recall; on the other hand, their number
should be kept at a minimum to reduce both the inference time and the imbalance problems
[19] they create during training.

A considerable amount of effort has been spent on addressing the drawbacks of anchors:
several methods have been proposed to improve the quality of anchors [27, 29], to address
the extreme foreground-background imbalance [14, 19, 24], and recently, one-stage anchor-
free methods have been developed. There are two main groups of prominent approaches in
anchor-free object detection. The first group is keypoint based, bottom-up methods, popu-
larized after the pioneering work CornerNet [11]. These detectors [4, 11, 17, 32] first detect
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Figure 1: Three sample detections by PPDet, from left to right: surfboard, laptop and racket.
The colored dots show the locations whose predictions are pooled to generate the final detec-
tion shown in the green bounding box. The color denotes the contribution weight. Highest
contributions are coming from the objects and not occluders or background areas. Images
are from COCO val2017 set.

keypoints (e.g. corners, center and extreme points) of objects, and then group them to yield
whole-object detections. The second group of anchor-free object detectors [10, 25, 33] fol-
low a top-down approach, and directly predict class and bounding box coordinates at each
location in the final feature map(s).

One important aspect of object detector training is the strategy used to label object can-
didates, which could be proposals, anchors or locations (i.e. features) in the final feature
map. In order to label a candidate ‘positive’ (foreground) or ‘negative’ (background) dur-
ing training, a variety of strategies have been proposed, based on Intersection over Union
(IoU) [3, 14, 16, 22], keypoints [4, 11, 17, 32] and relative location to a ground-truth
box [10, 25, 26]. Specifically in top-down anchor-free object detectors, after the input image
is passed through the backbone feature extractor and the FPN [13], features that spatially
fall inside a ground-truth box are labeled as positive and others as negative – there is also
an “ignore” region in between. Each of these positively-labeled features contributes to the
loss function as a separate prediction. The problem with this approach is that some of these
positive labels might be plain-wrong or of poor quality, hence, they inject label noise during
training. Noisy labels come from (i) non-discriminatory features that are on the object, (ii)
background features within the ground-truth box, and (iii) occluders (Fig. 1). In this pa-
per, we propose an anchor-free object detection method, which relaxes the positive labeling
strategy so that the model is able to reduce the contributions of non-discriminatory features
during training. In accordance with this training strategy, our object detector employs an
inference method where highly-overlapping predictions enforce each other.

In our method, during training, we define a “positive area” within a ground-truth (GT)
box, which is co-centric and has the same shape with the GT box. We experimentally adjust
the size of the positive area relative to the GT box. As this is an anchor-free method, each fea-
ture (i.e. location in the final feature maps) predicts a class probability vector and bounding
box coordinates. The class predictions from the positive area of a GT box get pooled together
and contribute to the loss as a single prediction. This sum-pooling alleviates the noisy-labels
problem mentioned above since the contributions of features from non-object (background
or occluded) areas, and non-discriminatory features are automatically down weighted dur-
ing training. At inference, class probabilities of highly overlapping boxes are again pooled
together to obtain the final class probabilities. We name our method as “PPDet”, which is
short for “prediction pooling detector.”

Our contributions with this work are two fold: (i) a relaxed labelling strategy, which
allows the model to reduce the contribution of non-discriminatory features during training,
and (ii) a new object detection method, PPDet, which uses this strategy for training and a new
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inference procedure based on prediction pooling. We show the effectiveness of our proposal
on the COCO dataset. PPDet outperforms all anchor-free top-down detectors and performs
on-par with the other state-of-the-art methods. PPDet is especially effective for detecting
small objects (31.4 APS, better than state-of-the-art).

