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Abstract

High-temperature weather conditions induce geometrical distortions in images which
can adversely affect the performance of a computer vision model performing downstream
tasks such as semantic segmentation. The performance of such models has been shown
to improve by adding a restoration network before a semantic segmentation network.
The restoration network removes the geometrical distortions from the images and shows
improved segmentation results. However, this approach suffers from a major architec-
tural drawback that is the restoration network does not learn directly from the errors of
the segmentation network. In other words, the restoration network is not task aware. In
this work, we propose a semantic feedback learning approach, which improves the task
of semantic segmentation giving a feedback response into the restoration network. This
response works as an attend and fix mechanism by focusing on those areas of an image
where restoration needs improvement. Also, we proposed loss functions: Iterative Fo-
cal Loss (iFL) and Class-Balanced Iterative Focal Loss (CB-iFL), which are specifically
designed to improve the performance of the feedback network. These losses focus more
on those samples that are continuously miss-classified over successive iterations. Our
approach gives a gain of 17.41 mloU over the standard segmentation model, including

the additional gain of 1.9 mIoU with CB-iFL on the Cityscapes dataset.

1 Introduction

Standard image datasets such as ImageNet [6], Cityscapes [4], and IDD [28] are often taken
in a clear and well-illuminated environment. However, real-world images often suffer from
variations in weather conditions such as rain, fog, snow, and temperature. Computer vi-
sion models trained on standard datasets to perform tasks such as segmentation, detection,
and classification often struggle to overcome performance degradation when tested on such
real-world images with weather variations. Hence, to overcome such problems, restoration
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networks [9, 19, 23, 33] can be added before the vision models, to minimize the domain
shift caused by different weather conditions to improve performance.

In this work, we focus on improving the performance of the semantic segmentation
model in hot weather conditions, such as in certain areas of the Middle East, Africa, Asia
or even other places. We choose semantic segmentation because it is highly sensitive to a
slight domain shift due to dense labeling and its wide application in autonomous driving
systems. Hot weather conditions, also termed as atmospheric turbulence [34], introduce ge-
ometrical distortions into images, leading to incorrect perceptions of concepts and erroneous
semantic segmentation. We address this problem by adding a restoration network before the
semantic segmentation model that removes the geometrical distortions. The problem with
such a two-stage framework is that the restoration network does not directly learn from the
errors of the semantic segmentation network. In other words, the restoration model is not
task-aware. To overcome this problem, we introduce a feedback module that uses the infor-
mation obtained from image regions with incorrect segmentation prediction, while training
the restoration network. The additional information through the feedback module helps the
restoration network focus on image regions where restoration needs to be improved, thus
resulting in better segmentation. We repeat this process for several iterations to refine the
final result. In summary, the feedback module provides the restoration network with an
attend-and-fix mechanism through which it progressively improves the segmentation results.
Previously used loss functions [16] in feedback frameworks gave constant weights to all
samples in an iteration and did not focus on those samples that are consistently misclassified
across training iterations. This can however be achieved by using the idea of focal loss [18],
which gives more focus on highly misclassified samples and less focus on well-classified
samples. In this work, we hence propose Iterative Focal Loss (iFL) that progressively fo-
cuses on those samples that are consistently misclassified over the iterations. Also, to handle
class imbalance, we propose Class-Balanced Iterative Focal Loss (CB-iFL). We perform ex-
tensive experiments on the Cityscapes dataset showing the efficacy of our feedback module
and loss functions. Our ablation study shows that our feedback can remove noisy predictions
and improve the semantic segmentation in atmospheric turbulence. We also demonstrate that
our method can correctly segment classes occupying small area such as ‘rider’ and ‘poles’,
which are important classes for autonomous driving systems. In summary, our key contribu-
tions are:

e We introduce the notion of a semantic feedback module in an end-to-end framework
that improves semantic segmentation in hot weather conditions/atmospheric turbu-
lence. Our feedback module provides an attend-and-fix mechanism for better restora-
tion of images in atmospheric turbulence.

e We propose two general loss functions: Iterative Focal Loss (iFL) and Class-Balanced
Iterative Focal loss (CB-iFL) designed to improve the feedback framework by increas-
ing focus on consistently misclassified samples and handle imbalance in a dataset.

e We conduct a comprehensive suite of experiments to study the proposed methodology
and loss functions on the Cityscapes dataset, and show the promise of this method
across these empirical studies.

