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Abstract

Network pruning is one of the most dominant methods for reducing the heavy infer-
ence cost of deep neural networks. Existing methods often iteratively prune networks to
attain high compression ratio without incurring significant loss in performance. However,
we argue that conventional methods for retraining pruned networks (i.e., using small,
fixed learning rate) are inadequate as they completely ignore the benefits from snapshots
of iterative pruning. In this work, we show that strong ensembles can be constructed
from snapshots of iterative pruning, which achieve competitive performance and vary in
network structure. Furthermore, we present a simple, general and effective pipeline that
generates strong ensembles of networks during pruning with large learning rate restart-
ing, and utilizes knowledge distillation with those ensembles to improve the predictive
power of compact models. In standard image classification benchmarks such as CIFAR
and Tiny-Imagenet, we advance state-of-the-art pruning ratio of structured pruning by
integrating simple `1-norm filters pruning into our pipeline. Specifically, we reduce 75-
80% of total parameters and 65-70% MACs of numerous variants of ResNet architectures
while having comparable or better performance than that of original networks. Code is
available at https://github.com/lehduong/kesi.

1 Introduction

Motivation Researchers have extensively exploited deep and wide networks for the sake of
achieving superior performance on various tasks. Most of state-of-the-art networks are ex-
tremely computationally expensive and require excessive memory. However, real-world ap-
plications usually require running deep neural networks on edge devices for various reasons:
user privacy, security, real-time analysis, offline capability, reducing cost for server deploy-
ment, and so on. Adopting large and cumbersome networks to such resource-constrained
environments is challenging due to restrictions of memory, computational power, energy
consumption, and so on.
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Background Network pruning [14, 24, 26, 36] reduces a cumbersome and over-parameterized
network to compact one by removing unnecessary weights and connections of networks. It is
widely believed that small networks pruned from large, over-parameterized networks achieve
superior performance than those trained from scratch [10, 26, 31, 37]. A plausible explana-
tion to this phenomenon is the lottery ticket hypothesis [10] i.e. large, over-parameterized
networks contain many optimal sub-networks i.e. winning tickets. In particular, network
pruning could be done in two manners: one-shot pruning - prune a network with the desired
compression ratio and retrain it only one time, or iterative pruning - only prune small ratio
of the original network, retrain and repeat that process until the target size is reached. It
has been shown that iterative pruning could lead to a greater compression ratio compare to
one-shot pruning approaches [14, 26, 31, 37]. Furthermore, Frankle et al. [10] point out
that iteratively-pruned-winning-tickets learn faster and reach higher test accuracy at smaller
network size.

On the other hand, ensembles of neural networks are known to be much more robust and
accurate than individual networks [2, 20, 41]. In spite of their superior performance, the
tremendous cost of training and inference of ensembles makes them less attractive in prac-
tice. For the purpose of accelerating training time of ensembles, prior works proposed meth-
ods encouraging models to converge to different local minimums during training [12, 20, 44].
To reduce inference time of ensembles, one could use a single network to mimic behavior of
ensembles as pioneered by born-again tree [6] and knowledge distillation [5, 7, 19, 32]. In
above approaches, although small networks can not achieve comparable performance with
ensembles of networks, dark knowledge transferred from teachers to student network could
bridge the gap between their predictive powers.

Our proposal While existing methods of iterative pruning are more effective than one-
shot pruning, the snapshots at each pruning iteration are mostly overlooked. We consider
leveraging the snapshots of iterative pruning to take the performance of compact models to
the next level.

In this work, we propose a simple pipeline for model compression by slightly modifying
the standard approach. Specifically, we make use of large learning rate restarting at each
pruning iteration to retrain pruned networks. Hence, each retraining step could be considered
as a cycle of Snapshot ensemble [20]. Utilizing both large learning rate restarting and pruning
foster the diversity between snapshots, thus, constructing strong ensembles. Once achieved
the desired compression ratio, we then distill the knowledge from the ensembles of snapshots
of iterative pruning to the final model. Our method acquires the advantages of network
pruning, ensembles learning, and knowledge distillation. To the best of our knowledge, this
is the first work attempting to exploit snapshots of iterative pruning to further improve the
performance of pruned networks.

Our main contributions The contributions of our work are summarized as below:

1. We empirically show that fine-tuning with large learning rate restarting can achieve
competitive or better results than the common strategy (i.e. small, fixed learning rate)
on a range of standard datasets and architectures. Surprisingly, such simple modifica-
tion can create very strong baselines for both structured and unstructured pruning.