2 Related Work
Apart from the classical one-stage [6, 14, 16, 21] vs. two-stage [3, 7, 22] categorization
of object detectors, we can also categorize the current approaches into two: anchor-based
and anchor-free. Top-down anchor-free object detectors simplify the training process by
eliminating complex IoU operations and focus on identifying the regions that may contain
objects. In that sense, FCOS [25], FSAF [33] and FoveaBox [10] first map GT boxes onto the
FPN levels, then label the locations, i.e. features, as positive or negative based on whether
they are inside a GT box. Bounding box prediction is only for positively-labeled locations.
FoveaBox [10] and FSAF [33] define three areas for each object instance; positive area,
ignore area and negative area. FoveaBox defines the positive (fovea) area as the region
which is co-centric with the GT box, and whose dimensions are scaled by a (shrink) factor
0.3. All locations within this positive area are labeled as positive. Similarly, another area
is obtained using a shrink factor of 0.4. Any location that is outside this area is labeled as
negative. If a location is neither positive nor negative, it is ignored during training. FSAF
follows the same approach and uses shrink factors 0.2 and 0.5, respectively. Instead of
having pre-defined discrete areas as in [10, 26, 33], FCOS down-weights the features based
on their distance to the center using a centerness branch. FCOS and FoveaBox implement
static feature-pyramid level selection where they assign objects to levels based on GT box
scale and GT box regression distance, respectively. Unlike them, FSAF relaxes the feature
selection step and dynamically assigns each object to the most suitable feature-pyramid level.

Bottom-up anchor-free object detection methods [4, 11, 17, 32] aim to detect certain
keypoints of objects, such as corners and the center. Their labeling strategy uses heatmaps,
and in this sense, it is considerably different from that of top-down anchor-free methods.
More recently, HoughNet, a novel, bottom-up voting-based method that can utilize both near
and long-range evidence to detect object centers, has shown comparable performance with
major one-stage and two-stage top-down methods [23].

In the anchor-based approaches [3, 14, 16, 21, 22, 26, 31], objects are predicted from
regressed anchor boxes. During training, the label of an anchor box is determined based on
its intersection over union (IoU) with a GT box. Different detectors use different criteria,
e.g. Faster RCNN [22] labels an anchor as positive if IoU > 0.7, and negative if IoU < 0.3;
R-FCN [3], SSD [16] and Retinanet [14] use IoU > 0.5 for positive labeling but slightly dif-
ferent criterias for negative labeling. There are two prominent anchor-based methods which
directly address the labeling problem. Guided Anchoring [26] introduces a new adaptive
anchoring scheme that learns arbitrary shaped boxes instead of dense and predefined ones.
Similar to FSAF [33], FoveaBox [10] and our method PPDet, Guided Anchoring follows
region based labelling and defines three types of regions for each ground-truth object; cen-
ter region, ignore region and outside region, and labels the generated anchors positive if it
resides inside the center region, negative if in outside region and ignores the rest. On the
other hand, FreeAnchor [31] applies the idea of relaxing positive labels for anchor-based de-
tectors. This is the most similar method to ours. It replaces hand-crafted anchor assignment
with a maximum likelihood estimation procedure, where anchors are set free to choose their
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Figure 2: Prediction pooling during training of PPDet. For simplicity, it is illustrated on a
single FPN level and the bounding box regression branch is not shown. Blue and red cells are
foreground cells. Same color foreground cells, each of which is a C-dimensional vector, are
pooled, i.e. summed together, to form the final prediction score for the corresponding object.
These pooled scores (i.e., pperson, pfrisbee), are fed to the loss function (i.e., focal loss).(Best
viewed in color.)

GT box. Since FreeAnchor is optimizing object-anchor matching using a customized loss
function, it can not be directly applied to anchor-free object detectors.

