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Abstract

Learning non-parametric invariances directly from data remains an important open
problem. In this paper, we introduce a new architectural layer for convolutional net-
works which is capable of learning general invariances from data itself. This layer can
learn invariance to non-parametric transformations and interestingly, motivates and in-
corporates permanent random connectomes, thereby being called Permanent Random
Connectome Non-Parametric Transformation Networks (PRC-NPTN). PRC-NPTN net-
works are initialized with random connections (not just weights) which are a small subset
of the connections in a fully connected convolution layer. Importantly, these connections
in PRC-NPTNs once initialized remain permanent throughout training and testing. Per-
manent random connectomes make these architectures loosely more biologically plau-
sible than many other mainstream network architectures which require highly ordered
structures. We motivate randomly initialized connections as a simple method to learn
invariance from data itself while invoking invariance towards multiple nuisance transfor-
mations simultaneously. We find that these randomly initialized permanent connections
have positive effects on generalization, outperform much larger ConvNet baselines and
the recently proposed Non-Parametric Transformation Network (NPTN) on benchmarks
such as augmented MNIST, ETH-80 and CIFAR10, that enforce learning invariances
from the data itself.

1 Introduction
The Problem of Invoking Invariances. Learning invariances to nuisance transformations
in data has emerged to be a core problem in machine learning [1, 3, 7, 9, 12]. Moving
towards real-world data of different modalities, it is a daunting task to theoretically model
all nuisance transformations. Towards this goal, methods which learn non-parametric in-
variances from the data itself without any change in architecture will be critical. However,
before delving into methods which learn such invariances, it is important to study methods
which incorporate known invariances in data. An early method to incorporate the translation
prior was the Convolutional Neural Network (ConvNet) [14]. Over the years, there have
been efforts in investigating what other transformations result in useful hand-crafted priors
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Figure 1: Left: Operations comprising the PRC-NPTN layer. The number of input and
output channels in the Conv layer is (inch) and (inch∗|G|) respectively. G is the number of
filters (linear transformations learnt) for each input channel. The key operation proposed
is the Permanent Random Channel shuffling operation with a fixed index mapping for every
forward pass. This indexing or connectome is initialized randomly during network initializa-
tion. Center: Architecture of the PRC-NPTN layer. Each input channel is convolved with
a number of filters (parameterized by G). Each of the resultant activation maps is connected
to a one of the channel max pooling units randomly (initialized once, fixed during training
and testing). Each channel pooling unit pools over a fixed random support of a size parame-
terized by CMP. Right: Explicit invariances enforced within deep networks in prior art are
mostly parametric in nature. The important problem of learning non-parametric invariances
from data has not received a lot of attention.

in data such as rotation and scale [3, 4, 6, 11, 16, 19, 28]. It is important to note however
that these methods ultimately were limited to hand-crafted invariances assumed to be useful
for the task at hand.

Motivation of this Study: In this study, we motivate and investigate one possible ar-
chitecture that can learn invariances towards multiple transformations from data itself. At
the heart of the architecture is the structure called the permanent random connectome. This
simply refers to a channel shuffling layer that uses a fixed shuffling schedule throughout the
life of the network (including training and testing) resulting in a permanent connectome.
Importantly however, this shuffling indexing is chosen at random at the initialization of the
network. Thereby leading to the layer being referred to as the permanent random connec-
tome. We find that layers utilizing the permanent random operation allow architectures to
learn multiple invariances efficiently from data itself. Our motivation also loosely stems
from observations regarding connectomes in the cortex.

Prior Art Learning Invariances from Data or using Random Connectomes. A dif-
ferent class of architectures that have been recently proposed explicitly attempt to learn the
transformation invariances directly from the data, with the only inductive bias being the
structure or architecture that allows them to do so. One of the earliest attempts using back-
propagation was the SymNet [7], which utilized kernel based interpolation to learn general
invariances. Although given the interesting nature of the study, the method was limited in
scalability. Spatial Transformer Networks [12] were also designed to learn activation nor-
malization from data itself, however the transformation invariance learned was parametric in
nature. A more recent effort was through the introduction of the Transformation Network
paradigm [22]. Non-Parametric Transformation Networks (NPTN) were introduced as an
generalization of the convolution layer to model general symmetries from data [22]. It was
also introduced as an alternate direction of network development other than skip connections.
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Figure 2: (a) Homogeneous Structured Pooling pools across the entire range of transfor-
mations of the same kind leading to feature vectors invariant only to that particular transfor-
mations. Here, two distinct feature vectors are invariant to transformation T1 and T2 inde-
pendently. (b) Heterogeneous Random Support Pooling pools across randomly selected
ranges of multiple transformations simultaneously. The pooling supports are defined during
initialization and remain fixed during training and testing. This results in a single feature
vector that is invariant to multiple transformations simultaneously. Here, each colored box
defines the support of the pooling and pools across features only inside the boxed region
leading to one single feature. (c) Vectorized Random Support Pooling extends this idea to
convolutional networks, where one realizes that the random support pooling on the feature
grid (on the left) is equivalent to random support pooling of the vectorized grid. Each ele-
ment of the vector (on the right) now represents a single channel in a convolutional network
and hence random support pooling in PRC-NPTNs occur across channels.