2. We demonstrate that snapshots of iterative pruning could construct strong ensembles.
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3. We propose a simple pipeline to combine knowledge distillation from ensembles and
iterative pruning. We empirically show that our approach can achieve state-of-the-art
pruning ratio by reducing 75�80% of parameters and 65�70% MACs on numerous
variants of ResNet while having comparable or better results than original networks.

2 Related Work

Knowledge Distillation The approach of training small, efficient student network to mimic
behavior of large, over-parameterized network has been proposed for a long time [7] and
was recently repopularized in [3, 19]. Later, knowledge distillation was extended to various
aspects, transferring knowledge from intermediate layers [38, 48], allowing teachers and
students to guide each others [50], using teacher and student with the same architecture
[4, 11, 43, 44], distilling knowledge in multiple steps [34]. To address the cost of training
two networks in knowledge distillation, [44, 50, 51] propose online approaches to train the
student and teacher networks in one generation. Furthermore, Anil et al. [1] adopt knowledge
distillation to accelerate the training of large scale neural networks. Universally Slimmable
networks [46] provide an ensemble of sub-networks that has implicit knowledge distillation
through shared weights.

Network Pruning The idea behind network pruning is to reduce the redundant weights
and connections of original network to achieve compact networks without losing much per-
formance [14, 26]. In general, pruning can be divided into two categories: structured pruning
and unstructured pruning. Unstructured pruning [13, 14, 15, 24, 42] always results in sparse
weight matrices, which can not directly accelerate the inference efficiency without special-
ized hardware/libraries. In contrast, structured pruning approaches [18, 26, 28, 35, 47] re-
move the redundant weights at the level of filters/channels/layers, thus, speeding up the
inference of networks directly. There are numerous approaches to determine redundant fil-
ters/weights: [31] use statistic information of the next filters to select unimportant filters, [26]
prune the filters that have smallest norms in each layer, [35] select the filters to minimize the
construction loss estimated with Taylor expansion. As these criteria are rough estimations
of weight’s importance, pruning a large number of filters/weights at once might break down
and lead to inferior performance compare to iterative pruning [14, 26]. Recently, Liu et al.
[29] empirically show that training the pruned model from scratch can also achieve compa-
rable or even better performance than fine-tuning. While the efficacy of network pruning
remains an open question, in this work, we propose exploiting the benefit of having multiple
networks through iterative pruning for constructing ensembles of networks.

3 Knowledge Distillation

Consider the classification problem in which we need to determine the correct category for
input image x among M classes. The probability of class m for sample xn given by neural
network f parameterized by q is computed as:

pm(xn;q ,t) =
exp( fm(xn;q)

t )

ÂM
i=1 exp( fi(xn;q)

t )
(1)
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Where t is the temperature of softmax function, higher values of t lead to softer output
distribution. Conventional approaches optimize the parameters q by sampling mini-batches
B from the dataset and update the parameters to minimize cross-entropy objective:

LNCE(B;q) =� 1
N

N

Â
n=1

M

Â
m=1

ym log pm(xn;q ,1) (2)

The target distribution of a sample is usually represented by one-hot vector i.e. only
the true class is 1 and all other classes are 0. Since input images might differ in term of
noise, complexity, and multi-modality, enforcing networks to excessively fit the delta distri-
bution of ground truth for all samples might deteriorate their generalization. Besides that,
the similarity between classes provides rich information for learning and potentially prevent
overfitting [43]. Knowledge distillation [7, 19] uses a trained (teacher) network, which usu-
ally has high capacity, to guide the training of other (student) network. Let qm(xn) be the
probability of class m for image xn given by the teacher network, which is parameterized by
y . The objective function of knowledge distillation is defined as:

LKD(B;q ,t,y) =�t2

N

N

Â
n=1

M

Â
m=1

qm(xn;y,t) log
qm(xn;y,t)
pm(xn;q ,t)

(3)

In case the teacher is an ensemble of K networks, the target distribution of knowledge distil-
lation is the average of outputs of all networks: q̄m(xn;y1:K ,t) = 1

K ÂK
k=1 qm(xn;yk,t).

An alternative approach is optimizing the mean of Kullback-Leibler divergence between
the student and each teacher network:

L0
KD(B;q ,t,y1:K) =� t2

KN

N

Â
n=1

M

Â
m=1

K

Â
k=1

qm(xn;yk,t) log
qm(xn;yk,t)
pm(xn;q ,t)

(4)

We experimented with two above objectives but did not observe significant difference in
performance of student networks, thus, we only report results of the second approach.

