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Abstract

This study tackles a video question answering (VideoQA), which requires spatiotem-
poral video reasoning. VideoQA aims to return an appropriate answer about textual ques-
tions referring to image frames in the video. In this paper, based on the observation that
multiple entities and their movements in the video can be important clues for deriving the
correct answer, we propose a two-stream spatiotemporal compositional attention network
that achieves sophisticated multi-step spatiotemporal reasoning by using both motion and
detailed appearance features. In contrast to the existing video reasoning approach that
uses frame-level or clip-level appearance and motion features, our method simultane-
ously attends detailed appearance features of multiple entities as well as motion features
guided by attending words in the textual question. Furthermore, it progressively refines
internal representation and infers the answer via multiple reasoning steps. We evaluate
our method on short- and long-form VideoQA benchmarks: MSVD-QA, MSRVTT-QA,
and ActivityNet-QA and achieve state-of-the-art accuracy on these datasets.

1 Introduction

The goal of video question answering (VideoQA) is to produce an appropriate answer ac-
cording to the textual questions posed about visual content in the video. Using this tech-
nology, we can quickly understand the real-world events and situations in videos through
natural language. Thereby, VideoQA technology plays an important role in a wide range of
practical applications such as information access to personal visual histories [9], question
answering (QA) for tutorial videos [6], video dialogue systems [4], and the embodied agent
with visual perception [7].

In contrast to traditional visual question answering for static images [2, 14, 34], VideoQA
is a more challenging task because the VideoQA system has to find relevant frames to a ques-
tion and answer out of possibly unnecessary image frames in the video. To address this prob-
lem, existing VideoQA approaches use the appearance and motion features extracted from
a series of frames and clips in video with a pre-trained convolutional networks (ConvNets)
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Q1: What happened to the person in white after he washed his hands? Al: wipe hands
Q2: What is in front of ? A2:

Figure 1: VideoQA example: QI can be correctly answered by finding a frame (or clip) from the
video containing the entity in question and the motions associated with the answer. Q2 can be correctly
answered by finding entities in the image frames related to the question and its answer.

model [16, 39] and a 3D ConvNets [15, 41], and then apply learnable soft weights (i.e., at-
tention mechanism [3]) to them for capturing frame and clip-level details relevant to a given
question [44, 52, 55]. Their limitation is the use of a single encoded vector for representing
the semantics of questions. To capture the more complex semantic relationships between
question words and frames (and clips), several works simultaneously attend visual contents
and their related part of words in a question [13, 25, 31, 32, 33]. Moreover, some notable
works use multi-step reasoning that gradually refines the motion-appearance representations
of video and question representation [10, 12, 46, 48]. These multi-step video reasoning ap-
proaches achieved a competitive performance on short- and long-form VideoQA datasets.
Previous results of these existing works suggest the effectiveness of motion-appearance fea-
tures, simultaneous attention over words and visual contents, and progressive refinement
through multi-step video reasoning. However, even though events occurred in the video that
involve multiple entities (e.g., humans and objects) [23, 42], these methods fail to capture
the associations between region-level details of entities in the frame and their correspond-
ing question words. As described in the examples in Figure 1, to get the right answer for
VideoQA, the detailed appearance information of entities in the frame is an important clue
as well as the motion information over frames.

Motivated by this observation, we develop a two-stream spatiotemporal MAC network
(TS-STMAC), which performs sequential spatiotemporal reasoning on video frames accord-
ing to the question content. Moreover, we use a SlowFast model that shows high performance
in video understanding tasks [11] and a bottom-up attention model known to be useful for
image VQA tasks [1] for extracting robust motion and detailed appearance features. Our TS-
STMAC network is a natural extension of the Memory, Attention, and Composition (MAC)
network [20], which yields promising results in spatial reasoning tasks [21, 29] based on
compositional attention. More concretely, we devise a two-stream spatiotemporal MAC cell,
a new neural module containing a spatiotemporal attention mechanism that simultaneously
finds motion features and detailed appearance features of entity’s regions relevant to attend-
ing words in a question. We use it as a building block of our VideoQA framework, recurrently
apply it for multi-step reasoning, and progressively infer the correct answer. Through this
question-aware multi-step spatiotemporal reasoning, the model can focus on the important
frames and regions ignoring useless information.