2 Related Work

Computer Vision across Weather Conditions: It is well-known that dynamic changes in
weather due to rain, haze, and atmospheric turbulence adversely affect [13, 20] the perfor-
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mance of computer vision algorithms. Several physics-based methods [10, 11] have been
proposed to circumvent the tedious task of data collection for individual weather condi-
tions. Recently, meta-learning based methods [29] have become popular for generating
such datasets. These dataset generation efforts have helped in building deep learning mod-
els [15, 17] that attempt to remove distortions caused due to various weather conditions. In
particular, for the case of atmospheric turbulence, most efforts are based on classical meth-
ods such as adaptive optics [22], lucky imaging [8], and Fourier analysis [31] to remove
such distortion present in an image. Apart from this, machine learning-based approaches
have also been proposed [30, 34] to remove atmospheric turbulence. As mentioned earlier,
all of these efforts are not task-aware, and focus only on removal of distortion, independent
of the task at hand. Very recently, Rai et al. [23] proposed a deep learning methodology
to remove atmospheric turbulence in the context of semantic segmentation. However, their
framework is also a two-stage approach and is hence not end-to-end trainable, with no ex-
plicit feedback from the semantic segmentation module. We overcome these limitations in
our work, while using lighter and efficient learnable models.

Feedback Mechanisms in Deep Learning: Initial approaches of integrating feedback into
deep learning models can be traced to [1, 2, 21], where a feedback loop was used to improve
the performance of hand pose estimation and human pose estimation tasks. Later, Li et al
[32] proposed a general feedback framework that used recurrent networks for improving the
performance of vision tasks. The feedback connection, however, had no learnable network.
Recently, Shama er al. [27] proposed a learnable feedback mechanism that has been used
to improve the generation quality in Generative Adversarial Networks. There have also
been recent feedback approaches [16] used to improve the performance of models in image
super-resolution tasks. However, none of these existing efforts focus on the problem we are
addressing in this work.

Loss Functions for Feedback Networks: Feedback networks involve iteratively training
a network, such that samples that are misclassified in a previous iteration are given more
penalty in the current iteration. This provides the seed for our idea, which involves changing
the loss function over the iterations to reflect this characteristic of feedback networks. Earlier
feedback methods [21] did not exploit this idea, rather they used the same loss function
across all iterations. Recently, Zamir et al. [32] introduced episodic curriculum learning,
where they adopted an iteration-varying loss to enforce a curriculum. Later, Li et al. [16]
used a similar idea with a weighted iterative L loss function, to improve the performance
of image super-resolution models. However, neither of these efforts explicitly increased the
model’s focus on previously misclassified samples. We overcome this problem by proposing
a loss function for this purpose in our feedback framework which also shares similarities
with the AdaBoost [7] algorithm.

3 Semantic Feedback Learning: Methodology

3.1 Problem Formulation

We begin our formulation with a set of turbulent images: I = {I’T :i=1,2,...,n} and a cor-
responding non-turbulent image set: Iy = {I}'VT :i=1,2,...,n} and semantic segmentation
annotation set: I = {I% :i=1,2,...,n}, where n is the total number of images. Our network
architecture consists of three modules: a restoration network R, a semantic segmentation net-
work S, and a feedback network F. The restoration network R follows an encoder-decoder
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Turbulent Image ( I‘T ) Restored Image ( I"R )
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Figure 1: Semantic feedback learning framework: Our architecture consists of 3 net-
works: a restoration network R, a segmentation network S, and a feedback network F. An
input image I’ is passed through encoder R, of R, whose output is modified by F for better
restoration in areas where outputs of S in a previous iteration were incorrect. The modified
output of R, is then passed through Ry to give I}, at iteration ¢. I} is further passed into S to

give I}" and Ié‘P. The feedback input Ifé given to F' is the absolute difference of 1;’ »' and 1;’,? 2,

which is multiplied to IIIQH to focus on regions where restoration needs to be improved.

architecture, and hence is further divided into an encoder R, and a decoder R;, which outputs
the restored image Ii. The restored image is provided as input to the segmentation module
S, whose output is in turn input to the feedback module F. This is summarized in Figure 1.
Consider an input turbulent image I’-, which is passed through R, giving the latent represen-
tation /' of the input image. /' is further decoded by R, to give the corresponding restored
image Ij. The restoration process can be formalized as:

h'=R.(I;)  and b= Ry(h') (1)

I,"e is then passed into the semantic segmentation network S to give semantic segmentation
output /.

