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Abstract

An effective approach to locating facial landmarks is to train a CNN to predict their
positions directly from an image patch cropped around the face. Earlier work has shown
that the choice of cost function comparing predicted with target points is important, but
have tended to use the same weighting for each individual point. Since some points, such
as those on boundaries, are less clearly defined than those at obvious corners, we propose
an alternative cost function which uses anisotropic weights. This penalises movement
away from feature boundaries more than that along them. We demonstrate that using this
cost function improves location performance and training convergence. We also address
the problem of pose imbalance in datasets, suggesting a way of balancing the poses in
the training samples. State of the art results on three public datasets (AFLW, WFLW and
300W) demonstrate the effectiveness of these techniques

1 Introduction
Facial landmark localisation ("face alignment") aims to find the coordinates of a set of pre-
defined key points for 2D face images. Each landmark usually has specific semantic mean-
ing, such as an eye corner or nose tip, which provides rich geometric information for tasks
such as 3D face reconstruction [19, 23, 25, 26, 27, 30, 32, 47] , face recognition [38, 51, 65],
and emotion estimation [14, 34, 54].

Traditional approaches to locating points include Active Shape Models (ASM) [5], Ac-
tive Appearance Models (AAM) [6] , Constrained Local Models (CLM) [7] and cascaded-
regression-based approaches [10, 15, 16, 17, 49, 58, 59, 63]. Recently, deep convolutional
neural networks have been used [16, 37, 42, 60, 66, 69, 70].

To perform robust face alignment using deep neural networks, different types of network
have been explored including Convolutional Neural Networks (CNN) [50], Recurrent Neural
Networks (RNN) [52, 62] and Auto-Encoder Networks [69]. Various network architectures
have been extensively studied, for example, Fully Convolutional Networks (FCN) [35] and
hourglass networks with residual blocks have been found very effective [9, 41, 66].
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Deep neural networks can be trained to predict the point positions directly from an image
patch of the whole face. Recent work has shown that this approach can give good results,
but that the choice of the cost function is important [20, 69].

In this work we propose a simple, but effective, anisotropic cost function which leads to
improved performance, in part by downweighting the contribution of points which are less
well defined in the training set. We also proposed a method of dealing with the imbalance
in poses in training sets by resampling. We evaluate the performance of these techniques on
three widely used datasets, and demonstrate that combining them achieves state-of-the-art
performance.

2 Related Work
There are two broad approaches to facial landmark location using CNNs;

1. To search for each point by scanning over a region with a classifier or local regressor
[8], producing probability maps for each point,

2. to predict the point positions directly with regression on the whole face patch [20, 69].

This work addresses the second approach.
Network Architectures: CNN-based facial landmark localisation approaches are mostly

regression-based. For such a task, the most straightforward way is to use a CNN with fully
connected final layers [43, 45, 50], where the input is usually a image of a face and the output
is a vector consisting the 2D coordinates of the landmarks. In recent years, researchers
have proposed CNN systems addressing this problem and shown promising results using
Hourglass networks [3, 4, 9, 41, 66] and FCN [35]. They are different from traditional
CNNs because they output a pseudo-probability maps for each facial landmarks. In [61], a
distance aware softmax function was proposed to reduce the false alarms in such generated
2D maps.

Pose Variations: Variation in head pose can make the location of facial points more chal-
lenging. Many strategies have been proposed to address this issue. Multiview models have
been used to improve the performance of many approaches. In [18], a multiview cascaded
regression model is trained using a fuzzy membership weighting strategy that performs bet-
ter than some CNN based approaches. Another popular strategy is the use of 3D face models
[2, 28, 29, 36, 72]. By estimating the pose of a input 2D face image and recovering the 3D
shape the problem can be addressed. In addition, 3D face models have also been widely
used to synthesise additional 2D face images with pose variations for the training of a pose-
invariant system [16, 39, 73]. Multi-task learning has been adopted to address the difficulties
posed by pose variations [42, 64, 70].

