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Abstract

In this paper, we show that the performance of a learnt generative model is closely
related to the model’s ability to accurately represent the inferred latent data distri-
bution, i.e. its topology and structural properties. We propose LaDDer to achieve
accurate modelling of the latent data distribution in a variational autoencoder frame-
work and to facilitate better representation learning. The central idea of LaDDer is
a meta-embedding concept, which uses multiple VAE models to learn an embedding
of the embeddings, forming a ladder of encodings. We use a non-parametric mix-
ture as the hyper prior for the innermost VAE and learn all the parameters in a uni-
fied variational framework. From extensive experiments, we show that our LaDDer
model is able to accurately estimate complex latent distribution and results in improve-
ment in the representation quality. We also propose a novel latent space interpolation
method that utilises the derived data distribution. The code and demos are available at
https://github.com/lin-shuyu/ladder-latent-data-distribution-modelling.

1 Introduction
Variational autoencoders (VAEs) [22, 35] are probabilistic latent variable models that aim to
learn rich representations from large amounts of data in an unsupervised manner. A trained
VAE consists of a generative decoder that generates a data sample from a latent code and
a variational encoder that maps a data sample to an approximate posterior distribution over
latent variables. Amongst different types of generative models including GANs [12], flow
models [8, 9] and autoregressive models [39], VAEs have been favoured for their training sta-
bility, strong theoretical grounding and ability to learn well-structured latent representations.
In general, the quality of a learned generative model is dependent on two factors: 1) the
quality of the inferred data distribution, which defines the topology and structural properties
of the latent space; 2) the ability to generate good quality samples in the data space.

Thanks to all the preferable properties, VAEs have been widely applied in many computer
vision applications, including image synthesis [11, 17, 41], human motion modelling [14,
36] and 3D reconstruction [1, 4, 6, 10, 29]. However, VAEs still struggle when modelling
complex data such as images. Specifically, compared to other models, the generated images
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Figure 1: LaDDer’s key concept. LaDDer adopts a generative prior, which consists of a
mixture hyper prior and a series of VAEs each acting on its predecessor’s latent encodings.

of VAEs can be somewhat blurry, lack of fine details and have limited diversity. An entire
research field is dedicated to improving VAE learning quality. In this paper, we focus on a
key component of VAE learning objective that involves restricting the learned latent space
representation to a chosen prior probability. As we cannot observe the true latent distribution
from which the data were generated, it is impossible to choose a perfect prior distribution
a priori. Therefore, many works, which adopt a simple and inflexible prior in the form of
a unit Gaussian distribution, often suffer from an over-regularised latent representation, as
the model tries to get the encoder to shoehorn the data to fit the simple prior, sacrificing the
quality of generated images. This suggests that using a more flexible prior distribution, or
treating the prior as a parameterised model, can reduce or eliminate the over-regularisation
issue and lead to improvement in the representation quality.

Following these insights, we propose LaDDer, a method that allows us to accurately
model the prior distribution in a VAE framework. The central idea of our method is a
meta-embedding concept which, in short, derives a latent embedding of a latent embed-
ding. Specifically as shown in Fig. 1, our approach consists of multiple VAE models each
acting on its predecessor’s latent representation and forming a ladder of encodings. We use
a non-parametric mixture as the hyper prior for the innermost VAE. The hyper prior together
with the intermediate encoders forms a generative prior for the outermost VAE. We learn
the parameters of all the VAE networks, along with the non-parametric mixture, in a unified
variational inference framework. From extensive experiments, we show that our LaDDer
model is able to accurately estimate complex latent data distribution and results in im-
provement in the representation quality. We also propose a novel latent space interpolation
method and show how to best utilise the derived latent distribution in further tasks.