3.2 Semantic Feedback Learning

We now explain the semantic feedback learning framework, where the semantic feedback
information from S is passed on to the restoration network. The restoration task can be
formulated as a recurrent process, where it learns to fix the mistakes of its previous output by
leveraging the difference of output probability response map of S. This probability response
map acts as a spatial attention mechanism for the restoration network enabling it to focus
on regions that need to be restored. Now, we introduce the notion of feedback into our
framework. We denote the current training iteration as . The hidden output of R, is then
given by /i, when I is given as the input turbulent image at the rth iteration. Similarly,
Izie[ and 1}" denote the restored image and segmentation output, respectively, at iteration ¢.
Now, to leverage the previous restored image Illé" and its previous consecutive probability

response maps obtained from S: [ ;’ p'and ] g’ »”, we propose a feedback network F to introduce
feedback information into the hidden representation 4. We now explain how the above
inputs are combined to provide a feedback input to the network F. Firstly, we take the
absolute difference between I;’I; " and I;’}; 2, which gives us a weighted region, where regions
with higher weights need to have better restoration. This information is subsequently merged
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with the previous restored image via element-wise multiplication. Our formulations at time
t can hence be written as:

Feedback Input : I;é = Ig_l ® (abS(lgﬁl - 131;2)) @
Restoration Network : ht = R,(I}+) + OC(F(I;.L)) 3)
I = Ry (h™) )

Segmentation Network : I;’P = S(It) ®)
[ = argmax(Il,) (6)

where o controls the amount of feedback given to the network. Figure 1 also shows the
visual pipeline of our overall framework described above.

3.3 Iterative Focal Loss

Since it was proposed, Focal loss (FL) [18] is widely used as a loss function in object detec-
tion. This loss reduces the relative loss for well-classified examples and puts more focus on
hard examples which helps improve learning. Formally, focal loss is defined as:

FL(p;) = —8(1—p;)"og(p;) (7)

where p; is model’s estimated probability of being in class j, ¥ is the focusing parame-
ter and § is a scalar for balancing the loss. Now, in Equation 7, we change the ¥ to an
iteration-dependent monotonically increasing function, (). This shows that as the iteration
t increases, the value of y(¢) also increases. This will result in more focus on those exam-
ples that are misclassified across consecutive iterations. We include this iterative Focal Loss
(iFL) in our feedback framework, and this is formally defined as:

iFL(p;) = —8(1—p;)"log(p;) ®)

In order to further address class imbalance issues (which are common in semantic segmen-
tation datasets), we use a recent idea proposed by Cui et al. [5], which suggests normalizing
the loss in a manner based on the sample density of each class. We hence propose a Class-
Balanced Iterative Focal Loss (CB-iFL), which is given as below:

1-B
T

where 8 is a smoothing factor and m; is the class frequency of class j. The additional
multiplicative term in CB-iFL forces the network focus as much on small classes such as
‘rider’ as on large classes such as ‘sky’. This is useful in scenarios especially when an
important class (rider in this case) occupies less area in an image than others. Now, in the
next subsequent sections, we perform extensive experiments to show the effectiveness of our
proposed feedback framework and losses. The total loss of our feedback framework is:

CB-iFL(p;) = — (1—p;)"Wilog(p;) €)

Ltotal = Lrestorulian + Lsegmenlali(m (10)

where Liyesoration 18 the L1 loss and Lyegmentarion 1 the CB-iFL loss that is used for training
the restoration and segmentation networks, respectively.
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4 Experiments

4.1 Experimental Setup

Dataset: We use a physics-based method proposed by Schwartzman et al. [26] to generate
atmospheric turbulent images. This method efficiently injects atmospheric turbulence into
images by a series of 2D image transformations. Using the above method, we synthesized an
image dataset consisting of 2975 training image pairs and 500 validation image pairs. Each
image pair consists of a turbulent image and a corresponding non-turbulent image from the
Cityscapes [4] dataset. Each non-turbulent image has a semantic segmentation label map
that divides the image into 19 semantic labels, excluding the void labels.

Network Details: Our restoration framework consists of a UNet [25] which predicts the
warping field. The warping field is then bi-linearly applied on the input turbulent image
to remove the geometrical distortions. We use ERFNet [24] as our semantic segmentation
network because of its small size and efficacy, which makes the entire framework end-to-end
trainable. The feedback network consists of 2 average pooling layers, 2 convolutional layers,
2 batch normalization [12] layers and a ReLU layer. The average pooling layers are at the
start and end of the network. The middle layers consist of a convolutional layer which is
followed by a batch normalization layer and a ReLU layer as an activation layer.

