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Abstract

Facial expressions have inherent temporal dependencies that can be leveraged in auto-
matic facial expression analysis from videos. In this paper, we propose a self-supervised
representation learning method for facial Action Unit (AU) recognition through learning
temporal consistencies in videos. To this end, we use a triplet-based ranking approach
that learns to rank the frames based on their temporal distance from an anchor frame.
Instead of manually labeling informative triplets, we randomly select an anchor frame
along with two additional frames with predefined distances from the anchor as positive
and negative. To develop an effective metric learning approach, we introduce an ag-
gregate ranking loss by taking the sum of multiple triplet losses to allow pairwise com-
parisons between adjacent frames. A Convolutional Neural Network (CNN) is used as
encoder to learn representations by minimizing the objective loss. We demonstrate that
our encoder learns meaningful representations for AU recognition with no labels. The
encoder is evaluated for AU detection on various detasets including BP4D, EmotioNet
and DISFA. Our results are comparable or superior to the state-of-the-art AU recognition
through self-supervised learning.

1 Introduction
Facial expressions play an important role in social communication of emotions and intentions
[28]. The Facial Action Coding System (FACS) is a taxonomy of facial activities that can
describe expressions by anatomical action units, e.g., chick raiser (AU 6) [5]. Unlike facial
expressions, e.g., happiness, sadness, FACS provides an objective measure for describing all
facial expressions [20]. Supervised learning for recognition of facial action units requires
laborious manual labeling by trained coders. To alleviate the problem of the scarcity and
cost of labeling, semi-supervised and self-supervised learning methods have been proposed
to leverage unlabeled data for facial action unit recognition [13, 18, 38]. Self-supervised
representation learning leverages proxy supervision, which has great potential in improving
performance in computer vision applications and video analysis [8, 13, 18, 22].
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Figure 1: Proposed parallel encoders network takes a sequence of frames extracted from a
video. The anchor frame is selected at time t, the sibling frame at t + 1, and the following
frames at equal intervals from t +1+ k to t +1+Nk. All input frames are fed to ResNet-18
[10] encoders with shared weights, followed by a fully-connected layer to generate 256d
embeddings. L2-norm is applied on output embeddings. We then compute triplet losses for
adjacent frame pairs along with the fixed anchor frame. In each adjacent pair, the preceding
frame is the positive sample and the following frame is the negative sample. Finally, all
triplet losses are added to form the ranking triplet loss.

Existing self-supervised methods for facial expression analysis leverage reconstruction
loss between the generated and the target frames through an AutoEncoder to learn a repre-
sentation that encodes facial activities [13, 18]. In this paper, we focus on learning intrinsic
temporal dependencies for facial expressions. Facial activities, by nature, are temporally
consistent, and this consistency can be used for representation learning.

In order to learn the existing temporal consistency, we use a temporally sensitive triplet-
based metric learning, a self-supervised proxy loss, to learn to rank sequences of neighboring
frames from videos in correct temporal order. Learning to rank through triplet loss involves
training an encoder that learns to make the distance between the anchor and the positive
sample smaller than the distance between the anchor and the negative sample. The majority
of triplet-based metric learning methods use labels to indicate positive and negative classes.
Instead of manually labeling informative triplets, we take advantage of the consistency of
the facial behavior in consecutive frames from videos.

We introduce triplet ranking loss, a combination of a sequence of N triplet losses. The
input to the losses has two parts: (1) an anchor frame and (2) a sequence sampled at constant
time intervals with length of N +1. For each video, we first randomly select a frame as the
anchor frame for all N triplets. The sequence is selected by taking the anchor’s adjacent
frame, which we refer to as the sibling frame, along with the sibling’s following N frames
sampled at a constant interval k. Every individual triplet pair compares the distance of two
consecutive frames with reference to the anchor, where the earlier frame corresponds to the
positive sample and the following frame as the negative. This method encodes the internal
temporal consistency within the sequence. The sum of N triplet losses enables the network
to learn to sort the frames in the correct order. We choose ResNet18 [10] as our encoder to
generate compact embeddings from face images and train the encoder to minimize the sum
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of triplet ranking losses. An overview of the proposed method is available in Fig. 1.
We evaluate our learned embeddings in downstream classifications tasks of AU detection

and expression classification using multiple datasets in Section 4. The code and the trained
model weights are shared for the sake of reproducibility1. The main contributions of this
work are as follows. (i) We propose to use temporal consistency in facial activities for
self-supervised representation learning. (ii) A temporal ranking triplet loss is designed that
can distill the temporal consistency through pairwise comparisons. (iii) We demonstrate the
effectiveness of this simple, yet powerful, model for facial action unit recognition.