Cascaded Networks: It has been found that stacking multiple networks to form a stronger
network can boost the performance. To this end, landmark or shape related features are used
to address the training of multiple networks in a cascade. One approach for faces is for each
network in the cascade to attempt to improve the position of a landmark point based on the
image information around the current position. For instance, [52] used a Recurrent Neural
Network (RNN) for end-to-end training. Alternatively, a network can be trained based on
the global image patch for an initial landmark localisation. Then, for each landmark or a
group of landmarks in a specific region of the face, a network is trained to perform fine-
grained landmark prediction [13, 37, 50, 64]. In [67], the authors have proposed system
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where they inject local deformations to the estimated facial landmarks of the first network
using thin-plate spline transformations.

Loss functions: L1 and L2 loss functions have been used widely to train different types
of model for facial landmark localisation [5, 49, 50]. For deep-neural-network-based facial
landmarking systems [52] L2 losses have been preferred. In [20], the authors provide an
analysis where they conclude that L1 and a smoothed L1 loss performs much better that L2.
In [20] a novel loss function ("Wing-Loss") is proposed, that performs significantly better
than traditional L1, L2 and smooth L1 loss and was able to achieve the lowest error on recent
test datasets.

In this paper, we use a one-stage end-to-end trainable CNN-based facial landmark locali-
sation framework. We construct a cost function which takes account of the likely uncertainty
in the training point positioning. Rather than measuring errors using Euclidean distances
and treating all points equally, we use the Mahalanobis distance with anisotropic covariance
matrices, so each point may be given a different weight. The covariance matrices for points
on edges are constructed so as to penalise movement away from the boundary more than that
along the boundary. Landmarks such as those at the corners of the eyes or mouth are usually
well defined in both x and y directions, so are given unit covariance matrices. This relatively
simple modification leads to both better overall accuracy, and to faster convergence during
training.

3 Methods

3.1 Cost Function
Suppose we have two shapes each containing n points, {xi} and {zi}. If we assume isotropic
weights, equal for all points (i.e. we penalise all displacements equally), then a cost function
comparing them has the form

Q1 =
n

∑
i=1
|xi− zi|2 (1)

Suppose now that we assume a co-variance matrix, Si at each point {zi} which indicates
the expected spread of errors at each point.

Then a natural cost function is

Q2 =
n

∑
i=1

(xi− zi)
T Wi(xi− zi) (2)

where Wi = S−1
i , defining a weight matrix at each point.

We can construct a covariance matrix to represent anisotropic distributions, with a vari-
ance of a2 along direction u (where |u|= 1) and b2 along the orthogonal direction.

In this case,

S = a2uuT +b2(I−uuT ), so W = S−1 =
1
a2 uuT +

1
b2 (I−uuT ) (3)

If we are matching points on two curves, we typically require a stronger constraint (thus
lower variance) along the direction normal to the curve, compared to that along the curve -
we are less concerned about points sliding along the curves.
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Assume that the points {zi} are roughly equally spaced along a curve. Then for all points
but the end points, the tangent at point i is given approximately by

ti = (zi+1− zi−1)/|zi+1− zi−1| (4)

At the ends of an open curve we use

t1 = (z2− z1)/|z2− z1|, and tn = (zn− zn−1)/|zn− zn−1| (5)

We set up the weight matrices as

Wi = S−1
i =

1
a2 titT

i +
1
b2 (I− titT

i ) (6)

where a > b, giving more freedom to slide along the curve than normal to it. See Figure 1.
At well defined corners we use Wi = I.
We find that this cost function leads to more rapid convergence. In Figure 2, we display

outputs of a ResNet50 after the first epoch on the same subject. It shows that using our loss,
the model has already learned facial shape within a single epoch whereas the model trained
with Wing loss [20] gives poor point predictions.

