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Abstract

Estimating dense correspondences between images is a long-standing image under-
standing task. Recent works introduce convolutional neural networks (CNNs) to extract
high-level feature maps and find correspondences through feature matching. However,
high-level feature maps are in low spatial resolution and therefore insufficient to provide
accurate and fine-grained features to distinguish intra-class variations for correspondence
matching. To address this problem, we generate robust features by dynamically selecting
features at different scales. To resolve two critical issues in feature selection, i.e., how
many and which scales of features to be selected, we frame the feature selection process
as a sequential Markov decision-making process (MDP) and introduce an optimal selec-
tion strategy using reinforcement learning (RL). We define an RL environment for image
matching in which each individual action either requires new features or terminates the
selection episode by referring a matching score. Deep neural networks are incorpo-
rated into our method and trained for decision making. Experimental results show that
our method achieves comparable/superior performance with state-of-the-art methods on
three benchmarks, demonstrating the effectiveness of our feature selection strategy.

1 Introduction
Image matching is one of the fundamental image understanding problems and serves as a
building block for various applications, i.e., object recognition [25], motion tracking [32],
and 3D construction [1]. Image matching techniques can be further extended or adapted
to other application fields including remote sensing [23], protein analysis [28] and medical
imaging [2]. Existing methods tackle image matching problem by fitting a geometric trans-
formation between the correspondences of image pairs. Previous approaches usually consist
of two steps: 1) a group of hand-crafted image descriptors, e.g., HOG, SIFT, or SURF,
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Figure 1: Comparison between image matching methods that only use high-level features
(left) and ours that select and integrate features at multiple scales (right).

are pre-computed to obtain pixel-level descriptions; 2) feature matching algorithms, e.g.,
RANSAC or Hough transformation, are then applied in an iterative manner to determine a
proper geometric transformation to match pixels using their associated features. However,
hand-crafted image descriptors are vulnerable to intra-class variations, e.g., different texture,
lighting, and material. Recently, learning-based approaches [14, 36] alleviate this problem
by extracting image features through CNNs and treat image feature maps as dense image
descriptors. In general, learning-based methods can be divided into two categories. Some
works [16, 36] focus on predicting parameters of a global rigid or non-rigid transformation,
e.g., an affine or a thin-plate spline (TPS) transformation. Others [14, 37] formulate this task
as a local region matching process and directly pair local regions in source images to the
matched regions in target images without transformation regression.

These methods, however, generate dense correspondences only based on high-level fea-
tures, i.e., the outputs of the last and/or penultimate convolutional layers [36, 37]. As features
produced by different levels of CNN layers contain information varying from low-level tex-
ture patterns to high-level semantic concepts, these methods fail to fully exploit multi-level
image abstractions to obtain reliable matches that are robust to intra-class variations and
background noise. The comparison between image matching methods that only use high-
level features and multi-scale features is shown in Figure 1. However, there are two pivotal
issues in utilizing different levels of features: how many and which levels of features are apt
for matching. To address the issues, the previous method [29] applies beam search to select
features from low levels to high levels sequentially without jumping. However, beam search
is a heuristic searching strategy, and the search space is a subspace of the full solution space.
If multiple optimal solutions exist, beam search may fail to find the one satisfying other re-
quirements, i.e., a minimal number of features used for matching. In this paper, we frame the
feature selection problem as a sequential Markov decision-making process (MDP) and tackle
it using reinforcement learning. Specifically, based on the selected features, each individual
action either requires new features or terminates the selection episode by referring a match-
ing score. The learning process is driven by reward functions. Without manually imposed
prior knowledge about image pairs, the proposed method can select the optimal collection
of features that are suitable for image matching. Compared with beam search, there is no
strict selection order in our proposed method, i.e., from low to high levels, leading to a larger
search space and a higher possibility to find the optimal solution. We test the proposed
method on three public datasets to demonstrate the effectiveness of our proposed feature
selection strategy for robust image matching. Our paper makes three main contributions:

1. We are the first to cast the feature selection process as an MDP and adopt reinforce-
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ment learning to select multiple levels of features for robust image matching.