2 Related Work

There is a well-established line of research for representation learning for facial expression
analysis [20]. Neural networks have been used to learn rich local and global representations
to capture facial attributes [1, 15, 26].

Sequential Learning. Sequential representation learning has been used for learning rep-
resentation in a variety of domains including speech processing, robotic path planning and
Natural Language Processing (NLP) [2, 8, 14, 22, 23]. Misra et al. [22] focuses on sequential
data from video frames and leverages spatiotemporal signals to learn visual representations
using unsupervised methods. They use sequential verification for learning representations
by predicting the temporal validity of a given randomly shuffled sequence of frames. Chu et
al. [2] looks at the facial AUs by jointly modeling the spatial and temporal representations.
They extract spatial representations using a CNN and feed the representations to Long Short-
Term Memory recurrent neural networks (LSTMs) to model temporal dynamics. However,
the method proposed in [22] only focuses on learning general macro-motions from video
instead of specific facial movements. Chu et al. [2] focuses specifically on facial AU de-
tection but is trained in a supervised fashion, which relies on manual labeling and tends to
overfit to a specific database [6]. The most related work in sequential learning uses Dynamic
Representation (DR) [33], which infers dynamic representations that can summarize motion
from static images. They propose a rank loss to capture a bi-directional flow through time
from a sequence of frames centered at input image. However, DR calculates scores to rank
all possible combinations of pairs given a sequence, whereas our ranking triplet loss cap-
tures inherent temporal consistency between consecutive frames. In addition, DR generates
a single dynamic image representation through encoder-decoder architecture, and focuses
on learning the symmetry in image domain. In contrast, our method adopts metric learning
by capturing the temporal consistency in the embedding space which can produce compact
embeddings for AU analysis.

Self-supervised Learning. There is a growing interest in self-supervised learning due
to its ability to leverage existing structure in data to adopt supervisory signals for generating
labels, and therefore decreasing the need for expensive manual labels [12, 13, 18, 27, 36].
Existing work on this topic including FAb-Net [13] and TCAE [18] use facial movements
from videos as the supervisory signal by depicting such movements as the transformation
between two face images in different frames. FAb-Net learns to map a source frame to a
target frame by training an AutoEncoder with a reconstruction loss. Inspired by FAb-Net,
TCAE models the movements by separating them into two representations, including smaller
movements (facial actions) and larger movements (head poses) between the source and the

1https://git.io/JJSI6
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target frames. They use a Twin Cycle Autoencoder to disentangle the movements related to
head pose from action units. Since both self-supervised methods learn to extract embeddings
through discrete pixel reconstruction, they do not focus on learning the temporal information
conveyed in videos.

Deep Metric Learning. Metric learning has been widely studied in a variety of domains
[9, 30, 32, 34, 35]. The goal of metric learning is to capture similarities between data points
in the embedding space, usually achieved by applying a proxy loss directly on the learned
embeddings. There are a variety of proxy losses proposed, such as contrastive loss [9], triplet
loss [30, 34], N-pair-mc loss [32], and ranked-list loss [35]. Traditional contrastive loss and
triplet loss consider one pair of positive and negative sample each time, and force the distance
between the anchor and the positive sample to be smaller than the anchor and the negative
sample. While most of triplet loss learning focuses on label-based triplets, FECNet [34]
utilizes triplet loss to learn visual similarity between expressions. They manually annotate
expression triplets where two expressions in each triplet are more similar to each other than
the third one. FECNet succeeds in image retrieval and expression classification from the
learned embeddings. Our encoder architecture is close to FECNet, however, contrary to their
use of manual labels, we label triplets using frames’ temporal order. In addition, similar to
N-pair-mc loss, our proposed method is a structured loss which involves multiple negative
samples instead of one. Although unlike N-pair-mc loss, our method has the capability of
ranking the distance of each negative sample from the anchor.