The convolution operation followed by pooling was re-framed as pooling across outputs from
the translated versions of a filter. Translation forming a unitary group generates invariance
through group symmetry [1]. The NPTN framework has the important advantage of learning
general invariances without any change in architecture while being scalable. Given this is
an important open problem, we introduce an extension of the Transformation Network (TN)
paradigm with an enhanced ability to learn non-parametric invariances through permanent
random connectivity. There have been many seminal works that have indeed explored the
role of temporary random connections in deep networks such as DropOut [26], DropConnect
[29] and Stochastic Pooling [34]. However, unlike the proposed approach, the connections in
these networks randomly change at every forward pass, hence are temporary. More recently,
random permanent connections were explored for large scale architectures [31]. It is impor-
tant however to note that the basic unit of computation, the convolutional layer, remained
unchanged. Our study explores permanent random connectomes within the convolutional
layer itself, and explores how it can learn non-parametric invariances to multiple transforma-
tions simultaneously in a simple manner. We briefly visit other deep architectures that have
been proposed over the years in the supplementary.

Relaxed Biological Motivation for Randomly Initialized Connectomes. Although
not central to our motivation, the observation that the cortex lacks precise local pathways for
back-propagation provided the initial inspiration for this study. It further garnered pull from
the observation that random unstructured local connections are indeed common in many
parts of the cortex [5, 24]. Moreover, it has been shown that orientation selectivity can arise
in the visual cortex even through local random connections [10]. Though we do not explore
these biological connections in more detail, it is still an interesting observation. There has
also been some interesting work which explored the use of random weight matrices for back
propagation [18]. Here, the forward weight matrices were updated so as to fruitfully use the
random weight matrices during back propagation. The motivation of the [18] study was to
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address the biological implausibility of the transport of precise gradients through the cortex
due to the lack of exact connections and pathways [8, 20, 27, 32]. The common presence
of random connections in the cortex at a local level leads us to ask: Is it possible that such
locally random connectomes improve generalization in deep networks? We provide evidence
for answering this question in the positive.

Contributions. 1) We motivate permanent random connectomes from the perspective of
learning invariance to multiple transformations directly from data. The fundamental problem
of learning non -parametric invariances in perception has not received enough attention. We
present an architectural prior capable of such a task with loose biological motivation. 2) We
present a theoretical result on learning invariances to transformations which do not obey a
group structure in contrast to prior work. 3) We provide results on learning invariances to
individual and multiple transformations in data without any change in architecture whatso-
ever. Further, we demonstrate improvements in generalization while using PRC-NPTN as
a drop in replacement to conv layers in DenseNets. 4) Finally, as an engineering effort, we
develop fast and efficient CUDA kernels for random channel pooling which result in efficient
implementations of PRC-NPTNs in terms of computational speed and memory requirements
compared to traditional Pytorch code.

2 Permanent Random Connectome NPTNs
We begin by motivating permanent random connectomes from the perspective of selecting
each specific support for pooling. We find that permanent random channel pooling invokes
invariance to multiple transformations simultaneously. Investigating idea of pooling across
transformations to invoke invariance, permanent random pooling emerges naturally. As part
of our contribution, we present a theoretical result which confirms a long standing intuition
that max pooling invokes invariance.