2 Background
Here we introduce VAE models and explain why the prior distribution is crucial in producing
good learning outcomes. Given a dataset of N observations DN = {xxx1, · · · ,xxxN}, VAEs as-
sume all data samples xxxi are generated from a low-dimensional latent space z under a latent
variable model pθ (x,z) = pθ (x|z)p(z), where pθ (x|z) denotes the generative model (de-
coder) parameterised by θ . VAEs learn the model parameters θ by maximising the marginal
log likelihood for all data points in DN , i.e. argmaxθ EpD(x)[log pθ (x)], where pD(x) is the
empirical data distribution and pθ (x) =

∫
pθ (x|z)p(z)dz. However, directly evaluating the

marginal log likelihood is often not feasible, as integration over the network pθ (x|z) is not
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trivial. To obtain an analytical learning objective, VAEs [22, 35] use variational inference
and derive an evidence lower bound (ELBO) L(x;θ ,φ) to the marginal log likelihood, i.e.
EpD(x)[log pθ (x)] ≥ L(x;θ ,φ), as shown in Eq (1):

L(x;θ ,φ) =∆ EpD(x)
[
Eqφ (z|x)[log pθ (x|z)] − DKL[qφ (z|x)‖p(z)]

]
(1)

=∆ EpD(x)
[
Eqφ (z|x)[log pθ (x|z)]︸ ︷︷ ︸
1© reconstruction likelihood

− Eqφ (z|x)[logqφ (z|x)]︸ ︷︷ ︸
2© posterior entropy

+ Eqφ (z|x)[log p(z)]︸ ︷︷ ︸
3© cross-entropy wrt prior

]
. (2)

By breaking down the KL divergence term in Eq (1) using the definition of KL, we ob-
tain an ELBO expression in Eq (2). Here we see that the ELBO contains three terms: 1©
a reconstruction likelihood that encourages good reconstruction through the auto-encoding
process, 2© a negative posterior entropy that favours qφ (z|x) with large variances and finally
3© a cross-entropy between the posterior qφ (z|x) and the prior p(z) that regularises the pos-

teriors to comply with the target prior distribution. We can re-arrange 3© into a cross-entropy
between the aggregate posterior qφ (z) and the prior p(z), as shown below:

EpD(x)Eqφ (z|x)[log p(z)] = Eqφ (z)[log p(z)], where qφ (z) = EpD(x)[qφ (z|x)]. (3)

This re-arrangement reveals that term 3© in the ELBO loss encourages the prior p(z) and the
inferred latent data distribution qφ (z) to match each other. If an overly limiting prior is used,
then the learnt data distribution will diverge from the true data distribution. Details of the
re-arrangement are given in Supplementary Materials (SM) A1.

2.1 Related work
Many approaches have been proposed to improve VAE’s modelling ability for rich, high-
dimensional data. For example, [23, 32, 34, 37] propose to use more flexible sample posteri-
ors qφ (z|xxx) to increase the encoder’s expressive power and improve the model’s performance
in all three loss terms of Eq (2). [5, 16, 19] focus on deriving alternative learning objectives
in order to produce representations with preferred qualities, such as disentanglement.

We take a different approach from these lines of research. In this work, we focus on
modelling the prior distribution p(z) accurately, which then results in improved learning
performance and facilitates further tasks, such as latent space interpolation. Several works
have considered using more flexible distributions than a unit Gaussian as priors, such as a
stick-breaking prior [30], a Chinese Restaurant Process prior [13] or a Gaussian mixture
(GM) prior [7, 18, 27, 38]. Those methods often have limited performance for complex
datasets where high-dimensional latent space is needed to facilitate the generative modelling.
A closely related work is [24], where a generative model is used to parameterise the prior.
Our method differs from [24], as we realise that the introduction of a generative prior alone
does not guarantee accurate modelling of the latent data distribution. Thus, we introduce
a GM hyper prior to complete the modelling task. In addition, we optimise all the model
parameters in a coherent lower bound objective, whereas [24] has to set up a constrained
optimisation to replace the ELBO objective in order to learn the model parameters.

Another line of research in VAEs is devoted to improving the generation quality, leading
to the impressive image quality shown in VQ-VAE2 [33]. A major difference between VQ-
VAE2 and our work lies in the different approaches taken to model the prior distribution.
VQ-VAE2 learns an auto-regressive prior (using a pixelCNN model [26]) in a post-hoc, 2nd
stage (after the autoencoder is trained). Our model trains both autoencoder and prior modules
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jointly under the same objective. Further, VQ-VAE2 employs a 2D latent representation,
where a single feature vector corresponds to a local patch of the generated image. It is
extremely difficult to manipulate such a 2D representation to generate globally consistent
changes. In contrast, we adopt a global code to represent the whole image. We can easily
traverse across the derived data manifold and generate smoothly changing data samples.