3 Methods

Labeling strategy and training. Anchor-free detectors limit prediction of GT boxes by
assigning them to appropriate FPN levels based on their scales [10] or target regression
distances [25]. Here, we follow the scale-based assignment strategy [10] since it is a way of
naturally associating GT boxes with feature pyramid levels. Then, we construct two different
regions for each GT box. We define the “positive area” as the region that is co-centric with
the GT box and having the same shape as the GT box. We experimentally set the size
of the “positive area”. Then, we identify all the locations (i.e. features) that spatially fall
inside the “positive area” of a GT box as “positive (foreground)” features and the rest as
“negative (background)” features. Each positive feature is assigned to the ground-truth box
that contains it. In Figure 2, blue and red cells represent foreground cells and the rest (empty
or white) are background cells. The blue cells are assigned to the frisbee object and the red
cells to the person object. To obtain the final detection score for an object instance, we pool
the classification scores of all the features that are assigned to that object, by adding them
together to obtain a final C-dimensional vector where C is the number of the classes. All
features except the positively labelled ones are negatives. Each negative feature contributes
individually to the loss (i.e. no pooling). This final prediction vector is fed to the focal loss
(FL). For example, suppose {pi|i = 1,2, . . . ,N} represent the red, foreground features that
are assigned to the person object in Figure 2. Let y be the ground-truth, one-hot vector for
the person class. Then, this particular object instance contributes “FL(∑i pi,y)” to the loss
function in training. Each object instance is represented with a single prediction.

By default, we assign positive features to the object instance of the box they are in. At
this point, assignment of features in the intersection areas of different GT boxes is an issue to
be handled. In such cases, we assign those features to the GT box with the smallest distance
to their centers. Similar to other anchor-free methods [10, 25, 32, 33], in our model each
foreground feature assigned to an object is trained to predict the coordinates of its object’s
GT box.
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Figure 3: (Left) Illustration of PPDet’s inference pipeline. Predicted boxes for person and
snowboard are shown in red and blue, respectively. Red and blue boxes vote for each other
among themselves. See text for details. (Right) A pooling example. The dashed-boundary
red boxes vote for the solid red box and the dashed-boundary blue boxes vote for the solid
blue box. Final scores (after aggregation) of solid boxes are shown.

We use the focal loss [14] (α = 0.4 and γ = 1.5) for the classification branch and smooth
L1 loss [7] for the regression branch.

Inference. Inference pipeline of PPDet is given in Figure 3. First, the input image is fed
to a backbone neural network model (described in the next section) which produces the
initial set of detections. Each detection is associated with (i) a bounding box, (ii) an object
class (chosen as the class with maximum probability) and (iii) a confidence score. Within
these detections, those labeled with the background class are eliminated. We consider each
remaining detection at this stage as a vote for the object that it belongs to, where the box is
an hypothesis for the location of the object and the confidence score is the strength of the
vote. Next, these detections are pooled together as follows. If two detections belonging to
the same object class overlap more than a certain amount (i.e. intersection over union (IoU)
> 0.6), then we consider them as voting for the same object and the score of each detection is
increased by k(IoU−1.0) times the score of the other detection, where k is a constant. The more
the IoU, the higher the increase. After applying this process to every pair of detections, we
obtain the scores for final detections. This step is followed by the class aware non-maxima
suppression (NMS) operation which yields the final detections.

Note that although the prediction pooling used in inference might seem to be different
from the pooling employed in training, in fact, they are the same process. The pooling used
in training makes the assumption that the bounding boxes predicted by the features in the
positive area overlap among each other perfectly (i.e. IoU=1).

Network architecture. PPDet uses the network model of RetinaNet [14] which consists
of a backbone convolutional neural network (CNN) followed by a feature pyramid network
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(FPN) [13]. The FPN computes a multi-scale feature representation and produces feature
maps at five different scales. There are two separate, parallel networks on the top of each
FPN layer, namely classification network and regression network. The classification net-
work outputs a W ×H×C tensor where W and H are spatial dimensions (width and height,
respectively) and C is the number of the classes. Similarly, the regression network outputs a
W ×H×4 tensor where 4 is the number of bounding box coordinates. We refer to each pixel
in these tensors as a feature.