In summary, the main contributions of this work are threefold. First, we devise a TS-
STMAC cell that simultaneously captures the relationship between entity regions and motion
over frames based on the attended question words. Second, we incorporate this TS-STMAC
cell into a recurrent network that performs iterative spatiotemporal reasoning for VideoQA.
This multi-step reasoning progressively refines the internal network representation to answer
the question. Third, we conduct experiments on the short- and long-form VideoQA datasets
to validate our method’s effectiveness and show that our method outperforms state-of-the-art
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approaches by a large margin on three public benchmarks.

2 Related Work

VideoQA can be seen as an extension of the image-based visual question answering (VQA)
to the video domain. This task requires both language and video understanding to infer
correct answers from complex semantics. Most current approaches mainly use temporal
reasoning methods with the attention mechanism over the temporal dimension for extract-
ing the important frame information from a video [35, 44, 45, 47, 50, 56]. While these
works use frame-level attention for videos, some VideoQA models use segment-level at-
tention [52, 53, 55] to consider long-range dependency of the video context. Instead of
explicit using segments in the video, we use motion features extracted from short clips to
represent segment information. Due to the video’s nature, some complex questions in the
VideoQA task cannot be solved without looking at multiple frames in the video. To capture
the temporal relationship over frames, some methods use self-attention mechanism or tempo-
ral relational modeling and graph ConvNets [25, 31, 33]. Our method can also consider the
temporal relationship over frames by using the representations of the internal state obtained
from the past inference step and the input frames in the current step. In contrast to the static
images used for the standard VQA, the video contains dynamic information that captures
real-world events. The methods that take into account motion and appearance information
representing dynamics in the video guided by questions have been proposed [10, 12, 46, 48].
These methods show high performance in multiple VideoQA benchmarks. In comparison to
them, our method can model the fine-grained appearance information from object detection
networks as well as the robust motion information from video recognition networks.

In contrast with modeling frame-level temporal dynamics of video, spatiotemporal rea-
soning approaches that focus on the frame- and region-level visual content relevant to a
question are relatively less explored. Traditional approaches use a combination of recurrent
neural networks (RNN) and ConvNets, which encode spatiotemporal video features and a
textual question, and then jointly learn their multi-modal representations [22, 54]. However,
these works lack modeling the interaction between question words and visual contents. Some
words in the question often indicate the entities in the video, which can be important clues
for video reasoning. To further improve the VideoQA performance, the QA model has to
attend words in the question corresponding to the image regions and video frames [24, 51].
In addition to attending both textual and visual content, recent works use the fine-grained
appearance of video frames with external knowledge [27] or spatial relationships among
entities in the video frames [19, 26]. However, only using appearance information is not
enough to capture the movement in the video, which is essential for questions about the
motion of humans and objects. To overcome this limitation, we use motion features over
frames as well as detailed appearance features. Several works use motion-appearance fea-
tures for spatiotemporal video reasoning [26, 40]. However, these works lack an attention
mechanism for question words, even though the word-level attention plays an important role
to find frames representing motion information and image regions representing detailed ap-
pearance information relevant to a question. Our work differs in that the proposed neural
module can simultaneously attend question words, frames, and image regions to represent
their associations. Moreover, our question-aware spatiotemporal network uses this neural
module as a building block and can progressively infer relevant answer though multi-step
video reasoning to focus on important video information. We demonstrate that our sophis-
ticated method outperforms existing temporal or spatiotemporal reasoning methods on the
long-form VideoQA dataset as well as short ones.
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Figure 2: Tllustration of our two-stream spatiotemporal MAC (TS-STMAC) network. First, video
encoder extracts motion and detailed appearance features from short clips and frames using SlowFast
networks and Faster-RCNN (top left). Question encoder extracts text features from question words
using BERT and LSTM (bottom left). Then, a neural module TS-STMAC cell takes these features
as inputs and computes the interaction between question and video features by attending to frames
(or clips) and regions relevant to the question. The network repeats this process multiple times to
progressively refined the internal representation. Finally, the classifier predicts the final answer using
the question embedding and the final memory state of the TS-STMAC cell. The regions in the selected
frames with higher attention values at each step are shown in brighter.