3 Our Method
As shown in Fig. 1, we propose a generative prior, which includes an additional VAE model
to project the original data VAE’s encodings to an even lower dimensional space and a hy-
per prior for this prior VAE. We parameterise the hyper prior as a Gaussian mixture model
(GMM). This design allows us to accurately estimate the latent data distribution, as the gen-
erative prior is sufficiently flexible to fit any arbitrarily complex distribution. At the same
time, the optimisation of our LaDDer model can be easily integrated into the VAE ELBO
objective, which we will demonstrate in this section. In the end, we also demonstrate how to
use the latent data distribution derived from our LaDDer learning to facilitate a latent space
interpolation task.

3.1 The VAE Unit in Our Generative Prior
We first introduce the VAE unit in our generative prior. Similar to the VAE for data sam-
ples introduced in Section 2, the prior VAE is also formulated by a latent variable model
pα(z, t) = pα(z|t)p(t), which governs the generation of latent encodings zzzi through 1) a hy-
per prior p(t) that resides in an even lower dimensional space and 2) an encoding decoder
pα(z|t) which is parameterised by a neural network with parameters α . To optimise the prior
VAE, we can introduce a variational encoder qβ (t|z) parameterised by β and learn both α

and β by maximising an ELBO objective L(z;α,β ) similar to Eq (2) for this prior model,
i.e. Eqφ (z|x)[log pα(z)]≥ L(z;α,β ), where:

L(z;α,β ) =∆ Eqφ (z|x)
[
Eqβ (t|z)[log pα(z|t)]−Eqβ (t|z)[logqβ (t|z)]+Eqβ (t|z)[log p(t)]

]
. (4)

Notice that L(z;α,β ) is a lower bound to the likelihood Eqφ (z|x)[log pα(z)], which is
equivalent to the cross-entropy term 3© in Eq (2). This connection allows us to integrate the
learning objective of this prior VAE, i.e. L(z;α,β ), into the ELBO for the original data VAE,
i.e. L(x;θ ,φ), and obtain a new lower bound L′(x;θ ,φ ,α,β ) to the data ELBO L(x;θ ,φ),
i.e. L(x;θ ,φ)≥ L′(x;θ ,φ ,α,β ), where:

L′(x;θ ,φ ,α,β ) = EpD(x)
[
Eqφ (z|x)[log pθ (x|z)]−Eqφ (z|x)[logqφ (z|x)]+L(z;α,β )

]
. (5)

3.2 Variational Gaussian Mixture Model for the Hyper Prior
The prior VAE unit defined in Section 3.1 introduces a hyper prior p(t). From Eq (3), we
know that the optimal hyper prior should be matched to the aggregate hyper posterior, i.e.
p(t) ≈ qβ ,φ (t). To facilitate the matching, we parameterise p(t) with a Gaussian mixture
model (GMM) of M components (M� N): p(t) = ∑

M
m=1 wmN (t; µm, Σm), where wm is the

weight for each Gaussian mixture (wm > 0 and ∑m wm = 1) and µm and Σm are the mean
and covariance matrix for the m-th Gaussian mixture. To fit p(t) to qβ ,φ (t), we resort to
variational inference techniques introduced in [3]. Here we give a high-level sketch of the
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algorithm and we refer interested readers to [3] for further mathematical details. Firstly,
we define the generative model of the GMM by introducing the following distributions to
the GMM parameters (www,µ,Σ) and all N prior encoding samples ttt i (the encodings of zzzi):
wm ∼ Beta(1,α0), µm ∼ N (0,I), Σm ∼W(dt ,I), ki ∼ Cat(www), ttt i ∼ N (µki ,Σki), where
ki indicates the choice of mixture components for i-th sample ttt i. Secondly, we introduce
the following variational distributions under the mean-field assumption for all the model
variables W = (www,µ,Σ,ki): wm ∼Beta(γm,1,γm,2), µm ∼N (vvvm,I), Σm ∼W(am,Bm), ki ∼
Discrete(rrri), where ξ = (γm,1,γm,2,vvvm,am,Bm,rrri) for m = 1, · · · ,M and i = 1, · · · ,N denotes
variational variables and needs to be optimised. Thirdly, a variational bound on the log
likelihood of p(t) is introduced as the learning objective to optimise ξ , as shown below:

log p(t|α0,M)≥ L(t;ξ ) = Eqξ (W )[log p(W, t|α0,M)]−Eqξ (W )[logqξ (W )], (6)

where p(W, t|α0,M) denotes the product of all the generative distributions introduced in step
1 and qξ (W ) denotes the product of all the variational distributions introduced in step 2.