4 Experiments

This section describes the experiments we conducted to show the effectiveness of our pro-
posed method. First, we present ablation experiments to find the optimal relative area of
the positive region within GT boxes and the regression loss weight. Next, we present sev-
eral performance comparisons on the COCO dataset. Finally, we provide sample heatmaps
which show the GT box relative locations of features responsible for correct detections.

Implementation Details. We use Feature Pyramid Network (FPN) [13] on top of ResNet [9]
and ResNeXt [28] as our backbone networks for ablations and state of the art comparison,
respectively. For all experiments, we resize the images such that their shorter side is 800 pix-
els and longer side is maximum 1300 pixels. The constant k used in vote aggregation (i.e.,
kIoU−1) was set to 40 experimentally. We trained all of the experiments on 4 Tesla V100
GPUs, and tested using a single Tesla V100 GPU. We used MMDetection [2] framework
with Pytorch [20] to implement our models.

4.1 Ablation Experiments

Unless stated otherwise, in ablation experiments we used ResNet-50 with FPN backbone.
They are trained with a batch size of 16 for 12 epochs using stochastic gradient descent
(SGD) with weight decay of 0.0001 and momentum of 0.9. Initial learning rate 0.01 was
dropped 10× at epochs 8 and 11. All ablation models are trained on COCO [12] train2017
dataset and tested on val2017 set.

Size of the “positive area”. As explained before, we define the “positive area” as the
region that is co-centric with the GT box and that has the same shape as the GT box. We
adjust the size of this “positive area” by multiplying its width and height with a shrink factor.
We experimented with shrink factors between 1.0 and 0.2. Performance results are presented
in Table 1. From shrink factor 1.0 to 0.4, AP increases, however, after that point performance
degrades dramatically. Based on this ablation, we set the shrink factor to 0.4 for the rest of
our experiments.

Regression loss weight. To find the optimal balance between the classification and regres-
sion loss, we conducted ablation experiments on the regression loss weight. As shown in
Table 2, 0.75 yields the best results. We set the weight of the regression loss to 0.75 for the
rest of our experiments.
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Shrink Factor AP AP50 AP75 APS APM APL

1.0 30.0 44.4 32.5 17.2 33.9 38.4
0.8 32.4 47.9 35.1 18.0 36.4 41.9
0.6 34.5 51.3 37.5 19.6 38.5 44.5
0.4 36.0 53.6 39.0 20.4 39.6 46.6
0.2 32.6 50.3 34.7 17.9 36.3 42.5

Table 1: Experiments to determine the best shrink factor which defines the relative size of
the “positive area” with respect to the GT box. Models were trained on train2017 and
results were obtained on val2017.

RL weight AP AP50 AP75 APS APM APL

1.00 36.0 53.6 39.0 20.4 39.6 46.6
0.90 36.0 53.9 39.3 20.1 39.6 47.2
0.75 36.3 54.3 39.5 21.1 39.5 47.5
0.60 36.2 54.6 39.5 21.0 40.1 47.1

Table 2: Experiments on regression loss (RL) weight. Models were trained on train2017
and results were obtained on val2017.

Improvements. We also employed improvements used in other state-of-the-art object de-
tectors [10, 25, 32]. First, we trained our baseline model using ResNet-101 with FPN back-
bone. Later, we replaced the last convolution layer before class prediction in the classifica-
tion branch with deformable convolutional layers. This modification improved the perfor-
mance around 0.3 for all APs (see Table 3). Later, on top of this modification, we add another
one where we adopt group normalization after each convolution layer in the regression and
classification branches. As seen in Table 3, this modification increased AP by 0.6 and AP50
by 1.1. In this table, we also provide results for the recently introduced moLRP [18] metric,
which combines localization, precision and recall in a single metric. Lower values are better.
Models are trained with a batch size of 16 for 24 epochs using stochastic gradient descent
(SGD) with weight decay of 0.0001 and momentum of 0.9. Initial learning rate 0.01 was
dropped 10× at epochs 16 and 22. We include these two modifications in our final model.