3.2 Data balancing
Dealing with wide pose variation is a challenging issue for facial landmark localisation. In
[20], is was shown that balancing the dataset based on pose improved the prediction quality
significantly. Where most of the images in a training dataset are frontal faces, the network
over-fits to the frontal shape which leads to poor performance on faces far from frontal.

[20] used Procrustes Analysis to align all the shapes to the reference shape (ie. mean
shape). Then they used PCA to project the original shapes into a low dimensional space,
which was divided into K pose bins. Samples in bins with with lower occupancy are repli-
cated to improve the balance of different poses.

We followed [20]’s data balancing strategy and divide the training set into K bins based
on pose. We calculated the mean shape for each pose bin, x̄k, then the overall mean of these
individual means: x̄ = 1

K ∑
k
k=1 x̄k.

When training, we then predict the displacement from this overall mean, δx = x− x̄.
This helps speed up convergence without affecting overall convergence.

During training we undersample the training set using [44] where we find the bin with
the lowest number of samples and randomly choosing same number of samples from other
bins. We used the same number of bins, K = 9 for 300W, as recommended in [20].

4 Experiments

4.1 Datasets
We tested our approach on the AFLW [31], 300W [48], 300W private test dataset and the
WFLW [56] dataset. The WFLW dataset is the most challenging. We follow the same proto-
col as [18, 19, 20, 55] on those datasets for our experiments. For 300W and AFLW, we also
report the prediction score of [20, 55] to demonstrate that we have created the same environ-
ment. Details about the dataset and implementation details can be found in supplementary
materials.
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4.2 Evaluation Metrics
Normalised Mean Error (NME) is a commonly used [18, 19, 20] metric to evaluate the
quality of facial alignment algorithms. The NME is defined as:

NME(x, x̂) =
1
M

M

∑
i

||xi− x̂i||
d

(7)

Figure 1: Error margin for each point
where the red ellipsoids represent the
freedom of movement along the curve

where x and x̂ are the ground truth and the
predicted landmarks respectively, M is the num-
ber of landmarks of each image, x̂ is the ith pre-
dicted landmark, and d is a normalisation factor.
For the AFLW and WFLW dataset, we set d as the
inter-pupil (distance of eye centers). For the 300W
dataset, we provide results for both inter-ocular
distance (distance of outer eye corners) used as the
original evaluation protocol in [48], and inter-pupil
distance used in [46]. For the WFLW dataset, we
use the inter-ocular distance described in [56].

Failure Rate (FR) is a metric to evaluate lo-
calisation quality. For one image, if NME is larger
than a threshold,t, then it is considered a failed pre-
diction. For the 300W testset, we use t = 8% and
t = 10% to compare with different approaches. We
follow [20, 51] and use 10% as the threshold for
the WFLW dataset.

Cumulative Error Distribution (CED) curve
shows the proportion of examples with an NME
below t, as a function of t. The curve is plotted
from zero up to the NME failure rate threshold
(e.g. 10%, 8%) and the Area Under Curve (AUC)
is calculated based on the CED curve. A higher
AUC indicates that larger portion of the test set has
been well predicted.

4.3 Evaluation on AFLW
We first evaluated our algorithm on the AFLW dataset, using the AFLW-Full protocol [72].
AFLW is a challenging dataset which has been widely used for benchmarking other facial
landmark localisation systems [19, 20, 52, 55].

For AFLW dataset, we followed the protocol from ’adaptive wing loss’ [55] to generate
all 14 boundary lines. This also make the performance of Anisotropic loss comparable.We
compare Anisotropic loss with state-of-the-art approaches in terms of NME(%) in table 2.
Our method is able to outperform the state-of-the-art methods which proves its robustness to
large pose variations.