3 Method

3.1 Problem Formulation

To learn the temporal consistency from videos, we define a loss function by adding multiple
triplet losses, each measuring the pairwise distance between adjacent frames to the anchor.
For each sequence of frames extracted from a video, let Ia be the fixed anchor frame ran-
domly selected at time t, and the sibling frame I0 be the anchor’s adjacent frame at t + 1.
Starting from the sibling frame, we draw a sequence of frames {I0, I1, I2, ...IN} with size
N +1. Each frame In is extracted at the time t +1+ kn, where k is a fixed interval between
frames in the sequence. The encoder takes the anchor frame and the following sequence
as input and encodes corresponding embeddings {xa,x0,x1, ...,xN}. We provide the detailed
explanation on training through the combination of N triplet losses in Section 3.3.

3.2 Triplet Loss

Traditional triplet loss is a distance metric loss which measures the difference between the
distances of positive x+ and negative x− samples from an anchor in the embedding space.
The objective is to minimize the distance between the anchor and the positive sample, x+,
and maximize the distance between the anchor and the negative sample x−. The triplet loss
function is defined as: L(Ia, I+, I−) = max(0,d(x+,xa)−d(x−,xa)+δ ), where d() denotes
the distance function. The hinge function with margin δ ensures the loss will not reach
zero unless the difference between the distances of the negative and positive sample from
the anchor is greater than δ . In this paper, we use L2-norm to measure the Euclidean dis-
tance between embeddings. Although the triplet loss increases the distance of the negative
samples from the anchor in each update, it is unclear to what extent this distance should be
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increased. Consequently, the traditional triplet loss generally experiences slow convergence
and requires mining of non-trivial triplet samples to accelerate training process [32].

3.3 Temporal Ranking Triplet Loss
To alleviate slow convergence of networks with a single triplet loss, we use the temporal
order to rank distances between a sequence of negative samples and a unique anchor with
multiple triplet losses. Therefore, we leverage the smooth and continuous changes of the
facial expressions in short periods of time as our temporally consistent signal.

Inspired by N-pair-mc loss [32], we allow multiple negative samples inside one loss
function as follows.

L
({

x,x+,{xi}N−1
i=1

}
; f
)
= log

(
1+

N−1

∑
i=1

exp
(

f> fi− f> f+
))

(1)

We compute the sum of individual triplet losses between adjacent frames in the sequence.
Given a set of input embeddings {xa,x0,x1, ...,xN} and L2-distance, d, our temporal ranking
triplet loss is defined as follows:

L
({

xa,{xn}N
n=0

}
;d
)
=

N

∑
n=1

max
(
0,d(xn−1,xa)−d(xn,xa)+δ

)
(2)

One significant difference between our method and the N-pair-mc is that our positive sam-
ple is not fixed. In the N-pair-mc loss, all negative samples are compared with the same
positive sample. This approach is not adequate for our sampled frames, since distances be-
tween the frames and the anchor are gradually increasing. Therefore, we switch to pairwise
comparisons between consecutive frames at fixed intervals. Every nth triplet involves con-
secutive frame pairs from the sequence, where xn−1 is the positive sample and the following
frame xn is the negative sample. We introduce the sibling frame x0 as the positive sample at
n = 1, in order to achieve consistent formulation for the entire sequence. This ranking loss
ensures each frame has a greater distance to the anchor in the embedding space compared
to the distance of its preceding frame with respect to the anchor. In addition, instead of us-
ing multi-class logistic loss, we directly take the sum of hinge losses. Hinge loss results in
the individual triplet loss becoming zero if the distance between the negative and positive
samples are larger than δ .
3.4 Network Architecture
To accelerate the convergence of the ranking loss, we use a ResNet18 architecture [10] pre-
trained on ImageNet [4] as encoder. ResNet18 was selected due to its competitive results
as shown by previous work on facial expression analysis with transfer learning using pre-
trained weights [19]. In addition, we have also evaluated the performance of a slimmer
network MobileNet_V2 [29] and a denser network DenseNet121 [11], results are available
in supplementary material. The results indicate that a simple and relatively shallow archi-
tecture, such as ResNet18 has sufficient capacity for this task, making it a balanced choice
between performance and complexity.