Class imbalance. PPDet sum-pools predictions into a single prediction per object instance
which reduces the number of positives during training. One may think that it exacerbates the
class imbalance [19] even more. To analyse the issue, we calculated the average number of
positives per image, which is 7 for PPDet, 41 for FoveBox and 165 for RetinaNet. PPDet
considerably decreases the number of positives. However, this is still small compared to
the number of negatives (tens of thousands), hence, it does not exacerbate the existing class
imbalance problem. We use focal loss to tackle the imbalance.

Method AP AP50 AP75 APS APM APL moLRP ↓
Baseline 39.6 58.0 43.4 23.9 44.1 51.0 68.9
+ Deform. Conv. 39.9 58.4 43.7 24.2 44.4 51.3 68.7
+ Group Norm. 40.5 59.5 44.2 25.4 44.7 52.3 67.8

Table 3: Experiments on improvements. Using deformable convolution in the classification
branch and group normalization layers further improve detection performances. Models are
trained on train2017 and tested on val2017 set.
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Method Backbone Train size Test size AP AP50 AP75 APS APM APL FPS

Two-stage detectors:
R-FCN [3] ResNet-101 800×800 600×600 29.9 51.9 - 10.8 32.8 45.0 5.9
CoupleNet [34] ResNet-101 ori. ori. 34.4 54.8 37.2 13.4 38.1 50.8 -
Faster R-CNN+++ [9] ResNet-101 1000×600 1000×600 34.9 55.7 37.4 15.6 38.7 50.9 -
Faster R-CNN [13] ResNet-101-FPN 1000×600 1000×600 36.2 59.1 39.0 18.2 39.0 48.2 5.0
Mask R-CNN [8] ResNeXt-101-FPN 1300×800 1300×800 39.8 62.3 43.4 22.1 43.2 51.2 11.0
Cascade R-CNN [1] ResNet-101 - - 42.8 62.1 46.3 23.7 45.5 55.2 12.0
PANet [15] ResNeXt-101 1400×840 1400×840 47.4 67.2 51.8 30.1 51.7 60.0 -

One-stage, anchor-based:
SSD [16] VGG-16 512×512 512×512 28.8 48.5 30.3 10.9 31.8 43.5 -
YOLOv3 [21] Darknet-53 608×608 608×608 33.0 57.9 34.4 18.3 35.4 41.9 20.0
DSSD513 [6] ResNet-101 513×513 513×513 33.2 53.3 35.2 13.0 35.4 51.1 -
RefineDet (SS) [30] ResNet-101 512×512 512×512 36.4 57.5 39.5 16.6 39.9 51.4 -
RetinaNet [14] ResNet-101-FPN 1300×800 1300×800 39.1 59.1 42.3 21.8 42.7 50.2 10.9∗

RetinaNet [14] ResNeXt-101-FPN 1300×800 1300×800 40.8 61.1 44.1 24.1 44.2 51.2 7.0∗

RefineDet (MS) [30] ResNet-101 512×512 ≤2.25× 41.8 62.9 45.7 25.6 45.1 54.1 -
GA-RetinaNet [26]∗ ResNet-101 1300×960 1300×800 41.9 62.2 45.3 24.0 45.3 53.8 -
FreeAnchor (SS) [31] ResNeXt-101-FPN 1300×960 1300×960 44.9 64.3 48.5 26.8 48.3 55.9 8.4∗

FreeAnchor (MS) [31] ResNeXt-101-FPN 1300×960 ∼≤2.0× 47.3 66.3 51.5 30.6 50.4 59.0 -