4.4 Evaluation on 300W
Anisotropic loss is able to achieve the state-of-the-art performance on the 300W testing
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Method Common Challenging Fullset
Subset Subset

Inter-pupil Normalisation
DVLN-CVPR17 [57] 3.94 7.62 4.66
TSR-CVPR17 [37] 4.36 7.56 4.99
DSRN-CVPR18 [40] 4.12 9.68 5.21
DCFE-ECCV18 [53] 3.83 7.54 4.55
LAB-CVPR18 [56] 3.42 6.98 4.12
Wing-CVPR18 [20] 3.27 7.18 4.04
Wing-CVPR18* [20] 3.31 7.20 4.17
Awing-CVPR 19 [55] 3.77 6.52 4.31
Anisotropic loss * 3.12 ± 0.2 6.25 ± 0.47 3.94 ± 0.34

Inter-ocular Normalisation
PCD-CNN-CVPR 18 [28] 3.67 7.62 4.44
CPM+SBR-CVPR 18 [10] 3.28 7.58 4.1
SAN-CVPR 18 [10] 3.34 6.6 3.98
LAB-CVPR 18 [56] 2.98 5.19 3.49
Awing-CVPR 19 [55] 2.72 4.52 3.07
Awing-CVPR 19* [55] 2.8 4.58 3.12
Anisotropic loss * 2.35 ± 0.15 4.05 ± 0.5 2.91 ± 0.22

Table 1: NME results on the 300W testset. We report mean and standard deviation of
Anisotropic loss for 5 runs. ’∗’ indicates the experiments we ran ourselves, showing that
the results in published works were reproducible.

Method Full(%) Frontal(%)
CCLCVPR 16 [72] 2.72 2.17
TSR CVPR 17 [37] 2.17 -
DAC-OSR CVPR 17 [18] 2.27 1.81
DCFE ECCV 18 [53] 2.17 -
CPM+SBR CVPR 18 [12] 2.14 -
SAN CVPR 18 [11] 1.91 1.85
DSRN CVPR 18 [40] 1.86 -
LAB CVPR 18 [56] 1.85 1.62
Wing CVPR 18 [20] 1.65 -
RCN+(L+ELT+A) CVPR 18 [22] 1.59 -
AWing [55] 1.53 1.38
Anisotropic loss 1.3 ± 0.09 1.27 ± 0.1

Table 2: Normalised Mean error(%) on the AFLW testset

dataset using NME metric, see Table 1. For the challenging subset (iBug dataset), we are
able to outperform Adaptive Wing loss [55] and wing loss [20] by a significant margin.
Furthermore, on the 300W private test dataset ( see Table 5), Anisotropic loss performs
better than the previous state-of-the-art on various metrics including NME, AUC and FR
measured at both 8% NME and 10% NME (See also the detailed table for 300W and 300W
private dataset in supplementary materials). Note that we almost halved the failure rate of
the next best baseline to 0.26%.

4.5 Evaluation on WFLW

Our method achieves the best results on the WFLW dataset, as shown in Table 3. This set is
significantly more difficult than AFLW and 300W. We outperformed the previous state-of-
the-art on FR and AUC on every subset by a significant margin.
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Metric Method Testset Pose Subset Expression Subset Illumination Subset Make-up Subset Occlusion Subset Blur Subset
SDM CVPR 13 [63] 10.29 24.10 11.45 9.32 9.38 13.03 11.28
CFSS CVPR 15 [71] 9.07 21.36 10.09 8.30 8.74 11.76 9.96

NME(%) DVLN CVPR 17 [57] 6.08 11.54 6.78 5.73 5.98 7.33 6.88
LAB CVPR 18 [56] 5.27 10.24 5.51 5.23 5.15 6.79 6.32
Wing CVPR 18 [20] 5.11 8.75 5.36 4.93 5.41 6.37 5.81
AWing CVPR 19 [55] 4.36 7.38 4.58 4.32 4.27 5.19 4.96
Anisotropic loss (GTBbox) 4.01 6.87 4.17 4.15 4 4.94 3.84
SDM CVPR 13 [63] 29.40 84.36 33.44 26.22 27.67 41.85 35.32
CFSS CVPR 15 [71] 20.56 66.26 23.25 17.34 21.84 32.88 23.67