We remove the last fully connected layer from the ResNet18, taking the output from the
last max-pooling layer with 512 hidden units. We add a linear (fully connected) layer to gen-
erate a compact 256-dimensional embedding. An L2 normalization is applied to the output
to normalize the embeddings. For a sequence of frame inputs {Ia, I0, I1, ..., IN}, as defined in
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Section 3.1, we use encoders with shared weights as shown in Fig. 1. The stacked encoders
encode frames to embeddings {xa,x0,x1, ...,xN} simultaneously, and feed them into tempo-
ral ranking triplet loss, as described in Section 3.3. While training the encoders at a fixed
interval k, different intervals could encode different facial features, with different temporal
granularity. To take advantage of these facial features at different granularities, we propose
an ensemble model by concatenating multiple embeddings generated from independently
trained encoders at different intervals (k).

4 Experiments

4.1 Training Setup

Our network is trained on VoxCeleb2 video dataset [3], which consists of 150k videos from
around 6,000 speakers. We use pre-cropped videos provided by VoxCeleb2 at 25 frames
per second (fps). The frames are then resized and center-cropped in the same fashion as
the setup in [18]. During training, jittering is used to augment the input data same as [18].
For each sampled video frame sequence, we draw an anchor frame, a sibling frame and a
sequence of N frames as described in Section 3.1. These video sequences are randomly split
for train and test by a 80/20 ratio in video-independent fashion. The model is trained in
PyTorch framework, with a Stochastic Gradient Descent (SGD) optimizer with a learning
rate of 0.001 and a momentum of 0.9. We use the margin size δ = 0.03 in equation 2, and
N = 10 for the number of triplets in the sequence. Furthermore, we evaluate our method
using different choices of intervals including k ∈ 1,2,4, and the ensemble encoder of all
three ks.

4.2 Evaluation on Learned Representations

Unlike classic supervised learning where the model is evaluated based on its performance
in recovering the same set of labels, our goal is not to evaluate the model for its ability to
rank frames but to evaluate the learned representation on downstream tasks. First, we train
a Resnet-18 encoder using a ranking triplet loss with VoxCeleb dataset, then we select the
best encoder based on the ranking performance on the validation set (from VoxCeleb). We
evaluate the representations generated by the encoder for facial action unit detection and
expression recognition tasks on independent datasets by training a linear classifier, similar to
[18] and [13].

The linear classifier consists of two layers: a batch-norm layer followed by a linear fully
connected layer with no bias. We evaluate the methods on both embeddings learned from a
single encoder and concatenated embeddings from ensemble encoders trained with ranking
triplet loss.

Datasets: We evaluate facial action unit (AU) detection on three datasets including BP4D
[37], DISFA [21], and EmotioNet [7]. We also evaluate our method on expression recogni-
tion on AffectNet [24]. We followed the same procedure as [18, 31] for BP4D and DISFA,
evaluating the AU detections using a subject-independent 3-fold cross-validation. Emotionet
and AffectNet are evaluated in similar fashion to [13], where the training set is split for train-
ing and validation, and an independent set is used for testing. The technical details of the
prepossessing are available in the supplementary material.
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Method 1 2 4 6 7 10 12 14 15 17 23 24 avg
Self-supervised