2. We devise a simple but effective deep neural networks to fuse selected features at
multiple levels and make a decision at each step, i.e., either to select a new feature or
to stop selection for evaluation.

3. We achieve superior/comparable results on three public benchmarks for image seman-
tic correspondence estimation, demonstrating the effectiveness of our method.

2 Related Work
Local region matching. Methods in this category match two sets of local regions based
on feature similarity. Traditional methods apply hand-crafted features with spatial regular-
ization [17] or random sampling [3]. Due to the sparsity and vulnerability of the hand-
crafted features, they are incapable of handling images containing complex scenes. Bristow
et al. [4] use LDA-whitened SIFT descriptors, making correspondences less vulnerable to
background clutters. Cho et al. [6] introduces an effective voting-based algorithm based
on region proposals and HOG features for semantic matching and object discovery. Ham
et al. [12] extends [6] with a local-offset matching algorithm. Recently, features extracted
by CNNs have replaced hand-crafted features. Features produced by CNNs can represent
high-level semantics and are robust to appearance and shape variations [8, 9, 42]. Choy et
al. [7] proposes a similarity metric based on CNN features using a contrastive loss. Rocco
et al. [22, 38] trains image features and correlation features for correspondence matching in
an unsupervised/self-supervised setting. Min et al. [29] generates a pixel flow to match local
regions via a Hough Voting procedure. Similarly, we also adopt CNN features for image
matching.
Global image alignment. Other methods [16, 36] formulate correspondence estimation as
a geometric alignment problem. Parametric models are adopted to regress parameters of a
global transformation. Specifically, image correlation tensors built on image features are fed
into a regression layer/network to predict transformation parameters. Some works [16, 36]
utilize synthetic image pairs, while the work [37] explores to match images in a weakly su-
pervised way. In addition, Kim et al. [21] introduces a recurrent spatial transformer to apply
local affine transformations to images iteratively. Chen et al. [5] propose a global trans-
formation independent of affine or TPS assumptions. However, these methods only apply
high-level features, i.e., the last and/or penultimate features, generated by CNNs to construct
correlation tensors, ignoring the importance of exploiting multi-scale levels of features.
Reinforcement Learning in Vision. Our method is largely inspired by works on leveraging
reinforcement learning to solve vision problems. [30] is a classical work that uses RL for the
spatial attention policy in image recognition. RL is also adopted for object detection [33],
video object segmentation [13], video recognition [41], object tracking in [34], scene com-
pletion [15] and point cloud parsing [27]. Our work is the first attempt to explore using RL to
select a portion of hierarchical features produced by CNNs in the image matching scenario.

3 Approach
In this section, we detail our reinforcement learning method for image matching: instantia-
tions of three basic concepts (i.e., state, action, reward) in reinforcement learning (Sec. 3.2),
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network architecture fusing selected features at multiple abstraction levels (Sec. 3.3) and
reinforcement training process (Sec. 3.4). An overview of our method is shown in Figure 2.

3.1 Problem Formulation
Given an input image I, a backbone CNN with N convolutional layers produces a sequence
of N features S = ( f1, f1, · · · , fN) as intermediate representations, ranging from low level
visual patterns to high level object semantics. We need to select a subset of rich and com-
pact features for image matching. Once a collection of features are selected, we adopt the
probabilistic Hough matching [29] to match images based on the selected features. A brief
description of probabilistic Hough matching can be found in Appendix. We formulate the
feature selection as a problem of maximizing the matching score function fm : S→ R over
the power set S of the feature set S:

s∗ = argmax
s∈S∧s 6= /0

fm(s) . (1)

We treat the selection process as a Markov decision process, which is applicable of model-
ing the discrete sequential decision making process. To reframe MDP in image matching
scenario, a state set S, an action set A, and a reward functionR are defined as follows.