Now substituting L(t;ξ ) in Eq (6) into Eq (4) to replace log p(t), we obtain a lower
bound L′(z;α,β ,ξ ) to the prior ELBO L(z;α,β ), i.e. L(z;α,β )≥ L′(z;α,β ,ξ ), as

L′(z;α,β ,ξ ) = Eqφ (z|x)
[
Eqβ (t|z)[log pα(z|t)]−Eqβ (t|z)[logqβ (t|z)]+Eqβ (t|z)[L(t;ξ )]

]
. (7)

Now substituting L′(z;α,β ,ξ ) into the lower bound L′(x;θ ,φ ,α,β ) in Eq (5) to replace
L(z;α,β ), we obtain a final lower bound L′′(x;Θ) to the data likelihood EpD(x)[log pθ (x)],
i.e. EpD(x)[log pθ (x)]≥L′′(x;Θ), where Θ = [θ ,φ ,α,β ,ξ ] denotes all the parameters in the
data VAE, prior VAE and GMM hyper prior, and

L′′(x;Θ) = EpD(x)
[
Eqφ (z|x)[log pθ (x|z)]−Eqφ (z|x)[logqφ (z|x)]+L′(z;α,β ,ξ )

]
. (8)

3.3 Block Coordinate Ascent to Optimise Model Parameters
With the new lower bound in Eq (8), we are ready to introduce our block coordinate ascent
algorithm which optimises all the model parameters Θ = [θ ,φ ,α,β ,ξ ]. Notice that the
GMM hyper prior’s parameter ξ are only involved in the term L(t;ξ ) from Eq (6). We
can update ξ by maximising L(t;ξ ) alone. With the newly updated ξ , we can then update
the prior VAE’s parameter α,β , which only present in the prior VAE’s ELBO L′(z;α,β |ξ )
from Eq (7). Finally, with ξ ,α,β updated, we can now update the data VAE’s parameters
θ ,φ by maximising L′′(x;θ ,φ |α,β ,ξ ) from Eq (8) with α,β ,ξ being fixed. An algorithmic
illustration for this optimisation procedure is given in SM B. Notice that we initialise the
GMM hyper prior as an uninformative unit Gaussian to begin the optimisation.

3.4 Shortest Likely Path to Traverse the Data Manifold
In Section 3.1-3.3, we introduce a generative prior and an optimisation scheme to facilitate
accurate modelling of the latent data distribution. Now we demonstrate how to use the
derived latent distribution in a latent space traversal task, where a path along the learnt data
manifold needs to be inferred to interpolate between two data samples. Such interpolation
has been used commonly in previous works [2, 19, 21, 31] to illustrate the smoothness of the
learnt data manifold. Traditionally, the traversal is done by a linear interpolation between
the encodings of a pair of query images, which we refer as shortest path (SP) interpolation.
This method ignores the nonlinear topology of the data manifold in the latent space and often
results in poor interpolated images, which are generated faraway from the data manifold.
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To achieve better interpolation results, we propose to formulate the traversal task as an
optimisation problem which aims to find an optimal path that is shortest while remaining
close to the data manifold. We refer to our interpolation scheme as shortest likelihood path
(SLP) interpolation and design an optimisation objective as follows:

OSLP = Lpath(sss)︸ ︷︷ ︸
path length

+ stdstep length(sss)︸ ︷︷ ︸
equal step length

− log p(t = sss),︸ ︷︷ ︸
path likelihood

(9)

where sss = [s1, · · · ,sJ ]
T denotes a list of J steps along the traversal path and each s j denotes

a single encoding that can be projected back to the data space as an interpolated image.
As can be seen, our OSLP objective contains three terms: 1) Lpath(sss) minimises the current
path length, 2) stdstep length(sss) requires steps to be evenly distributed along the path and 3)
log p(t = sss) ensures all the interpolated encodings to be generated from the inferred data dis-
tribution p(t). To find an optimal path sss, we minimiseOSLP wrt sss by a standard optimisation
scheme, such as AdamOptimiser [20] that is used in our experiments. Notice that our SLP
interpolation can be generally applied to any representation learning algorithm, as long as
the likelihood of the latent data distribution p(z) can be easily evaluated.