Invoking Invariance through Max Pooling. In previous years a number of theories
have emerged on the mechanics of generating invariance through pooling. [1, 2] develop a
framework in which the transformations are modelled as a group comprised of unitary oper-
ators denoted by {g ∈ G}. These operators transform a given filter w through the operation
gw1, following which the dot-product between these transformed filters and an novel input
x is measured through 〈x,gw〉. It was shown by [1] that any moment such as the mean or
max (infinite moment) of the distribution of these dot-products in the set {〈x,gw〉|g ∈ G}
is an invariant. These invariants will exhibit robustness to the transformation in G encoded
by the transformed filters in practice, as confirmed by [17, 23]. Though this framework did
not make any assumptions on the distribution of the dot-products, it imposed the restricting
assumption of group symmetry on the transformations. We now show that invariance can
be invoked even when avoiding the assumption that the transformations in G need to form
a group. Nonetheless, we assume that the distribution of the dot-product 〈x,gw〉 is uniform
and thus we have the following result2.

Lemma 2.1. (Invariance Property) Assume a novel test input x and a filter w both fixed
vectors ∈ Rd . Further, let g denote a random variable representing unitary operators with

1The action of the group element g on w is denoted by gw to promote clarity.
2We provide a proof in the supplementary and thank Purvasha Chakravarti at CMU for the proof.. The as-

sumption of the distribution being uniform is meant to provide insight into the general behavior of the max pooling
operation, rather than a statement that deep learning features are uniformly distributed.
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some distribution. Finally, let ϒ(x) = 〈x,gw〉, with ϒ(x)∼U(a,b) i.e. a Uniform distribution
between a and b. Then, we have

Var(maxϒ(x))≤ Var(ϒ(x)) = Var(〈g−1x,w〉)

This result is interesting because it shows that the max operation of the dot-products has
less variance due to g than the pre-pooled features. Though this is largely known empirical
result, a concrete proof for invoking invariance was so far missing. More importantly, it
bypasses the need for a group structure on the nuisance transformations G. Practical studies
such as [17, 23] had ignored the effects of non-group structure in theory while demonstrating
effective empirical results. Also note that the variance of the max is less than the variance of
the quantity 〈g−1x,w〉, which implies that maxϒ(x) is more robust to g even in test, though
it has never observed gx. This useful property is due to the unitarity of g.

Connection to Deep Networks. PRC-NPTN as we will show, perform max pooling
across channels not space, to invoke invariance. In the framework 〈x,gw〉, w would be one
convolution filter with g being the transformed version of it. Note that this modelling is done
only to satisfy a theoretical construction, we do not actually transform filters in practice. All
transformed filters are learnt through backpropagation. This framework is already utilized in
ConvNets. For instance, ConvNets [14] pool only across translations (convolution operation
itself followed by spatial max pooling implies g to be translation).

Invoking Invariance through Channel Pooling in Deep Networks. Consider a grid
of features that have been obtained through a dot product 〈x,gw〉 (for instance from a con-
volution activation map, where the grid is simply populated with each k× k× 1 filter, not
k× k× c) (see Fig. 2(a)). Assume that along the two axes of the grid, two different kinds of
transformation are acted. T1 along the horizontal axis and T2 along the vertical. T1 = g1(·;θ1)
where g1 is a transformation parameterized by θ1 that acts on w and similarly T2 = g2(·;θ2).
Now, pooling homogeneously across one axis invokes invariance only to the corresponding
g (for a more in depth analysis see [1]). Similarly, pooling along T2 only will result in a
feature vector (Feature 2) invariant only to T2. These representations (Feature 1 and 2) have
complimentary invariances and can be used for complimentary tasks e.g. face recognition
(invariant to pose) versus pose estimation (invariant to subject). This approach has one major
limitation that this scales linearly with the number of transformations which is impractical.
One therefore would need features that are invariant to multiple transformations simultane-
ously. A simple yet effective approach is to pool along all axes thereby being invariant to
all transformations simultaneously. However, doing so will result in a degenerative feature
(that is invariant to everything and discriminative to nothing). Therefore, the key is to limit
the range of pooling performed for each transformation.