3.2 Overall Architecture
An overview of the proposed approach is shown in Figure 2. Specifically, it consists of
two sub-networks: a backbone CNN network which produces a collection of hierarchical
features, and a decision network, i.e., the Q-network which decides how to select features
produced by the backbone. The structure of the Q-network is detailed in Sec. 3.3.

We denote the backbone CNN with N convolutional layers as C, with each convolutional
layer denoted as C1,C2, · · · ,CN . The features produced by the layer Ci (i ∈ {1,2, · · · ,N}) is
denoted as fi ∈ Rci×hi×wi , where ci is channel size and hi×wi is the spatial resolution of
feature fi. Note that for different levels of features, the channel size and spatial size may
be different. For a pair of input images, Is as the source image and It as the target image,
we denote features produced by layer Ci as f s

i and f t
i , respectively. The goal is to find

which levels of features should be selected such that the expected matching score could be
maximized. We regard the problem as a sequential decision-making problem, where at each
step an agent selects a new feature map from the feature set or estimates the matching score.
We apply a standard reinforcement learning setting, where each episode corresponds to a
match of one image pair from a dataset. Let S be the state space, A be the set of actions and
r be reward functions, we instantiate S , A andR as follows.
State. State s = (Is, It , F̂) ∈ S at the K-th step consist of an image pair (Is, It) and the
selected set of K features F̂ = {( f s

i , f t
i )|i = 1,2, · · · ,K}. The agent receives an observation

o = F̂ . In other words, the observation is the selected features of source and target images at
the current step. This forms a partially observable Markov decision process, as non-selected
features are invisible to the agent.
Action. The action set A is divided into to two subsets A=A f ∪As, as shown in Figure 2.
The subset A f contains all actions to select new features, i.e., each action corresponds to a
feature. The subset As has only one “terminate” action to end the episode and then compute
a matching score. The number of actions in A f varies based on the concrete type of the
backbone CNN, e.g., |A f | = 34 for ResNet-101 as it has 34 layers. If the action ai ∈ A f

Citation
Citation
{Min, Lee, Ponce, and Cho} 2019



HUANG, CHEN, LI, WANG, FANG: IMAGE MATCHNG & FEATURE SELECTION 5

𝑎𝑠

𝑎5

𝑎4

𝑎2

𝑎1

Q-Net

𝐼𝑠

𝐼𝑡

𝑎0

𝑎3

Figure 2: An overview of the proposed ap-
proach. Actions in grey color are invalid ac-
tions at the current step, as the correspond-
ing features have been selected previously.
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aggregate
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Figure 3: Q-network. It adopts the encoder-
LSTM-decoder structure. The input are the
current state, i.e., selected features, and the
output is the predicted Q-value.

is selected at the current step, the feature tuple ( f s
i , f t

i ) will be added into F̂ and the state
changes for the next step.
Reward. Each action in A f indicates the corresponding feature to be selected and the agent
receives a reward through this action. The reward of each action taken at the i-th step with
the action ai is defined as:

R(ai) =

{
−ci, if ai ∈ A f

βVs, if ai ∈ As
, (2)

where ci is a positive cost value and Vs is the final matching score. We define rewards for
actions in A f to be negative, and the agent gets penalty according to the total number of
selected features. Driven by the reward, the agent tends to select the most discriminative
features as few as possible to avoid high cost. The value ci can be either set to different
values for different features fi, or set to the same value for all features. Higher ci forces the
agents to prefer shorter episodes, i.e., less selected features, to match images and vice versa.
β is a hyper-parameter to re-scale the matching score Vs into a proper range. Usually, we
expect the agent to use minimal features to achieve a matching score as high as possible,
especially in cases where matching speed or hardware memory is a consideration.