3 Approach

3.1 Problem Definition

In this work, we consider the following VideoQA task. Given a video v € V and question
q € Q about this video, VideoQA method outputs an answer d € A. Our goal is to predict an
answer 4 that matches the true answer a*.

Video Embeddings. The video consists of the sequence of frames which have multiple
regions representing entities. For motion representation, we use a Kinetics-600 classification
model of SlowFast networks that achieved high performance for action detection tasks [11].
We extract the motion feature (f¢ € R?3%%) from the ¢-th clip and use a series of motion
features f9 = { f{}L_, for representing the video, where T is the number of clips. For detailed

appearance information, we extract region features ( flb ={f ﬁ’J }f; 1) from the z-th frame using

Faster R-CNN [38] trained with the Visual Genome dataset [30], where each ff’ € R2048
corresponds to a region feature of an entity, and N is the number of detected entities with the
highest confidence scores. Following the past VQA work [1], we set N = 36. We use the
image feature in the region multiplied by its confidence scores as the region feature. For the
appearance features of the video, we use a series of sets of region features f = { ft” },T:l . The
input of VideoQA model is a tuple of these motion-appearance features and the following
question features.

Question Embeddings. For question representation, we use a BERT model [8]. To deal
with unknown words that appear in the training data but do not in the test data, we first
split a question into words with a length of M by the Word Piece tokenizer [43]. We extract
a feature vector from the last layer of a pre-trained 12-layer BERT model for each word.
Note that we fine-tune this layer during VideoQA training. Then, we encode the question
using a one-layer bi-directional LSTM (biLSTM) [18], which is used for guiding the model’s
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multi-step reasoning. We use a series of output states from LSTM {ew;}, as contextual
question word embeddings. We also use g € R* as a question sentence embedding, which
is represented by the concatenation of the final hidden states from the backward and forward
LSTMs. Furthermore, we apply a linear transformation to g for representing a step-aware
question embedding g; € R? at i'” reasoning step.

3.2 Two-Stream Spatiotemporal MAC Network

For VideoQA, we develop a two-stream spatiotemporal MAC (TS-STMAC) network that
consists of an input unit, a core recurrent network, and an output unit. Figure 2 shows an
overview of our proposed model. The input unit transforms the raw video and a question
into distributed vector representations. The core recurrent network sequentially reasons over
the question by decomposing it into a series of operations (control) that retrieve information
from the video (clip- and frame region-level features) and aggregate the results into internal
memory. As the core recurrent network, we repeatedly use the following TS-STMAC cells
at each step.

We introduce a two-stream spatiotemporal MAC cell, which is the building block for our
VideoQA model. The proposed cell mainly consists of two neural components: temporal and
spatial MAC cells. Because both cells are based on the MAC cell [20], we start with a brief
explanation of this neural module, which has been used for a spatial reasoning task [28].

MAC Cell: The MAC cell is a neural module designed to apply attention-based operations to
perform reasoning. The cell holds two hidden states at i-th step: control ¢; € R? and memory
m; € R?. The control state ¢; stores the information on the reasoning operation that should
be performed. The memory m; state has the intermediate result that has been computed in
the recurrent reasoning process. The MAC cell updates the control and memory states for
each reasoning step i = 1,...,S using three internal units: control, read, and write units.
The MAC cell iteratively aggregates information from some knowledge source according
to the control state in the following steps. (i) The control unit attends some words of the
question by using attention mechanism [3] and updates the control state ¢;. (ii) The read
unit attends to some parts of a knowledge base {k}l’(: 1 (e.g., image features for VQA) and
retrieves information r; from them according the current control and previous memory states
¢; and m;_;, where K denotes the size of knowledge base. (iii) The write unit updates the
memory based on the retrieved information r; and previous memories {my,...m;_}. The
equations of the reasoning step in the MAC cell are shown as follows:

¢ = ControlUnit(¢;_1,{ew;},.4;) (1)
r; = ReadUnit(m;_1, {kj}le ,Ci) 2)
m; = WriteUnit({m;_,}'_,,ri,c;) (3)

Due to the space limitation, see the work in [20] for more details about these neural units.
As mentioned in Section 1, using motion and detailed appearance information is important
to solve VideoQA. However, the normal MAC cell can only handle one of them. To address
this issue, we extend this MAC cell and create a TS-STMAC cell that can handle both motion
and detailed appearance features for spatiotemporal reasoning.

Two-Stream Spatiotemporal MAC Cell: Figure 3 shows the proposed two-stream spa-
tiotemporal MAC (TS-STMAC) cell architecture, which consists of two spatial and temporal
MAC cells. The temporal MAC cell is used for representing the temporal structure of the
video. We use motion features of clips in the video { fjf}jrz | as the input of this cell. The
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Figure 3: Overview of our two-stream spatiotemporal MAC (TS-STMAC) cell, which consists of
two temporal and spatial MAC cells. The temporal MAC cell (top) takes motion features as input and
updates its internal representation m¢ that holds temporal information over clips based on the control
state ¢. The spatial MAC cell (bottom) takes detailed appearance features as input and updates its
internal representation m” that holds spatial information over regions in the frames based on c.

temporal MAC cell updates the controller and memory states based on the motion features.
As with a standard MAC cell, it is given by

¢; = ControlUnit(e;_1, {ew;}L, . 4;) “)
r{ = ReadUnitiemporal (M1, { f;’},Tzl ,Ci) (5)
m = WriteUnitemporal ({m]_; }3-:1 ,ré.ci) (6)

where m“ € R? and r* € R? denote the memory state and the retrieved information of the
temporal MAC cell, which holds temporal information of the video content based on the
controller state ¢;. ControlUnit, ReadUnitemporal, and WriteUnitiemporat are the same units of
Egs. 1, 2 and 3.

The spatial MAC cell is used for representing the spatial structure of the video frames.
This cell takes as input a series of visual feature sets f* = {f”}_, (i.e., detailed appearance
features), which are extracted from T video frames. The spatial MAC cell uses the read unit
multiple times to handle a series of feature sets with arbitrary length. First, the spatial MAC
cell retrieves spatial information rf?J from region features { f’j’-J}’}’:1 of ' frame selectively
focusing on specific regions based on the control state c;:

rbt:ReadUnitSpatial( m;_ la{f/,t}J 1,€i)s (N

where m” € R? and r* € R? denote the memory state and the retrieved information of the
spatial MAC cell that holds spatial information of the video frames. ReadUnitgpyyar is the
same unit of Eq. 2. The spatial MAC cell repeats this process for all frames and obtains T
retrieved spatial information {rf’ ,}thl- After that, the average pooling is applied to them for
aggregating common spatial information related to a question over video frames as follows:

r _pOOI({r L1 127 o zT}) (8)

where pool denotes the average pooling layer. Then, the spatial MAC cell updates the mem-
ory state on spatial information:

b . . b b
m; = WriteUnitspaia (m;_ 1,77, ¢;) 9)
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where WriteUnitgp,ga i the same unit of Eq. 3.

Thanks to both spatial and temporal MAC cells, the TS-STMAC cell can jointly model
the video’s spatial and temporal structures based on a textual question via attending motion-
appearance features guided by question word features.