TCAE [18]* 43.1 32.2 44.4 75.1 70.5 80.8 85.5 61.8 34.7 58.5 37.2 48.7 56.1
FAb-Net [13]* 43.3 35.7 41.6 72.9 63.0 75.9 83.5 57.7 26.5 48.2 33.6 42.4 52.0
TCAE (Re.) [18] 33.5 32.2 43.8 73.7 67.7 80.1 81.5 57.4 26.5 54.5 23.2 31.8 50.5
FAb-Net (Re.) [13] 33.4 24.8 41.0 73.5 66.2 78.8 84.7 57.9 21.2 55.7 26.8 37.9 50.2
Ranking k=1 35.2 25.5 30.2 71.3 69.6 81.3 83.3 59.1 30.3 56.1 27.0 33.4 50.2
Ranking Ensemble 42.3 24.3 44.1 71.8 67.8 77.6 83.3 61.2 31.6 51.6 29.8 38.6 52.0

Supervised
AlexNet [2] * 40.3 39.0 41.7 62.8 54.2 75.1 78.1 44.7 32.9 47.3 27.3 40.1 48.6
DRML [39]* 36.4 41.8 43.0 55.0 67.0 66.3 65.8 54.1 33.2 48.0 31.7 30.0 48.3
EAC-Net [17]* 39.0 35.2 48.6 76.1 72.9 81.9 86.2 58.8 37.5 59.1 35.9 35.8 55.9
JAA-Net [31]* 47.2 44.0 54.9 77.5 74.6 84.0 86.9 61.9 43.6 60.3 42.7 41.9 60.0

Table 1: F1-scores on BP4D dataset. * denotes values reported in original work and Re.
indicates our reproduced results.

Binary cross entropy (BCE) loss is used for training a binary classifier for each AU.
The explicit AU descriptions can be found in supplementary materials. Since AU labels are
highly unbalanced, the loss for under-represented classes are weighted inversely proportional
to their frequencies. The F1-score is used to evaluate BP4D and DISFA performances, the
performance on EmotioNet and AffectNet is measured by Area under the ROC curve (AUC-
ROC), similar to previous work [13, 25].

Comparison with baselines: We compare our method with the state-of-the-art self-
supervised facial expression analysis methods, i.e., TCAE [18] and FAb-Net [13]. For
TCAE, we re-trained networks using the original code, available on GitHub2, and we down-
loaded the available pre-trained model for FAb-Net. For both methods, we trained a linear
classifier on the benchmark datasets with the exact same splits and hyperparameters. How-
ever, since the evaluation code is not released for TCAE and the trained encoders do not
perfectly match, our reproduced performance scores are slightly lower than the published
values for BP4D and DISFA datasets. To have a fair comparison, we compare our model to
the reproduced performances for FAb-Net and TCAE.

Table 1 shows the results on BP4D dataset. Our method with a single encoder at time
window k = 1 performs similar to TCAE and FAb-Net. The average F1-score of all three
self-supervised methods are very close. However, our ensemble encoders model outper-
forms both reproduced results from TCAE and FAb-Net on average. The ensemble method
performs better on subtle lip movements such as AU14 (dimpler), AU15 (lip corner depres-
sor), AU23 (lip tightener) and AU24 (lip pressor).

Evaluations on DISFA are shown on Table 2. Like BP4D, DISFA contains videos. Our
method with a single encoder outperforms both (reproduced) TCAE and FAb-Net in terms
of average F1-score. For ensemble encoders, the result is considerably higher than the two
existing self-supervised methods. Similarly, our method is superior for detecting lip move-
ments like AU12 (Lip Corner Puller), AU25 (Lips part) and AU26 (Jaw Drop). One pos-
sible explanation is that since our network is trained on VoxCeleb2 datasets which include
speaking, the encoder likely learned lip movements through leveraging available speaking
behavior. Since neither TCAE nor FabNet consider temporal dependencies, and they focus

2https://github.com/mysee1989/TCAE
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Method 1 2 4 6 9 12 25 26 avg
Self-supervised

TCAE [18] * 15.1 15.2 50.5 48.7 23.3 72.1 82.1 52.9 45.0
FAb-Net [13] * 15.5 16.2 43.2 50.4 23.2 69.6 72.4 42.4 41.6
TCAE (Re.) [18] 24.8 25.5 37.3 34.7 31.1 59.6 58.1 25.2 37.0
FAb-Net (Re.) [13] 27.5 19.6 28.7 45.2 20.9 65.6 67.9 24.0 37.4
Ranking k = 1 10.8 20.7 43.3 37.6 12.2 68.7 62.9 46.2 37.8
Ranking Ensemble 18.7 27.4 35.1 33.6 20.7 67.5 68.0 43.8 39.4