Choosing the Support for Pooling at Random: Permanent Random Connectomes.
A solution to trivial feature problem described above, is to limit the range or support of
pooling as illustrated in Fig.2(b). One simple way of selecting such a support for pooling is
at random. This selection would happen only once during initialization of the network (or
any other model), and will remain fixed through training and testing. In order to increase
the selectivity of such features, multiple such pooling units are needed with such a randomly
initialized support [1, 21]. These multiple pooling units together form the feature that is
invariant to multiple transformations simultaneously, which improves generalization as we
find in our experiments. This is called heterogeneous pooling and Fig. 2(b) illustrates this
more concretely. We therefore find that permanent random pooling is motivated naturally
through the need to attain invariance to multiple transformations simultaneously.
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(a) Rotation 0◦ (b) Rotation 30◦ (c) Rotation 60◦ (d) Rotation 90◦

Figure 3: Individual Transformation Results: Test error statistics with mean and stan-
dard deviation on MNIST with progressively extreme transformations with a) random ro-
tations and b) random pixel shifts (in supplementary). Only for PRC-NPTN and NPTN
the brackets indicate the number of channels in the layer 1 and G. ConvNet FC denotes the
addition of a 2-layered pooling 1× 1 pooling network after every layer. Note that for this
experiment, CMP=|G|. Permanent Random Connectomes help with achieving better gener-
alization despite increased nuisance transformations. We provide experiments on CIFAR 10
using DenseNets in the supplementary.

The PRC-NPTN layer. Fig. 1 shows the the architecture of a single PRC-NPTN layer
3. The PRC-NPTN layer consists of a set of Nin×G filters of size k× k where Nin is the
number of input channels and G is the number of filters connected to each input channel.
More specifically, each of the Nin input channels connects to |G| filters. Then, a number of
channel max pooling units randomly select a fixed number of activation maps to pool over.
This is parameterized by Channel Max Pool (CMP). Note that this random support selection
for pooling is the reason a PRC-NPTN layer contains a permanent random connectome.
These pooling supports once initialized do not change through training or testing. Once max
pooling over CMP activation maps completes, the resultant tensor is average pooled across
channels with a average pool size such that the desired number of outputs is obtained. After
the CMP units, the output is finally fed through a two layered network with the same number
of channels with 1×1 kernels, which we call a pooling network. This small pooling network
helps in selecting non-linear combinations of the invariant nodes generated through the CMP
operation, thereby enriching feature combinations downstream. For experimental rigor, we
also benchmark against the baseline ConvNet supplemented with this 1x1 pooling network.

3 Empirical Evaluation and Discussion

Goal. The goal of our evaluation study is to demonstrate PRC-NPTNs as capable of learning
transformations from data and to showcase improvements in generalization in supervised
classification over relevant baselines. The goal is not in fact, to compete with the state of the
art approaches for any dataset.

General Experimental Settings. For all experiments, we run all models for 300 epochs
trained using SGD. The initial learning rate was kept at 0.1 and decreased by 10 at 50% and
75% epoch completion. Momentum was kept at 0.9 with a weight decay of 10−5. Batch size

3We provide pseudo-code in the supplementary
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(a) (0◦, 0 pix) (b) (30◦, 4 pix) (c) (60◦, 8 pix) (d) (90◦, 12 pix)
Figure 4: Simultaneous Transformation Results: Test error statistics with mean and
standard deviation on MNIST with progressively extreme transformations with random ro-
tations and random pixel shifts simultaneously. For PRC-NPTN and NPTN the brack-
ets indicate the number of channels in the layer 1 and G. Note that for this experiment,
CMP=|G|. We provide experiments on CIFAR 10 with DenseNets in the supplementary.

was kept at 64 for both MNIST and ETH-80 4. For the MNIST experiments, gradients were
clipped to norm 1. Each block for all baselines for ConvNet and PRC-NPTN had either a
convolution layer or PRC-NPTN layer followed by batch normalization, PReLU and spatial
max pooling. The convolutional kernel size for all models was kept at 5×5 for all MNIST
experiments and 3×3 for all other models. Spatial max pooling of size 3×3 was performed
after every layer, BN and PReLU for MNIST models.

Limitations in Typical Implementations and Developing Faster Kernels. Our imple-
mentation with traditional PyTorch still suffered from heavy GPU memory use and slower
run times despite optimizing code at the PyTorch abstraction level. The key bottleneck in
computational and memory efficiency was found to be the randomized channel pooling op-
eration. The issue was addressed by developing CUDA kernels that performed pooling on
non-contiguous blocks of memory without creating copies of the same. This allowed for
faster non-contiguous pooling over feature and activation maps with a significant reduction
in memory usage. The operation was built as a CUDA-kernel that is interfaced with Py-
Torch through CuPy. This engineering effort is part of our contribution and we demonstrate
significant improvements in memory and computational efficiency in our experiments. We
show improvements in memory and speed as different aspects of the PRC-NPTN networks
are changed in the supplementary 5. We observe a consistent speed up of atleast 1.5x and a
significant reduction in memory usage.