FR10% (%) DVLNCVPR 17 [57] 10.84 46.93 11.15 7.31 11.65 16.30 13.71
LAB CVPR 18 [56] 7.56 28.83 6.37 6.73 7.77 13.72 10.74
Wing CVPR 18 [20] 6.00 22.70 4.78 4.30 7.77 12.50 7.76
AWing CVPR 19 [55] 2.84 13.50 2.23 2.58 2.91 5.98 3.75
Anisotropic loss (GTBbox) 2.34 13.11 2.04 2.24 2.35 5.67 3.52
SDM CVPR 13 [63] 0.3002 0.0226 0.2293 0.3237 0.3125 0.2060 0.2398
CFSS CVPR 15 [71] 0.3659 0.0632 0.3157 0.3854 0.3691 0.2688 0.3037

AUC10% DVLNCVPR 17 [57] 0.4551 0.1474 0.3889 0.4743 0.4494 0.3794 0.3973
LAB CVPR 18 [56] 0.5323 0.2345 0.4951 0.5433 0.5394 0.4490 0.4630
Wing CVPR 18 [20] 0.5504 0.3100 0.4959 0.5408 0.5582 0.4885 0.4918
AWing CVPR 19 [55] 0.5719 0.3120 0.5149 0.5777 0.5715 0.5022 0.5120
Anisotropic loss (GTBbox) 0.5895 0.3247 0.5252 0.5901 0.5786 0.5344 0.5297

Table 3: Evaluation on the WFLW dataset. GTBbox indicates the ground truth landmarks
are used to crop faces.

Method Common Challenging Fullset
Subset Subset

Inter-pupil Normalisation
Awing-CVPR 19 [55] 3.77 6.52 4.31
Anisotropic loss 3.68 ± 0.08* 6.44 ± 0.19 4.21 ± 0.09*
Anisotropic loss + Direct prediction 3.64 ± 0.07* 6.42 ± 0.18 4.20 ± 0.07*
Anisotropic loss + data balancing from [20] 3.52 ± 0.21* 6.32 ± 0.53* 4.12 ± 0.37*
Anisotropic loss + our data balancing 3.12 ± 0.2 6.25 ± 0.47 3.94 ± 0.34

Table 4: Ablation study on the 300W testset using different data balancing method using
Anisotropic loss (5 runs). ’∗’ indicates results superior to state of the art result and bold
values represents the best result

5 Analysis/ablation study
Figure 2 shows results on an image from the 300W dataset with a network (a ResNet50)
trained for 0-3 epochs. Here we observe that on epoch 0 (with no training) the CNN trained
with both loss Wing Loss and Anisotropic loss predicts all the landmarks which are on the
top left corner. It demonstrates that our cost function seems to converge to good solutions
more quickly than the Wingloss cost. By epoch 4, using our loss function, the network
has already found the rough location of each landmarks where as the network trained using
Wingloss is still struggling. In another example, in figure 3, we can see that after the first
epoch the 2D points have a front facing face-shape even though the input face is facing a
side, however within 30 epochs the predicted points are much more accurate. Following this
pattern, the CNN converges after 10k epochs when trained with Anisotropic loss .

Anisotropic loss allows some freedom of movement (see figure: 1) along the curve but
constrains movement orthogonal to the curve. We set a variance of a2 along the curve and
b2 orthogonal to it. We used the 300W dataset to examine the effect of varying these two
parameters. We found that the best results are obtained for a = 5, b = 3 (see full details in
supplementary materials). Note that corner points are given a unit covariance matrix, so are
effectively given significantly more weight in the cost function than points on curves.