Supervised
DRML [39] * 17.3 17.7 37.4 29.0 10.7 37.7 38.5 20.1 26.7
EAC-Net [17] * 41.5 26.4 66.4 50.7 80.5 89.3 88.9 15.6 48.5
JAA-Net [31] * 43.7 46.2 56.0 41.4 44.7 69.6 88.3 58.4 56.0

Table 2: F1-scores on DISFA dataset. * denotes values reported in original work and Re.
indicates our reproduced results.

Method 1 2 4 5 6 9 12 17 20 25 26 avg
Self-supervised

FAb-Net [13]* 73.4 71.8 75.3 67.8 90.4 78.8 91.9 72.4 74.5 83.7 73.3 77.6
TCAE [18] 74.1 72.6 79.8 74.3 91.4 83.2 93.4 73.7 75.5 83.7 72.8 79.5
FAb-Net (Re.) [13] 75.1 72.9 82.1 73.2 92.2 86.4 94.1 76.4 78.4 83.7 72.4 80.6
Ranking k = 1 68.1 71.4 78.5 76.2 91.5 80.0 94.7 71.8 75.4 84.0 69.3 78.3
Ranking Ensemble 70.7 73.3 80.5 82.1 92.1 84.3 95.9 73.4 81.6 87.4 72.2 81.2

Supervised
VGG-Face [13]* 81.8 83.0 83.5 81.8 92.0 90.9 95.7 80.6 85.2 86.5 73.0 84.9
VGG-11 [13]* 74.7 77.2 85.8 83.7 93.8 89.7 97.5 78.3 86.9 96.4 81.5 86.0

Table 3: AUC on EmotioNet dataset. * denotes values reported in original work and Re.
indicates our reproduced results.

on large pixel reconstruction losses instead of subtle movements, our method is better suited
for dynamic facial AU detection. In addition, ranking triplet methods outperform traditional
supervised methods like AlexNet [2] and DRML[16] in average F1-score, since those two
methods are holistic and static. However, our method underperforms JAA-Net [31] and
EAC-Net [17], where both supervised methods use facial landmarks to build patch-specific
encoders. It is worth noting that all supervised results are directly taken from the original
work. A major difference between our method and the supervised models is that we only
train a single layer linear classifier on top of the encoder with frozen weights. This is a rea-
son why the performance of self-supervised methods is lower than supervised ones, and that
both baseline methods (TCAE, FAbNet) underperform the supervised models. We take this
approach since the goal of our work is to evaluate the representations as opposed to targeting
the final downstream tasks.
Results on EmotioNet are provided in Table 3. Unlike continuous recording in a restricted
environment like BP4D and DISFA, EmotioNet database is collected in-the-wild. Our method
with a single encoder is comparable to TCAE and performs slightly worse than FAb-Net in
area under the ROC curve (AUC-ROC). The ensemble method outperforms both baselines,
by improving the generalizability of the network for adopting discrete AU recognition. Fur-
thermore, the ensemble method is not far behind supervised VGG descriptors, showing its
generalization under a variaty of image domains. In addition to facial AU detection, the ex-
pression recognition results are shown in Table 4 for AffectNet. Both single and ensemble
encoders are superior to the baselines, which further demonstrates the ability of the learned
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Method Neutral Happy Sad Surprise Fear Disgust Anger Contempt avg.
Self-supervised

FAb-Net [13] * 71.5 90.0 70.8 78.2 77.4 72.2 75.7 72.1 76.0
TCAE (Re.) [18] 66.8 81.9 65.5 70.6 70.8 63.6 70.3 68.5 70.0
FAb-Net (Re.) [13] 70.9 86.8 68.9 76.1 75.6 68.2 73.4 73.7 74.2
Ranking k = 1 70.6 90.0 70.8 76.7 78.2 73.6 75.2 74.2 76.2
Ranking Ensemble 73.4 91.4 75.5 79.9 81.6 74.2 76.5 76.0 78.6

Supervised
VGG-Face [13]* 75.9 92.2 80.5 81.4 82.3 81.4 81.2 77.1 81.5
VGG-11 [13]* – – – – – – – – 82

Table 4: AUC on AffectNet dataset. * denotes values reported in original work and Re.
indicates our reproduced results.