4 Snapshots of Iterative Pruning

In contrast to previous works, which mainly focus on the aforementioned usage of itera-
tive pruning (i.e. alleviating the noise of weight’s importance estimation), we exploit the
benefits of generating multiple models varying in structure and capacity to construct strong
ensembles.

Inspired by the prior works of [30, 39] in which the authors show that promising local
optimums could be found in a small number of epochs after restarting the learning rate.
Furthermore, Huang et al. [20] demonstrate that utilizing large learning rate restarting during
training can construct strong ensembles without much additional cost.

Broadly speaking, the performance of ensembles depends on: the performance of indi-
vidual network and the diversity of them. On the other hand, network pruning generates
snapshots varying in structure and achieving competitive performance. Hence, if pruned net-
works could achieve minimal loss in predictive power relative to the original network, the
ensemble of them could potentially outperforms the ensemble of networks having identical
architecture (and trained with large learning rate restarting).
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Figure 1: Overview of our approach combining the advantage of knowledge distillation,
ensembles of networks, and network pruning. At the start, we prune the filters/weights
according to some criteria (`1-norm, Taylor approximation,...). With KESI, we retrain the
pruned networks with large learning rate and minimize the conventional supervised loss
function. Once we achieve the desired pruning ratio, we use knowledge distillation to transfer
the knowledge from ensembles of snapshots of iterative pruning to the final model.

Prior works such as [14, 29, 35] retrain the pruned networks for T more epochs with
a fixed learning rate, which is usually the final learning rate of the training. However, this
approach might result in multiple snapshots being stuck in similar local optimums, thus,
leading to very weak ensembles as shown in our experiments. Similar to [20], we adopt the
large learning rate restarting at each pruning iteration to encourage each snapshot to converge
to different optimum. For learning rate restarting, we utilize the One-cycle policy [40],
which is proved to increase convergence speed of several models. Due to the similarity of
our proposed method and Snapshot Ensembling [20], we refer to each pruning and retraining
step as a cycle. One-cycle policy adjusts learning rate at each mini-batch update and has two
phases:

INCREASING LEARNING RATE The learning rate and momentum of optimizer will be
initialized to hinitial and binitial respectively. During the first T iterations of fine-tuning, learn-
ing rate and momentum gradually increase from initial values to hmax, bmax. The learning
rate and momentum at i-th step with cosine annealing strategy are given by:

hi = hmax +
hinitial �hmax

2
(1+ cos(

i
T
·p)) (5)

bi = bmax +
binitial �bmax

2
(1+ cos(

i
T
·p)) (6)

DECREASING LEARNING RATE After T iterations, learning rate and momentum will be
gradually decreased from hmax and bmax to hmin and bmin in L�T iterations where L is total
number of iterations for fine-tuning.

hi = hmin +
hmax �hmin

2
(1+ cos(

i�T
L�T

·p)) (7)

bi = binitial +
bmax �binitial

2
(1+ cos(

i�T
L�T

·p)) (8)
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It is worth noticing that differs from previous works [20, 44], which use cosine annealing
schedule, by using One-cycle policy, we also "warm-up" learning rate at the start of each
cycle. In our experiments, warming up learning rate is extremely important to achieve high
accuracy with deep and large networks.

Surprisingly, retraining with One-cycle policy does not only generate significantly stronger
ensembles, but also consistently outperforms the standard strategy for finetuning in terms
of predictive accuracy of individual snapshots. We hypothesize that the (local) optimums of
pruned networks are actually far from those of original networks, thus, large learning rate is
needed to guarantee the convergence of pruned networks. We leave rigorous evaluation to
investigate this phenomenon for future works.

5 Effective Pipeline for Model Compression

Since we already obtain strong ensembles during pruning, it is straightforward to distill the
knowledge from them to the final pruned network. Our proposed pipeline can be summarized
as follow:

Algorithm 1: Knowledge Distillation from Ensemble of Snapshots of Iterative
pruning

1. TRAIN the baseline model to completion.

2. PRUNE redundant weights of the network based on some criteria.

3. RETRAIN the pruned network with large learning rate.

4. REPEAT step 2 and 3 until desired compression ratio is reached.

5. DISTILL knowledge from ensembles of snapshots of pruning.

From now, we refer to our pipeline for model compression as Knowledge Distillation
from Ensembles of Snapshots of Iterative Pruning (KESI). An overview of our approach
is depicted in Figure 1. Our approach is extremely simple, easy to implement and can be
adopted with any pruning mechanisms. We discuss the reasons why ensembles of snapshots
of pruning are naturally suited for knowledge distillation.