4 Experiments and Results
We carry out extensive experiments on MNIST [25], Fashion MNIST [40] and CelebA [28]
datasets to evaluate our LaDDer model. For all datasets, images are treated as real-valued
data and we use a Laplace distribution to model the decoder pθ (x|z). The corresponding
reconstruction likelihood (term 1© in Eq (2)) is derived in SM C, following [27]. We compare
our method to 4 other approaches, including the original VAE with a normal prior [22, 35],
VAE with a GMM prior [7, 18, 27], VAE with a hierarchical prior [24] where a generative
prior with a normal hyper prior is used, and VampPrior [38] where the prior is modelled as
an average encoding of a set of inferred pseudo-inputs. More results, details of data pre-
processing and model architectures are given in SM D-F.

4.1 Our Method Better Estimates the Latent Data Distribution

We first show that our LaDDer model can achieve a better modelling of the latent data distri-
bution, i.e. more accurate estimation of the aggregate posterior qφ (z). Fig. 2 visualises the
aggregate posterior qφ (z) and the optimised priors from 5 different approaches, where VAE
models are trained for 2D latent space on MNIST dataset. The true data distribution shown
in Fig. 2a contains complex low density regions, which correspond to natural boundaries be-
tween different object classes. An inflexible prior model, such as a unit Gaussian (Fig. 2b),
over-represents such low density regions. The hierarchical prior (Fig. 2c) also fails to model
qφ (z) accurately, because the prior VAE is overly regularised by its inflexible hyper prior.
The other three methods (Fig. 2d-f), where the prior p(z) is parameterised with mixture
models, obtain better fitting. The difference across these three methods lies in the num-
ber of mixture components. Both the GMM prior and the VampPrior have a finite number of
mixture components, whereas our LaDDer prior contains an infinite number of mixture com-
ponents, as our prior is estimated by integrating over all t-values: pα(z) =

∫
pα(z|t)p(t)dt.

As a result, our method is able to smoothly fit any arbitrarily complex qφ (z) with no artificial
boundaries as the ones introduced in VampPrior.
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Figure 2: Visualising the modelling of MNIST data distribution in a 2D latent space.
We first train a VAE model with the unit Gaussian prior. Then we fix the autoencoder model
and fit different prior models to the derived encodings. The true data distribution (aggregate
posterior qφ (z)) is shown in (a), where we encode 10k training images and visualise their
posteriors. In b-f, we visualise the pdfs of the 5 different prior methods. Our generative prior
produces the best fit to the true data distribution.
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Figure 3: Comparison of reconstruction and generation quality across different VAE
models. All five models trained with celebA dataset can produce similar quality recon-
struction, but the generation quality varies significantly samples. The difference between
reconstruction and generation quality indicates the importance of a prior model in modelling
the data distribution and generating good quality samples. Our generative prior can model
the data distribution qφ (z) well, hence generating best quality samples with minimal gap to
the quality of reconstructed samples. More examples are in Supplementary Materials F1.

Having a prior that can better fit qφ (z) also leads to improved generation quality. Fig. 3
gives examples of both reconstructed and generated samples from the 5 VAE models trained
under the CelebA dataset. All 5 methods can produce good reconstruction, but the generation
quality varies significantly. This indicates that the bad generation quality commonly reported
in VAE models does not merely result from the autoencoder architecture, but is also a result
of the prior p(z) failing to represent the topology of the learned latent data distribution.
Generating from the prior that does not represent the true data distribution unsurprisingly
produce unrealistic samples. Our proposed generative prior addresses this issue and produces
generation quality that is almost as good as the model’s reconstruction quality. The improved
generation quality is supported by the FID score [15], which is a quantitative measure to
evaluate visual quality of image samples, shown in Table 1.