Method BP4D DISFA EmotioNet AffectNet
Triplet 48.1 29.8 74.4 70.2
N-pair-mc 41.5 18.5 62.8 59.3
Ranking k = 1 50.2 37.8 78.3 76.2
Ranking k = 2 49.9 40.5 78.0 75.5
Ranking k = 4 50.7 34.0 77.3 74.3
Ranking Ensemble 52.0 39.4 81.2 78.6

Table 5: Average F1-scores and AUCs on BP4D, DISFA, EmotioNet, AffectNet datasets

representations for facial expression analysis.

4.3 Ablation Study

In this section, we discuss various ablations and effects of different interval values k on the
performance. We trained the encoder with three different values of k = 1,2,4, and compared
their performance on AU detection and expression recognition. We also compare the perfor-
mance of the ensemble of the three encoders versus each individual encoder. The simplest
method involves using a single triplet loss as defined in Section 3.2, which we refer to as
’Triplet’. Instead of having a sequence of frames in a single loss, each training sample has
only one triplet containing a fixed anchor, its adjacent frame as the positive and only one
of the negative frames from our original sequence. Another simplification is directly using
the exact N-pair-mc loss from the original paper which compares the anchor sample with all
negative samples simultaneously.

Average performance on four datasets are shown in Table 5. The detailed individual
AU scores are available in supplementary material. The results clearly demonstrate that the
single-encoder models, regardless of time spacing k, outperform the simpler Triplet and N-
pair-mc models across all datasets. This demonstrates the value of temporal dynamics in fa-
cial expression analysis. N-pair-mc’s poor performance compared to the trivial triplet loss is
surprising, this could be due to N-pair-mc’s use of L2 penalty loss to regularize embeddings
during training instead of normalization. This might result in instability of the numerical
output affecting classification performance. Different values of k impact the results as well.
Although k = 1 and k = 2 demonstrate similar results, the performance drops with k = 4 for
the majority of the datasets. This indicates that the learned facial activities are short-term.
The single encoder has the best overall performance at k = 1.
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Figure 2: The top 5 retrieved images in response to an image query. First column shows the
query image. The second column shows our results and the third column are FAb-Net’s re-
sults. Query samples are intended to select different kinds of facial expressions and attributes
(grin, surprise, contempt with eye-wear) to increase the diversity of queries.

4.4 Image Retrieval

We perform an image retrieval task on EmotioNet [7] to demonstrate the ability of the rep-
resentations to capture expression similarity. We rank the frames based on the cosine simi-
larity between their embeddings with a randomly selected query. The top five images with
the highest cosine similarity to three queries are shown in the second column of Fig. 2. We
also perform the same retrieval task using FAb-Net embeddings, displayed in the right col-
umn. The results demonstrate that our method retrieves better matches for facial expressions
whereas FAb-Net tends to focus more on appearance and macro movements such as pose and
appearance. For instance, the query on third row shows a man wearing glasses with closed
lips and an activated buccinator muscle (AU14). Retrieved images using our model consist
of similar facial expressions regardless of glasses. However, all images retrieved by FAb-Net
include glasses, therefore showing dependence on appearance as well as expressions. More
image retrieval examples are available in the supplementary material.

5 Conclusion

In this paper, we proposed a self-supervised learning method using temporal ranking triplet
loss for facial AU recognition. By learning from inherent temporal consistency in videos, we
achieved comparable or superior performance compared to the state-of-the-art self-supervised
methods in facial AU detection and facial expression analysis. Through qualitative analysis,
we also demonstrated the ability of the learned representations in capturing facial activities
rather than appearance. With this work, we demonstrated the power of the self-supervised
representation learning for generalizable facial expression analysis.
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