Efficacy in Learning Arbitrary and Unknown Transformations Invariances from
Data. We evaluate on one of the most important tasks of any perception system, i.e. being
invariant to nuisance transformations learned from the data itself. Most other architectures
based on vanilla ConvNets learn these invariances through the implicit neural network func-
tional map rather than explicitly through the architecture as PRC-NPTNs. Moreover, most
previous approaches needed hand crafted architectures to handle different transformations.
We benchmark our networks based on tasks where nuisance transformations such as large
amounts of in-plane rotation and translation are steadily increased, with no change in archi-
tecture whatsoever. For this purpose, we utilize MNIST where it is straightforward to add
such transformations without any artifacts.

4We provide experiments on CIFAR-10 in the supplementary.
5We provide details of the architecture, benchmarking and additional experiments in the supplementary.
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Architecture

ConvNet B C(12) - C(24) - C(48) - C(48) - GAP - FC(300) - FC(200) - FC(8)
NPTN-large B C(12) - NPTN(24) - NPTN(48) - NPTN(48) - GAP - FC(300) - FC(200) - FC(8)
NPTN-small B C(12) - NPTN(8) - NPTN(24) - NPTN(48) - GAP - FC(300) - FC(200) - FC(8)
PRC-NPTN B C(12) - PRC(24) - PRC(48) - PRC(48) - GAP - FC(300) - FC(200) - FC(8)
ConvNet C C(12) - C(24) - C(48) - C(64) - C(128) - GAP - FC(8)
PRC-NPTN C C(12) - PRC(24) - PRC(48) - PRC(64) - PRC(128) - GAP - FC(8)

Table 1: Architectures tested on ETH-80. C - convolution layer, FC - fully connected layer,
PRC - PRC-NPTN layer, NPTN - NPTN layer, GAP - global average pooling layer. Every
Conv, NPTN and PRC-NPTN layer was followed by a spatial pooling layer of kernel size
2 except the last laer before the GAP. The 1× 1 versions of these architectures have a 1×
conv layer after every 3× 3 layer except the first C(12) layer. ConvNet B was designed to
be similar to the architecture explored in [13] however with more layers. ConvNet C was
designed to be more aligned with modern architecture choices such as global average pooling
followed by just one FC layer.

We benchmark on such a task as described in [22] and for fair comparisons, we follow
the exact same protocol. We train and test on MNIST augmented with progressively in-
creasing transformations i.e. 1) extreme random translations (up to 12 pixels in a 28 by 28
image), 2) extreme random rotations (up to 90◦ rotations) and finally 3) both transformations
simultaneously. Both train and test data were augmented randomly for every sample leading
to an increase in overall complexity of the problem. No architecture was altered in anyway
between the two transformations i.e. they were not designed to specifically handle either.
The same architecture for all networks is expected to learn invariances directly from data
unlike prior art where such invariances are hand crafted in [3, 11, 16, 25, 28, 33].

For this experiment, we utilize a two layered network with the intermediate layer 1 hav-
ing up to 36 channels and layer 2 having exactly 16 channels for all networks (similar to
the architectures in [22]) except a wider ConvNet baseline with 512 channels. All ConvNet,
NPTN and PRC-NPTN models have the similar number of parameters (except the ConvNet
with 512 channels). For PRC-NPTN, the number of channels in layer 1 was decreased from
36, through to 9 while |G| was increased in order to maintain similar number of parameters.
All PRC-NPTN networks have a two layered 1× 1 pooling network with same number of
channels as that layer. For a fair benchmark, Convnet FC has 2 two-layered pooling networks
with 36 channels each. Average test errors are reported over 5 runs for all networks.

Discussion. We present all test errors for this experiment in Fig. 3 and Fig. 46. From
both figures, it is clear that as more nuisance transformations act on the data, PRC-NPTN
networks outperform other baselines with the same number of parameters. In fact, even with
significantly more parameters, ConvNet-512 performs worse than PRCN-NPTN on this task
for all settings. Since the testing data has nuisance transformations similar to the training
data, the only way for a model to perform well is to learn invariance to these transforma-
tions. It is also interesting to observe that permanent random connectomes do indeed help
with generalization. Indeed, without randomization the performance of PRCN-NPTNs drop
substantially. The performance improvement of PRC-NPTN also increases with nuisance
transformations, showcasing the benefits arising from modelling such invariances. This is