3.3 Q-network Structure
Suppose the current state for an image pair (Is, It ) at step K is F̂ = {( f s

1 , f t
1), · · · ,( f s

K , f t
K)},

the Q-network fuses all selected features at multiple levels to decide the next action, i.e.,
either to select a new feature or terminate the episode to compute a matching score. The
structure of the Q-network is shown in Figure 3. It consists of an encoder-LSTM-decoder
structure. Notice that features produced by different convolutional layers are of different
channel dimensions and spatial resolutions. Therefore, we adopt a collection of encoders
to adjust all selected feature maps to the same channel dimension and spatial resolution.
Specifically, suppose the backbone CNN comprises N convolutional layers, the Q-network
contains N separate encoders {Ei}N

i=1 with the same structure but different parameter values.
Each encoder processes its corresponding feature independently if the corresponding feature
is selected. As features at different levels contain distinct image abstractions, each encoder
can adapt its parameters to the corresponding feature level. On the contrary, if a feature
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at a certain level is not selected at the current step, the corresponding encoder would skip
parameter updating. The structure of all encoders is: Conv - ReLU - Pooling, where the
pooling layer adaptively reduces the spatial size to 1×1 regardless of the input size.

All pooled features are fed into a bi-directional LSTM to fuse different levels of informa-
tion. At each time step, the LSTM produces a latent code L(Ei( fi)), regarded as embedded
state information for reinforcement learning. The decoder, i.e., a fully connected layer, as-
similates the latent code and produces Q-values for action decision. Note that unlike encoder
networks, all decoders share the same parameters as the bidirectional LSTM integrates all
contextual information at each time step. All Q-values of selected features are aggregated for
the final decision. The aggregation operation used in our experiment is element-wise multi-
plication, and other permutation-invariant operations could also be applied as aggregation.

3.4 Reinforcement Training
Training a deep neural network with reinforcement learning is a challenge. To stabilize and
accelerate the training process, we apply the following techniques.
Deep Q-learning. [31] proposed a combination of deep convolutional networks with a vari-
ant of Q-learning. As shown in Figure 2, the Q-network works as a “brain” to make decisions.
However, training a single Q-network is usually unstable in practice. We adopt a separate
target network with parameters θ− introduced in [31] and denote the original Q-network as
evaluation network with parameters θ . The target network shares the same structure of the
evaluation network, but with different parameter values. The parameters θ− are only updated
every certain steps. Instead of directly copying values of θ into θ−, we apply the method
in [24] to slowly update θ−, defined as θ− := (1−ρ)θ−+ρθ , where ρ is a hyperparameter
specifying the change ratio.
Double Q-learning. The Q-value at step t used to guide the learning of the evaluation
network is defined as:

qt = rt + γ max
a

Qθ−(st+1,a) , (3)

where γ is the discount factor for future rewards. However, as indicated in [39], the max
operator in Eq. 3 uses the same value for action selection and evaluation, resulting in a
biased estimation of the Q-value. We apply a new formula which decouples the selection
and evaluation action for Q-value assignment as:

qt = rt + γQθ−(st+1,argmax
a

Qθ (st+1,a)) . (4)

In Eq. 4, the action is decided by the evaluation network but its value is estimated by the
target network.
Dueling Architecture. Following [40], our decoder consists of two parallel streams of
fully-connected layers, and the latent code L(Ei( fi)) produced by the LSTM is copied into
two the independent streams. The first stream outputs a scalar V (s) for the current state s,
and the second stream outputs a vector A(s,a) with |A| dimensions for all actions at the state
s. We refer readers to [40] for details about the decomposition of a single Q-function into
two separate values. The final Q-value for an action a under the state s is defined as:

Q(s,a) =V (s)+A(s,a)− 1
|A|∑a′

A(s,a′) . (5)

Citation
Citation
{Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski, etprotect unhbox voidb@x protect penalty @M  {}al.} 2015

Citation
Citation
{Mnih, Kavukcuoglu, Silver, Rusu, Veness, Bellemare, Graves, Riedmiller, Fidjeland, Ostrovski, etprotect unhbox voidb@x protect penalty @M  {}al.} 2015

Citation
Citation
{Lillicrap, Hunt, Pritzel, Heess, Erez, Tassa, Silver, and Wierstra} 2016