Anchor-free, bottom-up:
ExtremeNet (SS) [17] Hourglass-104 511×511 ori. 40.2 55.5 43.2 20.4 43.2 53.1 3.1
CornerNet (SS) [11] Hourglass-104 511×511 ori. 40.5 56.5 43.1 19.4 42.7 53.9 4.1
CornerNet (MS) [11] Hourglass-104 511×511 ≤1.5× 42.1 57.8 45.3 20.8 44.8 56.7 -
CenterNet (SS) [32] Hourglass-104 512×512 ori. 42.1 61.1 45.9 24.1 45.5 52.8 7.8
HoughNet (SS) [23] Hourglass-104 512×512 ≤ ori.× 43.1 62.2 46.8 24.6 47.0 54.4 6.4
ExtremeNet (MS) [17] Hourglass-104 511×511 ≤1.5× 43.7 60.5 47.0 24.1 46.9 57.6 -
CenterNet (SS) [4] Hourglass-104 511×511 ori. 44.9 62.4 48.1 25.6 47.4 57.4 3.0
CenterNet (MS) [32] Hourglass-104 512×512 ≤1.5× 45.1 63.9 49.3 26.6 47.1 57.7 -
HoughNet (MS) [23] Hourglass-104 512×512 ≤1.8× 46.4 65.1 50.7 29.1 48.5 58.1 -
CenterNet (MS) [4] Hourglass-104 511×511 ≤1.8× 47.0 64.5 50.7 28.9 49.9 58.9 -
Anchor-free, top-down:
FoveaBox [10] (SS) ResNet-101-FPN 1300×800 1300×800 40.6 60.1 43.5 23.3 45.2 54.5 -
FoveaBox [10] (SS) ResNeXt-101-FPN 1300×800 1300×800 42.1 61.9 45.2 24.9 46.8 55.6 -
FSAF (SS) [33] ResNeXt-101-FPN 1300×800 1300×800 42.9 63.8 46.3 26.6 46.2 52.7 2.7
FoveaBox [10] (MS)† ResNet-101-FPN 1300×800 1300×800 44.2 65.4 47.8 28.8 46.7 53.7 -
FSAF (MS) [33] ResNeXt-101-FPN 1300×800 ∼≤2.0× 44.6 65.2 48.6 29.7 47.1 54.6 -
FCOS [25] ResNeXt-101-FPN 1300×800 1300×800 44.7 64.1 48.4 27.6 47.5 55.6 7.0∗

PPDet (SS) ResNet-101-FPN 1300×800 1300×800 40.7 60.2 44.5 24.5 44.4 49.7 7.5
PPDet (SS) ResNeXt-101-FPN 1300×800 1300×800 42.3 62.0 46.3 26.2 46.0 51.9 4.1
PPDet (MS) ResNet-101-FPN 1300×800 ∼≤2.0× 45.2 63.5 50.3 30.0 48.6 54.7 -
PPDet (MS) ResNeXt-101-FPN 1300×800 ∼≤2.0× 46.3 64.8 51.6 31.4 49.9 56.4 -

Table 4: Detection performances on COCO test-dev set. The methods are divided into
three groups: two-stage, one-stage anchor-based and one-stage anchor-free. The best re-
sults are boldfaced separately for each group. PPDet achieves state-of-the-art results on the
APS metric among all the detectors. ∗ results are taken from MMDetection. † MS test for
FoveaBox is implemented by us on top of the original code.

4.2 State-of-the-art comparison
To compare our model with the state-of-the-art methods, we used ResNet-101 with FPN and
ResNeXt-101-64x4d with FPN backbones. They are trained with batch sizes of 16 and 8
for 24 and 16 epochs, respectively, using SGD with weight decay of 0.0001 and momentum
of 0.9. For the ResNet backbone, initial learning rate 0.01 was dropped 10× at epochs
16 and 22. For the ResNeXt backbone, initial learning rate 0.005 was dropped 10× at
epochs 11 and 14. The models are trained on COCO [12] train2017 dataset and tested on
test-dev set. We used (800,480), (1067,640), (1333,800), (1600,960), (1867,1120),
(2133,1280) scales for multi-scale testing. Table 4 presents performances of PPDet and
several established state-of-the-art detectors.