Output Unit: To compute the final answer, we use a simple classifier using the question and
the final memory states of the spatial and temporal MAC cells after applying S times cell
computation as input:

o' =Wi[g:mé;mb] +by, o=softmax(ELU(W,0' +b,)) (10)

where W1, W5, by, and b, are the learnable parameters, ELU is an exponential linear unit [5].
The final output of the classifier is given by

a = argmax,c 40. (1

4 Evaluation

4.1 Experimental Setup

Datasets. On three VideoQA datasets, we compared our method with its different compo-
nents and several state-of-the-art approaches. We used MSVD-QA [44], MSRVTT-QA [44],
and ActivityNet-QA [49] datasets for evaluation. MSVD-QA and MSRVTT-QA are short-
form VideoQA datasets. The average lengths of videos used in these datasets are 10 and
15 sec, respectively. Both MSVD-QA and MSRVTT-QA and include five different question
types (What, Who, How, When, and Where). In contrast, ActivityNet-QA is a more challeng-
ing VideoQA dataset that uses long videos about human activities. The average length of the
videos is 116 sec. The videos are sampled from the ActivityNet dataset [17]. ActivityNet-
QA includes four main question types (Motion, Spatial Relationship, Temporal Relationship,
and Free). Furthermore, the Free questions are divided into six sub-question types (Yes/No,
Number, Color, Object, Location, and Other) according to their answer types. We sampled
20 frames at equal intervals for appearance feature extraction and 20 clips for motion feature
extraction. For answer candidates, we selected the top 1,000 most frequent answers in a
training split.

Implementation Details. We trained our method up to 100 epochs using AMSGrad [37]
variant of Adam [49] for optimization, with a learning rate of & = 10~% and a batch size
of 32. We employed the early stopping if the validation accuracy does not increase for
ten epochs. We converted the words in the question and answer to lower cases. We set
the dimension d of the TS-STMAC cell as 256. For the multi-step reasoning of the TS-
STMAC network, two reasoning steps (S = 2) were used following the average performance
on validation data across three VideoQA datasets. We also used self-attention connections
between the cells.

Evaluation Metric. Following the past works [10, 49], we used the accuracy to measure the

=

performance. The evaluation metric is given by Accuracy = @ Zlg‘l 1[a} = a;], where the
indicator function 1[] is equal to 1 only if a} and a; are the same and is 0 otherwise.

4.2 Ablation Experiments

To verify the contribution of the proposed modules in the TS-STMAC network, we first
compared four architectures with different neural modules on three VideoQA datasets. In
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Method Fgature Dataset _
Text Motion  Appearance | MSVD-QA MSRVTT-QA ActivityNet-QA

TMAC Glove ResNet 0.371 0.368 0.365
TMAC Glove SlowFast 0.393 0.377 0.385
SMAC Glove RCNN 0.375 0.369 0.366
TS-TMAC |Glove SlowFast ResNet 0.400 0.378 0.381
TS-STMAC |Glove SlowFast RCNN 0.401 0.378 0.385
TMAC BERT ResNet 0.397 0.382 0.365
TMAC BERT SlowFast 0.413 0.388 0.381
SMAC BERT RCNN 0.401 0.385 0.370
TS-TMAC | BERT SlowFast ResNet 0.415 0.391 0.390
TS-STMAC | BERT SlowFast RCNN 0.432 0.394 0.402

Table 1: Comparison with different VideoQA architectures with different features. The best result for
each dataset is marked by boldface.

addition to the proposed TS-STMAC, we prepared its variants temporal MAC (TMAC), spa-
tial MAC (SMAC), and two-stream temporal MAC (TS-TMAC) networks. TMAC used a
single temporal MAC cell as a core recurrent network that can use either motion or appear-
ance features as inputs. It can be seen as a simple baseline that applied the MAC network [20]
with temporal attention over frames to the VideoQA task. SMAC used a single spatial MAC
cell that can use detailed appearance features for video reasoning. TS-TMAC used two tem-
poral MAC cells to consider both clip-level motion and frame-level appearance features. As
described in Section 3.2, TS-STMAC used spatial and temporal MAC cells to consider both
motion and detailed appearance features. We also compared the performance with differ-
ent textual, motion, and appearance features to evaluate their complementary effects. For
comparison to BERT word embeddings, we prepared the Glove ones (€ R3%) and were
initialized with the Glove [36]. To validate the effectiveness of the region-level appear-
ance feature RCNN extracted from Faster-RCNN (i.e., detailed appearance features), we pre-
pared a frame-level appearance feature ResNet (€ R?48) extracted from ResNet101 [16].
SlowFast denotes the clip-level motion feature extracted from SlowFast networks.