Citation
Citation
{Vanprotect unhbox voidb@x protect penalty @M  {}Hasselt, Guez, and Silver} 2016

Citation
Citation
{Wang, Schaul, Hessel, Hasselt, Lanctot, and Freitas} 2016

Citation
Citation
{Wang, Schaul, Hessel, Hasselt, Lanctot, and Freitas} 2016



HUANG, CHEN, LI, WANG, FANG: IMAGE MATCHNG & FEATURE SELECTION 7

By estimating the value of state V (s) explicitly, the training process speeds up and stabilizes.
Retrace. As we store trajectories into a memory buffer and randomly sample trajectories
during each training iteration, there exists a discrepancy between the sampled trajectories
and the current policy. To resolve the discrepancy, we modify the Q-value at step t based on
the new estimation proposed in [18]:

qt = rt + γEa∼π(st )[Q(st+1,a)]+ γρ̄t+1[qt+1−Q(st+1,at+1)] , (6)

where ρ̄t = min( π(at |st )
µ(at |st )

,1) is a truncated importance sampling between behavior policy µ

that is used to generate trajectories stored in the memory buffer and the target policy π that
the Q-network aims to learn. Importance sampling is a simple way to correct the discrepancy
between µ and π when off-policy learning, i.e., using memory buffer, is applied.

4 Experiments
In this section, we present a comprehensive implementation, evaluation, and analysis of our
proposed approach on three public real image datasets.

4.1 Datasets and Metric
We compare our model to other image matching methods with both hand-crafted and CNN-
based features on three datasets: PF-PASCAL [12], PF-WILLOW [12] and Caltech-101 [11].
Datasets. The PF-PASCAL dataset consists of 1,351 semantically related image pairs from
20 object categories. All image pairs are split into training, validation, and test sets in [14].
Manually annotated correspondences for each pair are only provided in validation and test
sets. As we need matching scores as the reward of the terminal state, we further split the orig-
inal validation set into two parts with a ratio of 8 : 2 as the new training and validation sets.
Therefore, we use much less images for training. The PF-WILLOW dataset comprises 100
images which are grouped into 900 image pairs. All pairs are divided into four semantically
related subsets. For each image, 10 keypoint annotations are provided. The Caltech-101
dataset provides images of 101 object categories with ground-truth object masks, but it does
not provide ground-truth keypoint annotations. Following [37], we choose 15 image pairs
for each object category and use the corresponding 1,515 image pairs for evaluation.
Metric. We adopt the percentage of correct keypoints (PCK) metric to evaluate our model
on PF-PASCAL and PF-WILLOW. PCK measures the percentage of keypoints whose trans-
formation errors are below a given threshold. The transformation error is measured as the
Euclidean distance between the location of a warped keypoint and its corresponding ground-
truth keypoint. The threshold is defined as α max(h,w) where h and w are height and width
of the object bounding box. For both datasets, we set the threshold α = 0.1. Following [19],
we adopt label transfer accuracy (LT-ACC) and intersection-over-union (IoU) to evaluate the
performance on Caltech-101 dataset. Both metrics measure the number of correctly labeled
pixels between ground-truth and warped masks generated by estimated correspondences.

4.2 Implementation and Training
We adopt ResNet-101 pre-trained on ImageNet [9] classification task as the backbone net-
work. In our Q-network, the number of encoders is 34, as ResNet-101 contains 34 convo-
lutional layers. The convolutional layers in all encoders output a 512-dimensional feature
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map. The hidden size of the LSTM and the fully-connected layer size in the decoder are
also set to be 512. We use features produced by the fully-connected layer of the backbone as
initial states to start selection episodes, and these initial features are not applied in computing
matching scores. Once the action in As is chosen, we adopt the probabilistic Hough match-
ing proposed in [29] to match images using selected features. During training, we fix the
parameters of the backbone network and only train the Q-network. The costs for all actions
in A f are fixed to 0.4 and β is set to 20. We empirically set the initial learning rate to 0.001.
We adopt the Adam optimizer for optimization with β1 = 0.9 and β2 = 0.999. We train our
model with a batch size of 16 for 3000 iterations and apply early-stopping. We keep track of
the average reward on the training set and decrease the learning rate immediately once the
reward fails to increase for ten times. The average reward on the validation set is used for
early stopping if the reward fails to increase consecutively for twenty times.