Quality of Teacher In knowledge distillation, student can either learn to jointly opti-
mize the supervised loss (Equation 2) and knowledge distillation loss (Equation 4) or only
optimize the distillation objective. In the former case, if the teacher is poorly trained, math-
ematically speaking, the two objectives will conflict with each other. In the latter case, a
poor teacher provides weak supervision (noisy label), making it’s harder to learn from the
student’s perspective. Furthermore, ensembles provide more robust predictions on noisy
labeled datasets [25] and out-of-distribution examples [23].

Student and Teacher Gap Although ensembles of snapshots have superior performance
than the original network, it is not sufficient to guarantee the improvement in the performance
of the student network with Knowledge Distillation. In fact, many works such as [8, 33, 43]
show that a powerful teacher might impair the performance of its student if there is a large
gap between their predictive powers. However, ensembles of snapshots of pruning consist of
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models varying in capacity. Hence, teacher’s predictions of hard-to-learn samples (because
of their complexity, multi-modality) will have softer distributions as the small networks could
not "remember" those samples and would be more uncertain about them.

In this work, we only investigate knowledge distillation from ensembles of fixed-weights
teachers, however, we can also jointly train all models and allow them to guide each other,
which is referred to as deep mutual learning [50].

6 Experiments

We conduct experiments on CIFAR-10, CIFAR-100 [22] and Tiny-Imagenet 1 datasets.
The two CIFAR datasets [22] consist of colored natural images sized at 32⇥ 32 pixels.

CIFAR-10 (C10) and CIFAR-100 (C100) images are drawn from 10 and 100 classes, respec-
tively. For each dataset, there are 50,000 training images and 10,000 images reserved for
testing.

The Tiny ImageNet dataset consists of a subset of ImageNet images [9]. There are 200
classes, each of which has 500 training images and 50 validation images. Each image is re-
sized to 64⇥64 and augmented with random crops, horizontal mirroring, and RGB intensity
scaling.

We run each experiment 3 times then report mean and standard deviation of each net-
work. In our experiments, we prune all networks in 5 cycles unless otherwise stated.

6.1 Experiment setup

Training baselines

We adopt the training and pruning code from [29] 2. We train all networks with Stochastic
Gradient Descent (SGD), learning rate is dropped from 0.1 to 0.01 at 50% training and to
0.001 at 75%. The batch size is set to 128 and weight decay is 0.0001 similar to [16, 17].

CIFAR In order to create strong baseline models, we extend the training schedule of all
models to 300 epochs. For WideResnet, we use same configurations as described in [49].

Tiny-Imagenet we adopt Pytorch’s pretrained models on ImageNet and only replace the
last fully-connected layer and train networks for T = 100 more epochs. We warm up learning
rate from 0.01 to 0.1 in 10 epochs. Other configurations are adopted from CIFAR training
recipe.

Pruning

Structured pruning we use `1-norm based filters pruning [26] for simplicity. In each layer,
a fixed number of filters having smallest `1-norm will be pruned. Since the bulk of networks
tend to be last layers, we increase the percentage of filters that will be pruned as the layer
goes deeper to achieve higher compression ratio.
Unstructured pruning, we exploit (global) magnitude-based weight pruning [14] i.e. pool-
ing parameters across all layers and pruning weights with lowest magnitude. Specifically,
we only prune parameters of convolutional layers similar to [29].

1https://tiny-imagenet.herokuapp.com
2https://github.com/Eric-mingjie/rethinking-network-pruning
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(a) Resnet-56 on CIFAR-10 (b) Resnet-110 on CIFAR-10 (c) WideResnet-16-8 on CIFAR-10

(a) Resnet-56 on CIFAR-100 (b) Resnet-110 on CIFAR-100 (c) WideResnet-16-8 on CIFAR-100
Figure 2: `1-norm filters pruning [26] with standard small, fixed learning rate and One-
cycle learning rate.

Retraining

The budget for fine-tuning of each cycle is T = 40 and T = 25 epochs on CIFAR and Tiny-
Imagenet datasets respectively regardless of model architectures. In standard policy, the
learning rate is set to 0.001 and fixed during retraining.

For One-cycle policy, we set the initial learning rate hinitial = 0.01, gradually increase it
to the maximum learning rate hmax = 0.1 in 10% of total (retrain) epochs, then decrease it
to the minimum learning rate hmin = 0.0001 for remaining epochs. Other configurations are
identical to those of training.