FSAF [33] and FoveaBox [10] use a similar approach to ours to build the “positive area”.
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While single scale testing performance of PPDet is comparable with that of FSAF on the
same ResNeXt-101-64x4d with FPN backbone, PPDet’s multi-scale testing performance is
1.7 AP points better than that of FSAF’s. Our both models with single-scale testing get
slightly better results than FoveaBox while outperforming it on small objects by more than
1.0. The results of our multi-scale testing outperforms FoveaBox by 1 AP on the same
ResNet-101 with FPN backbone.

Our multi-scale performance is the best among all the anchor-free top-down methods.
Moreover, our multi-scale performance on small objects (i.e. APS) sets the new state-of-the-
art among all detectors in Table 4.

We conducted experiments to analyse the effect of the prediction pooling for training
and inference. When we removed the prediction pooling from the inference pipeline of
our ResNet-101-FPN backbone model, we observed that AP goes down by 2.5 points on
val2017 set. To analyse the effect of prediction pooling for training, we added prediction
pooling to RetinaNet [14] and FoveaBox [10] only during inference (so, no PP in training).
This resulted in 0.5 and 2.8 points drop in AP for RetinaNet and FoveaBox, respectively.

We also conducted another experiment to test the effectiveness of sum-pooling over max-
pooling. For max-pooling, we identified the feature within the positive area, whose predicted
box overlaps the most with the GT box. Then, only this feature is included in focal loss to
represent its GT box during training. This strategy dropped AP by more than 2 points,
yielding 38.4 with ResNet101 with FPN backbone.

As an additional result, we present the performance of PPDet on the PASCAL VOC
dataset [5]. For training, we used the union set of PASCAL VOC 2007 trainval and
VOC 2012 trainval images (“07+12”). For testing, we used the test set of PASCAL
VOC 2007. Our PPDet model achieves 77.8 mean average precision (mAP) outperform-
ing FoveaBox [10] at 76.6 mAP, which we consider as a baseline here, when both use the
ResNet-50 backbone.

Figure 4 shows the heatmap of cell centers relative to the ground-truth box, which are
responsible for detection. The heatmaps of RetinaNet are concentrated at the center of the
ground-truth object boxes. In contrast, PPDet’s final detections are formed from a relatively
wider area verifying its dynamic and automatic characteristics on assigning weights to the
features in the positive area. In addition to the detections coming from the center of the
ground-truth box, they may heavily come from the different parts of the ground-truth box.

5 Conclusion

In this work, we introduced a novel labeling strategy for the training of anchor-free object
detectors. While current anchor-free methods force positive labels on all the features that
are spatially inside a predefined central region of a ground-truth box, our labeling strategy
relaxes this constraint by sum-pooling predictions stemming from individual features into a
single prediction. This allows the model to reduce the contributions of non-discriminatory
features during training. We developed PPDet, a one-stage, anchor-free object detector
which employs the new labeling strategy during training and a new inference method based
on pooling predictions. We analyzed our idea by conducting several ablation experiments.
We reported results on COCO test-dev and show that PPDet performs on par with the
state-of-the-art and achieves state-of-the-art results on small objects (APS 31.4). We further
validated the effectiveness of our method through visual inspections.
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Figure 4: Feature locations that are responsible for detection during inference, relative to
the ground-truth box (blue rectangle). To bring different ground-truth boxes into the same
plot, we normalized each ground-truth box to a canonical size. Relative locations of re-
sponsible features were normalized accordingly. Top row shows the heatmap of responsible
feature locations for anchor-based RetinaNet. Second row shows the same for anchor-free
object detector FoveaBox. Bottom row shows the same for PPDet. Heatmaps were obtained
on COCO val2017 images with ResNet-101 with FPN backbone. RetinaNet detects ob-
jects mostly with center cells. In terms of peakyness, FoveaBox’s heatmaps are similar to
RetinaNet’s. PPDet detects objects from a wider area, also from outside of the object box.
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