Model
PCK (α = 0.1)

PF-WILLOW PF-PASCAL

H
an

d-
cr

af
te

d DeepFlow [35] 0.20 0.21
GMK [10] 0.27 0.27
DSP [19] 0.29 0.30
SIFTFlow [26] 0.38 0.33
ProposalFlow [12] 0.56 0.45

C
N

N
-b

as
ed

FCSS + PF-LOM [20] 0.58 0.46
GeoCNN (SS) [36] 0.68 0.68
A2Net [16] 0.69 0.67
GeoCNN (WS) [37] 0.71 0.72
SFNet [22] 0.74 0.79
HPFlow [29] 0.74 0.85
Ours 0.75 0.86

Table 1: The average PCK results on PF-
WILLOW and the test split of PF-PASCAL
dataset with α = 0.1. Numbers of the top-1 per-
formance are in bold and the top-2 performance
are underlined.

Methods LT-ACC IoU

H
an

d-
cr

af
te

d

DeepFlow [35] 0.74 0.40
SIFTFlow [26] 0.75 0.48
GMK [10] 0.77 0.40
DSP [19] 0.77 0.47
ProposalFlow [12] 0.78 0.50
OADSC [43] 0.81 0.55

C
N

N
-b

as
ed

SCNet-AG[14] 0.79 0.51
A2Net [16] 0.80 0.57
FCSS + PF-LOM [20] 0.83 0.52
GeoCNN (SS) [36] 0.83 0.61
GeoCNN (WS) [37] 0.85 0.63
SFNet [22] 0.88 0.67
HPFlow [29] 0.87 0.63
Ours 0.87 0.63

Table 2: The average quantita-
tive results on Caltech-101 dataset.
Numbers of the top-1 performance
are in bold and the top-2 perfor-
mance are underlined.

4.3 Results
PF-WILLOW & PF-PASCAL. In Table 1, we report the average PCK scores of our method
and recent methods that are directly comparable. Note that the performance of all compared
methods are taken from [12, 16, 22, 29]. As shown in Table 1, our proposed method achieves
state-of-the-art performance [29]. Our model is trained on PF-PASCAL dataset and the
selected features are produced by (2, 23, 25, 28) layers, which is around half of all selected
layers proposed by [29]1. For PF-WILLOW dataset, in order to verify the generalization
ability of our proposed method, we directly apply the same selected layers for testing without
fine-tuning. The results in Table 1 indicates: 1) fusing multiple levels of features is beneficial
for image matching; 2) based on our instantiation of three core components of reinforcement
learning, i.e., state, action and reward, our method has the capability to learn an optimal
selection policy for image matching. As we assign each selected feature a positive cost, it

1The layers selected for PF-PASCAL dataset using ResNet-101 in [29] are (2, 17, 21, 22, 25, 26, 28).
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Source image Target image GeoCNN (WS) A2Net SFNet Ours

Figure 4: Examples of qualitative results from PF-PASCAL dataset. Keypoints of the source
and target images are shown in circles and crosses, respectively. Compared to GeoCNN
(WS) [37], A2Net [16] and SFNet [22], our method is more robust to intra-class variations.