In Table 6 we show the performance of similar methods (a more detailed comparison is
given in the supplementary material). We compare Anisotropic loss with other state of the
art loss functions on 300W, AFLW and WFLW datasets. We report values from WingLoss
[20] and Adaptive WingLoss [55]. We observe that our method performs better that all other
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Without training Epoch 0 Epoch 1 Epoch 2 Epoch 3

Figure 2: A comparison between Wingloss (top row) and our loss (bottom row) where the
outputs from a ResNet50 after being trained for 0 to 3 epochs. The yellow dots are the
ground truths and blue dots are predictions.

Method NME AUC8% FR8%
DAN CVPRW 17 [33] 4.30 47.00 2.67
SHN CVPRW17 [66] 4.05 - -
DCFE ECCV 18 [53] 3.88 52.42 1.83
AWing CVPR 19 [55] 3.56 55.76 0.83
AWing CVPR 19* [55] 3.6 55.7 0.9
Anisotropic loss * 3.15 ± 0.2 56.87 ± 0.13 0.49 ± 0.18

NME AUC10% FR10%
DR + MDM CVPR 17 [1] - 52.19 3.67
JMFA17Õ [9] - 54.85 1.00
LAB CVPR 18 [56] - 58.85 0.83
AWing CVPR 19 [55] 3.56 64.40 0.33
AWing CVPR 19* [55] 3.6 64.45 0.4
Anisotropic loss * 3.15 ± 0.2 66.08 ± 0.09 0.26 ± 0.11

Table 5: Evaluation on the 300W private dataset. We report mean and standard deviation of
Anisotropic loss for 5 runs. ’∗’ indicates the experiments we ran.

5 loss functions.
We tried a range of network architectures, including ResNet [21], DenseNet [24], Wide

ResNet [68] on 300W, AFLW and WFLW dataset using Anisotropic loss . We found that
there was little difference between them (Full details are in the supplementary material). We
used the ResNet50 for all our other experiments.

We compared the performance of Anisotropic loss with and without various data balanc-
ing techniques (see Table 4). Anisotropic loss without any data balancing was able achieve
state of the art NME score in the common and full set of the 300W dataset. Unsurprisingly
there is almost no difference between predicting the points directly compared to predicting
the displacement from the mean. Using sampling technique from [20] improved the perfor-
mance by quite a margin but also increased the standard deviation of errors. Anisotropic loss

dataset
loss

L2 L1 Smooth L1 Wing loss Adaptive Wing loss Anisotropic loss

300W 5.12 4.98 4.58 4.04* 4.17* 3.94 ± 0.34
AFLW 1.94* 1.73* 1.76* 1.65* 1.53* 1.3 ± 0.09
WFLW 10.12 9.45 6.08 5.11* 4.36* 4.01

Table 6: A comparison of different loss functions (L2, L1, smooth L1, Wing loss, Adaptive
Wingloss and Anisotropic loss ) using of NME (inner pupil norm) on 300W and AFLW
dataset using ResNet50. ’∗’ indicates reported values
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Epoch 0 Epoch 10 Epoch 20 Epoch 30
Figure 3: Example on a non-front facing face using Anisotropic loss . The yellow dots are
the ground truths and blue dots are predictions.

performed the best with our data balancing technique. While the variation is larger when
our data balancing is used compared to no sampling, it is less than that found using pose
balancing from[20].

6 Limitations

The proposed cost function requires a method of estimating the shape of the covariance for
each point. We have assumed the same values for a,b for every point, but it might be better to
have individual values for each point - these could be estimated from the amount of curvature
of any boundary at the point (the higher the curvature, the lower the variance).

7 Conclusion

We have introduced a novel loss function, Anisotropic loss , for regression based facial
landmark localisation and a pose balancing scheme. We compute a separate covariance
matrix for each point using the formula in equation 4. By “curves” we mean piece-wise
lines through the points around boundaries of structures (chin, mouth, nose etc). We will
change one of the figures to make the construction clearer. The covariance matrices are
pre-computed and remain fixed throughout the training. Though these are relatively simple
modification, they lead to a significant improvement in overall performance on three widely
used datasets.
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