We also evaluate the cross-entropy Eqφ (z)[log p(z)] ( 3© in Eq (2)) between the aggregate
posterior qφ (z) and the prior p(z) to measure the level of matching between the two dis-
tributions. Higher Eqφ (z)[log p(z)] indicates a better fit of the prior p(z) to the learnt data
distribution qφ (z). As shown in Table 2, GMM priors can achieve very good fitting for rel-
atively simple datasets, such as MNIST. However, when the dataset becomes more complex
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Table 1: FID scores (lower is better) of generated and reconstructed samples. Our LaDDer
model achieves the best sample quality and the minimal gap between the two.

Normal VampPrior GMM Hierarchical Ours
Generation 250.3 ± 1.5 182.9 ± 1.2 140.4 ± 0.9 143.8 ± 1.0 132.7 ± 0.8

Reconstruction 100.3 ± 0.6 95.5 ± 0.7 102.3 ± 0.5 99.7 ± 0.6 95.3 ± 0.5
Difference 150.0 ± 2.1 87.4 ± 1.9 38.1 ± 1.4 44.1 ± 1.6 37.4 ± 1.3

Table 2: Cross-entropy Eqφ (z)[log p(z)] (higher is bettter) between the aggregate posterior
and the prior. Our LaDDer model achieves the best fit to qφ (z) in more complex datasets.

Dataset Normal VampPrior GMM Hierarchical Ours
MNIST -19.0 ± 0.1 -16.2 ± 0.1 -8.4 ± 0.9 -17.5 ± 0.1 -12.3 ± 0.1

fashion-MNIST -52.5 ± 0.6 -60.8 ± 1.0 -45.2 ± 0.8 -63.8 ± 0.9 -32.8 ± 0.7
CelebA -351.4 ± 4.3 -380.7 ± 3.4 -290.6 ± 54.8 -358.0 ± 7.3 -71.9 ± 2.1

and the required latent dimension increases, such as fashion-MNIST and CelebA datasets,
our generative prior, which is more flexible to fit complex distributions, obtains the highest
cross-entropy and achieve the best fit.

4.2 Overall Generative Modelling Performance Improves
A more flexible prior p(z) also leads to better generative modelling performance, in terms
of better reconstruction quality and higher ELBO objective. This effect is clearly shown in
Table 3, where our method produces the highest ELBO value and the lowest reconstruction
error across all datasets. All models are trained under the same conditions and the evaluation
is repeated for 5 times to estimate the variance of the results.

Table 3: ELBO (higher is better) and per pixel reconstruction error (lower is better). Our
method achieves highest ELBO and lowest reconstruction error across all datasets.

Metric Dataset Normal VampPrior GMM Hierarchical Ours

ELBO
MNIST 1528.6 ± 21.3 1476.3 ± 19.4 1558.2 ± 24.4 1534.9 ± 19.8 1562.5 ± 25.1
fashion 1078.4 ± 23.4 1069.6 ± 22.1 1133.3 ± 23.9 1152.9 ± 24.9 1174.0 ± 29.7

CelebA 55564.8 ±
1751.3

56463.4 ±
1683.9

54162.5 ±
1716.5

56176.2 ±
1763.9

58596.1 ±
1815.3

Per pixel MNIST 2.3 ± 0.06 2.5 ± 0.06 2.3 ± 0.05 2.4 ± 0.06 2.2 ± 0.06
recons. error fashion 4.3 ± 0.12 4.1 ± 0.11 4.0 ± 0.11 3.7 ± 0.11 3.6 ± 0.11

(×0.01) CelebA 5.8 ± 0.21 5.9 ± 0.25 5.9 ± 0.20 5.7 ± 0.17 5.5 ± 0.18

Furthermore, our LaDDer model produces an embedding scheme that better preserves
the semantics of the data. To see this, we visualise 30k latent encodings of the MNIST
dataset in Fig. 4, where a VAE of 2D latent space is trained with a GMM prior, VampPrior
and our generative prior respectively. All encodings are coloured by their class labels. Our
method clearly gives better clustering results, where encodings of different classes are better
separated. Furthermore, the mixture components estimated in our method are better aligned
with class labels, whereas the mixtures from VampPrior and GMM prior have significant
overlaps and do not have a consistent correspondence to specific class labels.