drives our method to select features as few as possible, trading off between the final reward
and the cost to receive that reward. Another possible reason leading to fewer selected features
and higher scores is that there is no restriction for selection order during the policy learning
process. On the contrary, beam search in [29] selects features from low levels to high levels
sequentially without skipping, resulting in a smaller search space.
Caltech-101. The quantitative results for the Caltech-101 dataset are listed in Table 2. All
results except for ours are taken from [12, 16, 22, 29]. Similar to PF-WILLOW dataset, we
directly test our method on Caltech-101 using selected layers based on PF-PASCAL without
fine-tuning. Our method achieves the same performance as [29]. Notice that the performance
of SFNet [22] is better than ours and [29]. One possible explanation is that we select features
from the backbone network pre-trained for image classification, while SFNet introduces two
trainable convolutional layers to refine image features for image matching. Although we
combine both high and low levels of features, the combined features are still not as robust as
features dedicatedly trained for image matching. Therefore, incorporating feature learning
into our proposed method is left for future study.
Qualitative comparison. Figure 4 visualizes the matching results between keypoints in
source and target images on the test split of the PF-PASCAL dataset. We can see that our
method is able to select features that are robust to (near) rigid deformations (e.g., cars in the
third row), local non-rigid deformations (e.g., the cat’s head in the second row and the upper
part of birds in the fourth row), scale changes between objects (e.g., wheels of bicycles in the
last row). In particular, the first example clearly demonstrates that our method establishes
more discriminative correspondences, avoiding matches for non-target objects. For example,
it does not match keypoints on the motorbike to keypoints on the rider between the source
and target images, while all other methods mismatch some keypoints.
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5 Conclusion
We propose a reinforcement learning method to dynamically select an optimal set of features
at multiple levels to match images. Our method regards the collection of selected features as
states and simulates an environment to generate rewards to decide actions to select the next
feature. The experiments on three public benchmarks demonstrate that our method is able
of selecting a small set of features for image matching. We believe applying reinforcement
learning to select task-relevant visual features can be applied to various vision tasks.

Appendix
A.1 In this subsection, we briefly summarize the process of establishing keypoint correspon-
dences using probabilistic Hough matching [29]. Given a collection of selected features,
firstly, all selected features are spatially resized to the same size as the largest feature and
then concatenated along the channel dimension. Given any two positions in source and tar-
get image features separately, we compute their visual similarity (cosine distance) and the
spatial offset between these two positions. A Hough space is built based on offsets and dis-
cretized into different bins. Each pair of positions in source and target features cast a vote,
i.e., the value of visual similarity, to their corresponding offset bin. The final visual similar-
ity between any two positions is re-weighted by summing up all votes falling into their bin.

# Layers Layer Indices PCK

2 (4, 6) 0.05
(6, 18) 0.11

3 (17, 22, 31) 0.70
(14, 27, 30) 0.71

4 (7, 19, 30, 31) 0.10
(9, 15, 16, 26) 0.59

5 (6, 14, 17, 18, 22) 0.38
(9, 16, 17, 21, 24) 0.66

6 (5, 7, 14, 27, 32, 33) 0.17
(9, 15, 22, 23, 25, 33) 0.73

7 (6, 10, 11, 20, 28, 29, 33) 0.25
(16, 18, 22, 26, 27, 30, 33) 0.70

Table 3: The average PCK results of randomly
selected layers on PF-PASCAL dataset.

The keypoint correspondences are esti-
mated as follows: for a keypoint in a source
image, there must exist several receptive
fields (RFs, corresponding to positions in
image features) covering it. Each position
in the source feature has a most visually
similar position in the target feature cor-
responding to an RF in the target image.
The displacements of source RFs’ centers
to the source keypoint are used as weights
to weighted sum up the corresponding tar-
get RFs’ centers, which is regarded as the
source keypoint’s correspondence.
A.2 In this subsection, we report the exper-
iment on the PF-PASCAL dataset by ran-
domly selecting a collection of layers. We fix the number of layers to be selected, i.e., the
value of K is restricted within the range from 2 to 7, and then randomly selected K layers.
For each value of K, we test twice and the result is shown in Table 3. Notice that even if the
same number of K layers are used for matching, the randomly selected layers yield inferior
performance compared with layers selected by the proposed method, as shown in Table 1.
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using deep reinforcement learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, pages 3959–3966, 2019.