Training Details: The learning rates for R, F' and S are 2¢ — 4, 2¢ — 4 and 5e — 4 respec-
tively, with Adam [14] as the optimizer. The learning rate of R and F' decays by a factor of
0.5 at every 30 epochs and for S, the learning rate decays by a factor of 0.99 at every epoch.
For feedback inputs, at iteration 7 = 1, I and IS'P are computed by feeding zero tensors into

F. Att=2, Il’ ?= IS‘},, we feed I’P2 as It} op into F. The focusing parameter y(r) for iFL
was chosen to be y(t) =40, if t =1; 0.1z, if t > 1}. During inference, we use the same
feedback network as in training, and the final output is taken in the last iteration.

Baselines: We used UNet and ERFNet for the restoration and segmentation networks re-
spectively, each of which is simpler architectures than those used in Rai et al. [23]. These
chosen architectures for this work occupy only 16.9% of the parameters in Rai et al. [23],
thus making it easier for end-to-end training, and improve the performance on their work,
despite this reduction in parameters. The work of Rai et al. [23] with these architectures was
chosen as the baseline for a fair comparison. Now, we use the feedback method proposed by
Zamir et al. [32] and Shama et al. [27] in our framework, to compare the performance with
our proposed feedback method. We train all the feedback framework for 3 iterations(t) for
fair comparison. We ran three trials of each experiment, and report the mean of the mloUs
across the trials.

4.2 Results

Sanity Check: We perform two experiments to check whether our feedback framework
provides useful feedback information into the restoration network. In the first experiment,
we pass as input into F' an image whose pixel values are randomly sampled from a normal
distribution having mean 0 and standard deviation 1. In the second experiment, the input
image into F is the image obtained from the multiplication of I,’eH and normally distributed
image having the same statistics of experiment 1. The results obtained from the first and
second experiments have mloUs of 45.03 and 51.29, respectively - which is far less than our
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Figure 2: Qualitative Results: Visual comparison of segmentation outputs when feedback
and non-feedback methods are applied to an input turbulent image. We can observe that our
proposed feedback framework correctly segments finer structures such as poles and signs.

method. This helped us infer that our restoration network indeed benefited from the semantic
feedback given into the network, which was better than randomly feeding input.

Result Discussion: We compare our proposed feedback method with previously proposed
feedback methods Zamir et al. [32] and Shama et al. [27] and non-feedback methods Rai et
al. [23], which is also the current state-of-the-art for semantic segmentation in atmospheric
turbulence. Table 1 shows the results. Using the feedback model of Zamir et al. [32] and
Shama et al. [27] into our framework did not provide adequate semantic feedback infor-
mation into the restoration network, which resulted in reduced performance when compared
with our method. Our method can correctly segment even small classes such as ‘poles’, ‘traf-
fic signs’ shown in Figure 2. This encouraged us to do further analysis of the improvement
in those classes that are most important for an autonomous driving system that belongs to
Group 4 according to Chen et al. [3]. Table 2 shows that our method gives a large improve-
ment of 23.56 mloU for Group 4 classes over ERFNet itself. Our proposed loss function
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Method road swalk build. wall fence pole tlight sign veg. terrain sky person rider car truck  bus train  mbike bicycle | mloU

ERFNet [24] (NT.) | 97.55 81.52 91.34 54.56 54.21 60.15 63.53 72.68 91.49 63.97 9324 77.14 56.33 9298 68.73 77.43 60.10 43.45 68.87 | 72.067

ERFNet [24] 94.12 65.17 81.84 1443 20.13 27.01 10.66 31.67 84.28 50.13 87.80 44.44 13.21 8239 24.85 1493 1229 742 36.77 |42.291
Rai et al. [23] 94.81 68.72 8537 3549 32.07 3534 33.17 44.46 86.71 52.37 89.89 57.30 2698 86.71 4333 46.70 29.26 13.56 50.59 |53.306
Zamir et al. [32] 9543 69.79 8524 36.01 33.04 3498 3347 46.24 86.59 53.56 89.91 57.34 31.30 8553 5297 55.01 31.78 17.35 51.10 |55.086

Shamaetal. [27] | 95.19 69.43 8549 37.11 37.12 3433 3551 4577 86.68 54.63 90.04 57.45 32.64 86.94 5236 56.90 39.40 18.80 51.02 |56.147

Ours 9599 71.24 85.69 4276 3534 39.54 3574 47.20 86.95 54.97 90.22 57.82 30.34 87.44 53.83 57.72 42.58 2333 52.74 |57.446

Ours (iFL) 95.85 71.24 8599 44.14 3295 36.34 3541 48.15 86.97 53.57 90.22 5894 3528 8730 52.55 60.79 5126 19.57 51.69 |57.801

Ours (CB-iFL) 96.27 72.59 8580 44.30 35.03 40.99 38.31 50.86 86.87 55.97 90.12 60.04 35.14 88.01 59.46 67.50 48.43 24.16 54.62 |59.709

Table 1: Classwise semantic segmentation results of various methods on the Cityscapes
dataset. Our proposed feedback method outperforms other methods with and without feed-
back modules. We train all the feedback models for 3 iterations(z). NT. shows the method
is trained and validated on non-turbulent dataset whereas all other methods are trained and
validated on turbulent dataset. Best results are in bold.