4.3 Our Shortest Likely Path Traversal Gives Better Interpolation
In Section 3.4, we formulate the latent space interpolation between a pair of images as a
shortest likely path (SLP) optimisation task, which favours the paths that go through high
density regions of the inferred latent data distribution p(z) or p(t). Here we demonstrate our
SLP method informed by the learnt latent distribution outperforms the conventional linear
shortest path (SP) interpolation.



LIN AND CLARK: LADDER - LATENT DATA DISTRIBUTION MODELLING 9

0

1

2

3

4

5

6

7

8

9

component
mixture

a) VampPrior b) GMM c) Ours

Figure 4: The mixtures in our hyper prior naturally aligns with MNIST class labels.
We visualise encodings coloured by the digit labels for (a) VampPrior, (b) GMM prior and
(c) our generative prior. Our method produces better clustering and the mixture components
inferred in our method are naturally aligned with different classes.
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Figure 5: Latent space interpolation for MNIST. (a) The 3 pairs of MNIST images for
the interpolation task. (b-c) The traversed paths produced by shortest likely path (SLP) and
shortest path (SP) are visualised in our very low-dimensional t-space. (d-f) The interpolated
images for both interpolation methods using the data distribution estimated by our method,
a GMM prior and a normal prior.

Fig. 5 illustrates the interpolation between 3 pairs of MNIST images through the data
manifolds estimated by our method, a GMM prior and a normal prior. Notice that our LaD-
Der model can produce the same quality samples from a much lower dimension latent space
compared to the VAE models with the GMM and the normal prior (2D vs 16D). The super
low latent dimension allows us to visualise the learnt data distribution p(t) and the traversed
path in Fig. 5b-c. Our SLP interpolation results in paths that only step on regions with high
likelihood of p(t), whereas SP interpolation ignores the topology of p(t) and often lands on
the low density regions which do not correspond to realistic data samples, hence producing
unrealistic samples (bottom rows in Fig. 5d-f). Notice that neither SLP nor SP gives a good
interpolation for the normal prior model. This is because the normal prior poorly represents
the latent data distribution and even if an encoding has a high likelihood wrt the normal prior,
it does not correspond to a realistic data sample. This reinforces the importance of obtaining
an accurate modelling of the inferred data distribution in being able to utilise it for later tasks.

Fig. 6 illustrates the interpolation between 2 pairs of CelebA images over the data mani-
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Figure 6: Latent space interpolation for CelebA. (a) The pair of images to be interpolated.
(b) The sequence of interpolated images along the data manifold estimated by our LaDDer
model, using two different interpolation methods. (c-f) Optimisation of different objectives
in the our SLP objective. More examples are given in Supplementary Materials F4.

fold produced by our method, where the SLP optimisation takes place in the 32D latent space
of the prior VAE. Here, we plot the different objectives in our SLP optimisation (blue line)
for each example in (c-f). The overall objective (OSLP in Eq (9)) smoothly converges in all
examples. It is clear that our SLP solution trade-offs path length and allows different step
lengths for obtaining high likelihood over the traversed path. As a result, our SLP method
only produces realistic images which smoothly transform into the target face, whereas the
SP method produces unrealistic faces along the traversed path.

5 Conclusion and Future Work

In this paper, we recognise the importance of adopting a sufficiently flexible prior in a VAE
model to facilitate accurate modelling of the inferred latent data distribution. We propose
LaDDer, which consists of multiple VAE models each acting on its predecessor’s latent rep-
resentation and a non-parametric mixture as the hyper prior for the innermost VAE. From
extensive experiments, we show that our method is able to accurately model latent data dis-
tribution of complex data. We also demonstrate how to use the derived latent distribution
to facilitate further tasks, such as producing better interpolation along the derived data man-
ifold. We believe that LaDDer can be helpful in estimating the data distribution for many
challenging datasets and the derived data distribution can be useful for a wide range of ap-
plications. We will continue to explore along these directions.
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