[19] Jaechul Kim, Ce Liu, Fei Sha, and Kristen Grauman. Deformable spatial pyramid
matching for fast dense correspondences. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2307–2314, 2013.

[20] Seungryong Kim, Dongbo Min, Bumsub Ham, Sangryul Jeon, Stephen Lin, and
Kwanghoon Sohn. Fcss: Fully convolutional self-similarity for dense semantic cor-
respondence. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 6560–6569, 2017.

[21] Seungryong Kim, Stephen Lin, SANG RYUL JEON, Dongbo Min, and Kwanghoon
Sohn. Recurrent transformer networks for semantic correspondence. In Advances in
neural information processing systems, pages 6126–6136, 2018.

[22] Junghyup Lee, Dohyung Kim, Jean Ponce, and Bumsub Ham. Sfnet: Learning object-
aware semantic correspondence. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2278–2287, 2019.

[23] Xiang Li, Xiaojing Yao, and Yi Fang. Building-a-nets: robust building extraction from
high-resolution remote sensing images with adversarial networks. IEEE Journal of Se-
lected Topics in Applied Earth Observations and Remote Sensing, 11(10):3680–3687,
2018.

[24] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforce-
ment learning. In International Conference on Learning Representations, 2016. URL
https://arxiv.org/abs/1509.02971.

https://arxiv.org/abs/1509.02971


HUANG, CHEN, LI, WANG, FANG: IMAGE MATCHNG & FEATURE SELECTION 13

[25] Ce Liu, Jenny Yuen, Antonio Torralba, Josef Sivic, and William T Freeman. Sift flow:
Dense correspondence across different scenes. In European conference on computer
vision, pages 28–42. Springer, 2008.

[26] Ce Liu, Jenny Yuen, and Antonio Torralba. Sift flow: Dense correspondence across
scenes and its applications. IEEE transactions on pattern analysis and machine intelli-
gence, 33(5):978–994, 2010.

[27] Fangyu Liu, Shuaipeng Li, Liqiang Zhang, Chenghu Zhou, Rongtian Ye, Yuebin Wang,
and Jiwen Lu. 3dcnn-dqn-rnn: A deep reinforcement learning framework for semantic
parsing of large-scale 3d point clouds. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 5678–5687, 2017.

[28] Yu-Shen Liu, Yi Fang, and Karthik Ramani. Using least median of squares for struc-
tural superposition of flexible proteins. BMC bioinformatics, 10(1):29, 2009.

[29] Juhong Min, Jongmin Lee, Jean Ponce, and Minsu Cho. Hyperpixel flow: Semantic
correspondence with multi-layer neural features. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 3395–3404, 2019.

[30] Volodymyr Mnih, Nicolas Heess, Alex Graves, et al. Recurrent models of visual atten-
tion. In Advances in neural information processing systems, pages 2204–2212, 2014.

[31] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Os-
trovski, et al. Human-level control through deep reinforcement learning. Nature, 518
(7540):529, 2015.

[32] Richard A Newcombe, Steven J Lovegrove, and Andrew J Davison. Dtam: Dense
tracking and mapping in real-time. In Proceedings of the IEEE International Confer-
ence on Computer Vision, pages 2320–2327. IEEE, 2011.

[33] Aleksis Pirinen and Cristian Sminchisescu. Deep reinforcement learning of region
proposal networks for object detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 6945–6954, 2018.

[34] Liangliang Ren, Jiwen Lu, Zifeng Wang, Qi Tian, and Jie Zhou. Collaborative deep
reinforcement learning for multi-object tracking. In European Conference on Computer
Vision, pages 586–602, 2018.

[35] Jerome Revaud, Philippe Weinzaepfel, Zaid Harchaoui, and Cordelia Schmid. Deep-
matching: Hierarchical deformable dense matching. International Journal of Computer
Vision, 120(3):300–323, 2016.

[36] Ignacio Rocco, Relja Arandjelovic, and Josef Sivic. Convolutional neural network
architecture for geometric matching. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 6148–6157, 2017.
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