Table 1 shows accuracy using different architectures with different features. Note that
TS-STMAC (BERT + SlowFast + RCNN) is our proposed method. The results show
that the methods using BERT for encoding a question outperformed ones with Glove in
many cases when using the same models and features. It indicates that the difference comes
from BERT is better embeddings than Glove and can address the unknown words in a ques-
tion. Moreover, TMAC (BERT + ResNet) outperformed SMAC (BERT + RCNN), and
TS-STMAC (BERT + SlowFast+ RCNN) outperformed TS-TMAC (BERT + SlowFast+
ResNet) across all datasets indicating the superiority of RCNN features in the VideoQA
task that can represent the detailed appearance information in video frames. Compared with
TMAC (BERT + SlowFast), which used only motion features and SMAC (BERT + RCNN),
which used detailed appearance features, TS-STMAC (BERT + SlowFast + RCNN) im-
proved the performance in all cases. These results suggest that modeling both motion and
detailed appearance features have complementary effects.

4.3 Comparison with the State-of-the-Art

In this section, we compare the proposed method TS-STMAC to existing state-of-the-art
methods on short- and long-form VideoQA datasets. Because the number of instances in
some question types are relatively small in some datasets [10], we report the number of
instances of each question type overall VideoQA datasets. To compare our method to the
existing ones, we used reported accuracies of their original paper unless otherwise stated.
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MSVD-QA MSRVTT-QA

Method What Who How When Where| All What Who How When Where| All

8,149 4,552 370 58 28 |13,157]49,869 20,385 1,640 677 250 |72,821
HME [10] 0.224 0.501 0.730 0.707 0.429 | 0.337 | 0.265 0.436 0.824 0.760 0.286 | 0.330
CAN [48] 0.211 0.479 0.841 0.741 0.571 | 0.324 | 0.267 0.434 0.837 0.753 0.352 | 0.332
MIN [26] 0.242 0.495 0.838 0.741 0.536 | 0.350 | 0.295 0.450 0.832 0.747 0.424 | 0.354
HCRN [31] 0.255 0.518 0.773 0.741 0.500 | 0.363 | 0.295 0.451 0.821 0.783 0.344 | 0.355
Ours: TS-STMAC | 0.337 0.569 0.786 0.724 0.464 | 0.432 | 0.336 0.488 0.831 0.786 0.336 | 0.394

Table 2: Experimental results on MSVD-QA and MSRVTT-QA datasets. The number below each
question type denotes the number of QA pairs on the fest split. The best result for each question type
is marked by boldface.

ActivityNet-QA

Method Motion Spatial Temporal | Yes/No Color Object Location Number Other | All

800 800 800 2,094 697 318 386 606 1,499 | 8,000
ESA [49] 0.125 0.144 0.025 0.594 0.298 0.142  0.259 0.446  0.284 [ 0.318
HME [10] 0.174  0.159 0.023 0.607 0.304 0.132  0.277 0.475  0.297 | 0.331
CAN [48] 0211 0.173 0.036 0.626 0311 0.201  0.306 0.480 0.333 | 0.354
HCRN [31] 0215 0.171 0.031 0.657 0316 0220  0.298 0.454  0.336 | 0.362
Ours: TS-STMAC | 0.355  0.183 0.039 0.683 0.364 0.258  0.316 0.500 0.376 | 0.402

Table 3: Experimental results on the ActivityNet-QA dataset. The best result for each question type
is marked by boldface.