Knowledge Distillation

We use Adam optimizer [21] for ensemble distillation since it gives better results than vanilla
SGD in our experiments. For knowledge distillation, we also adopt One-cycle policy where
we set hinitial ,hmax,hmin to 1e�4,1e�3,1e�6 respectively. We do not explicitly use regular-
ization for knowledge distillation. Other configurations e.g. batch size, number of retraining
epochs,... are similar to normal finetuning.

In our experiments, we use temperature t = 5. The teachers i.e. ensembles of snapshots
consist of 6 models including the original (unpruned) network and 5 snapshots of pruning.

6.2 Results

6.2.1 Effectiveness of large learning rate

We conduct experiments to empirically evaluate the performance of pruned networks trained
with large learning rate compare to networks fine-tuned with small learning rate. Figure
2 and 3 demonstrate results of pruned networks with different compression ratios for both
structured and unstructured pruning. Exhaustive results are reported in supplementary doc-
uments.
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(a) Resnet-56 on CIFAR-10 (b) Resnet-110 on CIFAR-10 (c) WideResnet-16-8 on CIFAR-10
Figure 3: Unstructured magnitude-based pruning [14] with standard small, fixed learning
rate and One-cycle learning rate.

Figure 4: Performance of ensembles of snapshots with different approaches on CIFAR-100.

6.2.2 Performance of ensembles of snapshots

We compare the performance of ensembles of snapshots with different approaches: snap-
shots of pruned networks trained with small learning rate, snapshots of pruned networks
trained with large learning rate restarting and snapshots of unpruned networks retrained with
large learning rate (i.e. all snapshots have same architecture as the original network). Figure
4 presents the result of this experiment.

We can see that although the network capacity is decreased at each cycle, the ensembles
of snapshots of iterative pruning achieve competitive or even better than snapshots of net-
works with same architecture. Detailed results of performance of ensembles are reported in
supplementary documents.

6.2.3 Performance of compact networks trained with our pipeline

In this section, we demonstrate that the smaller models trained with our pipeline (KESI)
achieve comparable or even better results than the original model. Each final model is it-
eratively pruned and retrained in 5 cycles with different strategies. Table 2 and 3 present
the performance of compact models on CIFAR-10, CIFAR-100 and Tiny-Imagenet. Specif-
ically, we compare the iteratively-pruned-models retrained with small learning rate, large
learning rate and our pipeline (i.e. large learning rate + knowledge distillation). Our pipeline
consistently outperforms the standard strategy by a large margin for both structured and un-
structured pruning.

Although our approach is general and can be applied to any (iterative) pruning mecha-
nism, we also give a comparison of model trained with our pipeline and conventional ap-
proaches in table 1. We conduct experiment to compare performance of student networks
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Model Methods % Params # % FLOPs # baseline pruned

Resnet-56

CP [18] - 50.6 92.80 91.80
FPEC [26] 14.1 27.6 93.04 93.06
NISP [47] 42.4 35.5 93.26 93.01
GAL-0.8 [28] 65.9 60.2 93.26 91.58
GBN [45] 66.7 70.3 93.10 93.07
HRank [27] 42.4 50.0 93.26 93.17
PFEC+KESI (our) 67.1 61.5 93.42 93.34±0.05

Resnet-110
PFEC [26] 32.6 38.7 93.53 93.30
GAL-0.5 [28] 44.8 48.5 93.50 92.74
HRank [27] 68.7 68.6 93.52 92.65
PFEC+KESI (our) 77.5 65.4 94.01 94.01±0.22

Table 1: Comparing performance of pruned networks with other approaches on CIFAR-10
dataset.

Model Structured Pruning Unstructured Pruning
Method # Params(M) % MACs # C10 C100 Method # Params(M) C10 C100

Resnet-56

baseline 0.85 0.00 93.42 71.07 baseline 0.85 93.42 71.07
PFEC [26] 0.28 61.5 90.35±0.36 64.91±0.14 MWP [14] 0.29 92.69±0.02 69.53±0.07

PFEC+One-cycle 0.28 61.5 92.31±0.26 69.03±0.24 MWP+One-cycle 0.29 93.41±0.08 70.46±0.30
PFEC+KESI(our) 0.28 61.5 93.34±0.05 70.95±0.11 MWP+KESI(our) 0.29 93.90±0.10 72.27±0.09