6We display only the (12, 3) configuration for NPTN as it performed the best. The translation results and more
benchmarks with NPTNs are provided in the supplementary. We obtain similar perforamnce improvements with
extreme translation as well.
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Method (Protocol 1) Accuracy (%) #params Factor #filters Reduction
ConvNet [13] 93.69 1.4M 230 -
NPTN* [22] 96.2 1.4M 230 -
ConvNet B 95.61 110K 1× 3780 1×
ConvNet B (1×1) 94.54 115K 0.95× 3780 1×
NPTN-large B (3) 94.63 189K 0.58× 11268 0.33×
NPTN-small B (3) 95.09 120K 0.91× 4356 0.86×
PRC-NPTN B (8, 2) 96.72 97K 1.13× 708 5.33×
ConvNet C 93.90 116K 1× 12740 1×
ConvNet C (1×1) 95.98 138K 0.84× 12740 1×
PRC-NPTN C (8, 2) 95.93 64K 1.81× 1220 10.44×
PRC-NPTN C (8, 4) 96.40 39K 2.97× 1220 10.44×

Table 2: Test accuracy on ETH-80 Protocol 1. ∗ indicates the result was obtained from the
corresponding paper, and is not on the split used for our experiments. For NPTN is number
in the bracket denotes |G|, for PRC-NPTN the numbers denote |G| and CMP respectively.

particularly apparent from Fig. 4, where the two simultaneous nuisance transformations pose
a significant challenge. Yet, as the transformations increase, the performance improvements
increase as well.

Evaluation on the ETH-80 dataset The ETH-80 dataset was introduced in [15] as a
benchmark to test models against 3D pose variation of various objects. The dataset contains
80 objects belonging to 8 different classes. Each object has images from different viewpoints
on a hemisphere for a total of 41 images per object. The images were resized to 50× 50
following [13]. This dataset is perfectly poised to test how efficiently a model can learn
invariance to 3D viewpoint variation.

Protocol: For this experiment, we follow the evaluation protocol as described in [13]
7. We randomly select 2,300 images to train and test on the rest. For a fair comparison
we retrain the ConvNet described in [13]. We design two ConvNet architectures which
reflect more modern architecture choices such as a smaller FC layer or having only a global
average pooling after a number of conv layers. Table. 1 presents the architectures that we
train for this experiment. Every conv layer (except the first conv layer within a PRC-NPTN
layer) is followed by BatchNorm and ReLU. We train corresponding PRC-NPTN models
that have fewer parameters. For these experiments with PRC-NPTN, we replace the average
pooling across channels (not max pooling or CMP) with a 1× 1 convolution layer. We do
this to explore the effect of weighted pooling instead of vanilla channel average pooling. To
maintain a fair comparison, we compare against equivalent ConvNet baselines with an extra
1×1 added. We also perform an ablation study with the randomization removed. All models
were trained with Adam with a learning rate of 0.01 for 100 epochs and a batch size of 64.
Each architecture was trained 10 separate times with the mean of the runs being reported.
We showcase the results in Table. 2.

Discussion: We find that of the two different types of architectures that we explore,
PRC-NPTNs outperform both corresponding ConvNet architectures. Further, they do so not
only with fewer number of parameters, but also fewer number of 3×3 filters. In fact, PRC-
NPTN C for |G| = 8 and CMP=4 outperforms the corresponding ConvNet C architectures
with a 2.97× reduction in the number of parameters and a 10.44× reduction in the number

7We also present results on a harder protocol we devised in the supplementary
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of 3×3 convolution filters. Similarly, PRC-NPTNs outperform two architectures of NPTNs
[22] both with significantly fewer parameters and 3× 3 filters. These results illustrate that
PRC-NPTN can utilize filters and parameters more efficiently on a classification problem
which requires 3D pose invariance. This efficiency we conjecture, is due to the fact that
permanent random pooling results in an inductive bias that explicitly helps the learning of
multiple invariances within the same layer thereby vastly increasing model capacity. Note
that the almost 3X reduction in the number of parameters and 10X reduction in the number of
filters is achieved without the use of any network pruning or post processing methods. Note
that competing methods presented in [13] all perform comparably however with 1.4 million
parameters each with the highest result being TIGradNet [13] at 95.1, HarmNet at 94.0 [30].
PRC-NPTN outperforms these methods which were designed to invoke invariances through
inductive biases while using a fraction of the number of parameters.
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