MSVD-QA Dataset: We show the VideoQA performance on MSVD-QA in Table 2 (left).
We compared our method TS-STMAC with the temporal reasoning models (HME [10],
CAN [48], and HCRN [31]) and the spatiotemporal reasoning model (MIN [26]). HME,
CAN, and HCRN mainly use temporal information of video frames. MIN uses both spatial
and temporal information of the video. We found our method significantly outperformed
existing ones, and achieved overall accuracy 0.432, which is 28.2% better than the prior best
of temporal reasoning method, HME (0.337). Moreover, the performance of TS-STMAC is
19.0% better than the latest temporal reasoning model HCRN (0.363). Our TS-STMAC is
weaker than existing methods on How, When, Where questions. However, this is due to the
class imbalance, where the number of instances on these questions is relatively small.

MSRVTT-QA Dataset: In Table 2 (right), we compared our method with HME, CAN, MIN,
and HCRN on the MSRVTT-QA dataset. As in the MSVD-QA dataset, our method signif-
icantly outperformed the others on two major question types (What and Who). Our method
achieved the best overall accuracy of 0.394, which is 11.3% better than the spatiotemporal
reasoning model MIN (0.354) and is 11.0% better than the temporal reasoning model HCRN
(0.355). From the results on both MSVD-QA and MSRVTT-QA results, we found that the
proposed method shows high performance in the short-form QA dataset.

ActivityNet-QA Dataset: We report the performance on ActivityNet-QA, which is a long-
form VideoQA dataset, unlike MSVD-QA and MSRVTT-QA datasets. We compared our
method with the original baseline model of this dataset, ESA, and three latest temporal rea-
soning models (HME, CAN, and HCRN). Because the results of HME and HCRN have not
come out yet, we apply HME and HCRN to ActivityNet-QA with default parameters based
on their public code. Table 3 summarizes the experimental results of nine question types
on ActivityNet-QA. Our proposed method outperformed other methods and achieved the
best accuracy of 0.402, which is 11.0% better than the best of the temporal reasoning model
HCRN (0.362). Moreover, our method outperformed others on all question types. In par-
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Figure 4: Visualization of typical examples by the TS-STMAC network. We visualize the spatial
attentions of objects with colored regions and attending words in a question at each reasoning step.
The regions with higher spatial attention values are shown in brighter. The more attending words are
shown with darker color.

N " N Step 1 Step 2
How many ladies are watching different types of bags? =

ticular, our method improved 65.1% performance comparing to HCRN on Motion questions
that ask about the human activities in the video. Also, our method improved 17.2% perfor-
mance comparing to HCRN on Object questions that ask about objects in the video. The
results indicate the effectiveness of using a powerful spatiotemporal reasoning model with
the combination of the detailed appearance and motion features.

4.4 Qualitative Results

Finally, we demonstrate how the multi-step spatiotemporal reasoning works by visualiz-
ing examples. Figure 4 shows the typical examples from the reasoning process of the TS-
STMAC network. We selected the frames based on a score, which is the product of temporal
attention to a frame and top five spatial attention to regions at each reasoning step. We
also show words with attention from the controller unit. The results show the cell tend to
find relevant frame and regions through multi-step reasoning. It suggests our method effec-
tively incorporated the spatial and temporal features as well as textual information into the
VideoQA.

5 Conclusion

In this paper, we proposed a new spatiotemporal video reasoning method for VideoQA.
We devise a two-stream spatiotemporal MAC (TS-STMAC) cell to model the relationships
between spatial and temporal structures of video as well as textual information of question.
Then we proposed the TS-STMAC network that sequentially applies the TS-STMAC cell
for multi-step reasoning. We evaluate our approach on three VideoQA datasets: MSVD-
QA, MSRVTT-QA, and ActivityNet-QA. The qualitative and quantitative results showed the
usefulness of both spatial and temporal reasoning modules and the multi-step iterations in
the reasoning.
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