Resnet-110

baseline 1.73 0.00 94.01 72.35 baseline 1.73 94.01 72.35
PFEC [26] 0.39 65.38 91.51±0.08 65.44±0.04 MWP [14] 0.36 93.02±0.04 68.90±0.08

PFEC+One-cycle 0.39 65.38 93.24±0.16 69.54±0.07 MWP+One-cycle 0.36 93.69±0.17 71.59±0.30
PFEC+KESI(our) 0.39 65.38 94.01±0.22 72.12±0.11 MWP+KESI(our) 0.36 94.44±0.11 73.12±0.25

Preresnet-164

baseline 1.70 0.00 95.06 76.35 baseline 1.70 95.06 76.35
PFEC [26] 0.31 69.23 92.05±0.11 69.20±0.04 MWP [14]

PFEC+One-cycle 0.31 69.23 94.15±0.06 73.99±0.06 MWP+One-cycle
PFEC+KESI(our) 0.31 69.23 94.30±0.53 75.84±0.32 MWP+KESI(our)

WideResnet-16-8

baseline 10.96 0.00 95.62 79.57 baseline 10.96 95.62 79.57
PFEC [26] 2.48 64.52 94.61±0.09 73.82±0.10 MWP [14] 2.53 95.47±0.07 77.92±0.16

PFEC+One-cycle 2.48 64.52 94.91±0.04 76.46±0.27 MWP+One-cycle 2.53 95.55±0.05 78.82±0.11
PFEC+KESI(our) 2.48 64.52 95.68±0.12 79.01±0.20 MWP+KESI(our) 2.53 95.97±0.05 80.08±0.06

VGG-16

baseline 14.99 0.00 94.23 73.24 baseline 14.99 94.23 73.24
PFEC [26] 2.71 45.16 93.88±0.12 68.37±0.09 MWP [14] 1.02 93.47±0.22 68.39±0.21

PFEC+One-cycle 2.71 45.16 94.10±0.09 71.95±0.04 MWP+One-cycle 1.02 93.53±0.10 71.74±0.15
PFEC+KESI(our) 2.71 45.16 94.59±0.09 73.52±0.20 MWP+KESI(our) 1.02 94.01±0.06 73.91±0.09

Table 2: Accuracy (%) of pruned networks on CIFAR-10 and CIFAR-100 datasets trained
with different strategies. PFEC (or MWP) are models pruned with `1-norm filters prun-
ing [26] (or magnitude-based weights pruning [14]) and fine-tuned with small learning rate.
PFEC/MWP+One-cycle are pruned networks retrained with large learning rate restarting.
PFEC/MWP+KESI are pruned networks retrained with our pipeline

Table 3: Performance of compact models on
Tiny-Imagenet

Model Method #Params (M) MACs(G) Acc

Resnet-18

baseline 11.01 1.82 67.22
FPEC [26] 2.71 0.83 61.06±0.32

FPEC+One-cycle 2.71 0.83 64.70±0.33
FPEC+KESI (our) 2.71 0.83 66.87±0.26

Resnet-34

baseline 21.39 3.68 68.81
FPEC [26] 5.40 1.57 64.93±0.15

FPEC+One-cycle 5.40 1.57 67.26±0.21
FPEC+KESI (our) 5.40 1.57 70.02±0.43

Table 4: Knowledge distillation with en-
sembles teacher and single model teacher

Model Method #Params (M) C10 C100

Resnet-56
baseline 0.85 93.42 71.07
single teacher 0.28 93.13±0.04 70.29±0.14
ensemble teacher 0.28 93.34±0.05 72.27±0.09

Resnet-110
baseline 1.73 94.01 72.35
single teacher 0.39 93.48±0.05 71.50±0.11
ensemble teacher 0.39 94.01±0.22 73.12±0.25

WRN-16-8
baseline 19.96 95.62 79.57
single teacher 2.48 95.37±0.21 78.71±0.24
ensemble teacher 2.48 95.68±0.12 79.01±0.20

trained with single teacher (i.e. original/unpruned networks) and ensembles teacher in table
4 for ablation study. We can see that compact models learn from ensembles outperform those
learn from a single teacher by a large margin.

7 Conclusion

We propose a simple pipeline by slightly modifying the standard approach to acquire the
advantages of network ensembles, knowledge distillation and network pruning. Our experi-
ments show that small and compact networks trained with our pipeline significantly outper-
form the standard approach and create very strong baselines for model compression. Specif-
ically, our method reduces nearly 80% of parameters and 70% FLOPs of several models by
structured pruning without incurring loss in performance.
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