Classes ERFNet [24] Ours ToU Gain

Person 1444 60.04 15.60 Loss mloU
Rider 1321 35.14 21.93 Cross-Entropy Loss (CE Loss) 57.45
Car 82.39 88.01 05.62 .

Truck 2485 59.46 3461 CE Loss + Liet al. [16] 57.53
Bus 14.93 67.50 52.57 Ours (iFL) 57.80
Motorcycle 07.42 24.16 16.74 T

Bicycle 36.77 54.62 17.85 Weighted CE Loss 39.11
mloU 32.001 55,561 23.560 Ours (CB-iFL) 59.71

Table 2: mloU gain in important classes: Table 3: Performance comparison of loss
Segmentation performance improvement in functions for feedback networks: We train
Group 4 [3] classes, which are the most im-  all losses on our feedback framework. Our
portant for the autonomous driving system proposed iFL and CB-iFL outperforms prior
using our feedback restoration method. losses for the feedback framework.

iFL and CB-iFL further improve the performance of our framework shown in Table 3 and
Figure 5. The key advantage we get from using our loss function is that it progressively
improves the segmentation results via feedback network by increasing focus on those pixels
that are continuously misclassified, unlike giving a constant weight to all the pixels at every
iteration as proposed in Li ef al. [16]. We train our feedback framework over a range of
iterations(1-7) and validate the mloU at each iteration as shown in Figure 3. We find the
optimal performance at 3™ iteration, after which performance saturates for higher iterations
with slightly lower mloU. Similarly, we tune & over a range of values, shown in Figure 4.
We empirically find the optimal performance at & = 0.001. Now, to visually analyze the
performance of our feedback framework across the iterations, we show the semantic seg-
mentation results for 3 iterations in Figure 6. The improvement in semantic segmentation
across iterations by removing the false segmentation output shows its efficacy.

Ablation Study: To show the effectiveness of our semantic feedback learning, we choose
Rai et al. [23] as our baseline, and run multiple studies. Method 1: Train the baseline for
twice the number of epochs. Method 2: Doubled the size of the hidden representation of the
restoration network in the baseline. Method 3: Double the size of the segmentation network
in the baseline. Method 4: Combine Methods 2 and 3. Method 5: Combined Methods 1-3.
Our method is adding only semantic feedback with a single iteration into the baseline in these
experiments. Table 7 shows the resultant mloU of all setups, among which our feedback
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Figure 6: Contribution of semantic feed-
back: We can observe that in example (a),
our feedback module progressively improves
the segmentation results, whereas, in (b), it
tries to remove the false segmentation output.

method performs the best. Now to provide further insight into our feedback module and
demonstrate how the feedback response improves semantic segmentation in atmospheric
turbulence, we visualize the feedback response in form of a response map and show the
improvement in semantic segmentation over the iteration. Figure 8 shows that as the number
of iterations increases, some of the yellow regions (representing high error response) changes
into a red area that reflects a low error, reflecting improvement in semantic segmentation in
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Figure 7: Plot shows the effectiveness of our red represents the correct image area with

proposed feedback module, which is trained Jow response. As the number of iterations in-

on a single iteration (r) over various meth- creases, some of the yellow areas are changed

ods that are trained over a higher number of into red areas, reflecting improvement in seg-
epochs and parameters. mentation results.

Predictions
Predictions

Response Map
Response Map

those areas. We also perform an analysis between the feedback input and the mloU of the
semantic segmentation network.

5 Conclusion

In this work, we demonstrated the ability of semantic feedback learning to improve seman-
tic segmentation models in hot weather conditions. We propose a feedback framework that
consists of a restoration network, a segmentation network, and a feedback network. The
feedback network gives a feedback response to the restoration network, which attends those
areas and fixes regions that need to be restored. We further boosted the performance of our
model by new loss functions: iFL and CB-iFL. We proved the effectiveness of our proposed
feedback model and losses through extensive experiments and ablation studies. Our work
unlocks doors for further potential application of the feedback mechanism in other weather
conditions such as snow, rain, and fog.
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