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Abstract
Existing fiducial markers solutions are designed for efficient detection and decod-

ing, however, their ability to stand out in natural environments is difficult to infer from
relatively limited analysis. Furthermore, worsening performance in challenging image
capture scenarios - such as poor exposure, motion blur, and off-axis viewing - sheds
light on their limitations. E2ETag introduces an end-to-end trainable method for design-
ing fiducial markers and a complimentary detector. By introducing back-propagatable
marker augmentation and superimposition into training, the method learns to generate
markers that can be detected and classified in challenging real-world environments using
a fully convolutional detector network. Results demonstrate that E2ETag outperforms
existing methods in ideal conditions and performs much better in the presence of motion
blur, contrast fluctuations, noise, and off-axis viewing angles. Source code and trained
models are available at https://github.com/jbpeace/E2ETag.

1 Introduction
Visual tracking aims to locate targets as they move through the field of view, while main-
taining a consistent identification as targets disappear, reappear, and change their appearance
[4]. The identity assigned to targets is, in general, arbitrary and their exact location is often
represented via a bounding box [18] or a collection of key points [5, 14].

To obtain the precise location, identity, and pose of targets, one can use fiducial markers,
which are man-made objects designed to to be placed in (augment) a scene. Along with
algorithms to detect and classify them, they provide a plug-and-play tracking method that
is scene-agnostic. Perhaps the most well-known fiducial markers are QR codes. When
placed conveniently in front of a camera, QR codes can be detected and decoded efficiently
[16]. They are so ubiquitous that most modern cell-phone camera applications instantly
recognize and decode them by default. QR codes are capable of encoding thousands of bits
of information, but they are not designed to overcome difficult viewing conditions.

This work targets a sub-category of fiducial markers aimed at challenging image capture
scenarios. Within this category, several methods have been proposed by the research com-
munity [3, 7, 19]. Nearly all of them use two-dimensional bit encoding and heuristically
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Figure 1: Simplified model flowchart of E2ETag used to generate and detect fiducial markers.

designed detectors. While computationally efficient and reliable against false detections,
they are not explicitly designed to handle real-world challenges like motion blur and noise.

The fiducial marker method introduced here takes a machine-learnable approach to both
marker generation and detection. It relies on three stages that are end-to-end trainable, as
illustrated in Figure 1. The first stage generates the fiducial marker from a one-hot vector
using a transposed convolution. The second stage randomly augments the marker and su-
perimposes it into a real image. Finally, the third stage uses a fully-convolutional network
to detect the location, identity, and pose of the marker. The detector and generator learn to
adapt to severe augmentations and differentiate the marker from objects in real-world envi-
ronments.

The contributions of this work include:

• An end-to-end trainable framework for generating and detecting fiducial markers.

• Randomized, backpropagatable superimposition for simulated image capture.

• Analysis on the effectiveness of synthetic training for real-world applications.

• A methodology for evaluating the robustness of fiducial markers.

2 Related Work
Fiducial markers are designed to stand out from the environment and achieve a high detection
rate while being, at the same time, distinguishable from one another for multi-tag detection.
Traditionally, designs use a pre-determined library of decodable square patterns. ARToolKit
[12], one of the earliest fiducial markers, features an arbitrary pattern enclosed by a black
border (Figure 2(a)). Performance is limited by the number of patterns and the camera
resolution. The arbitrary nature of its content also makes inter-tag classification difficult to
guarantee. ARTag [9] proposed to fix this by using binary block patterns and introducing
error-correction coding into its design (Figure 2(b)).

RuneTag [3] (Figure 2(c)) exploits the projective properties of circular dot patterns and
error-correction coding. The dots form one or more concentric circles, and the fact that both
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(a) ARToolkit (b) ARTag (c) RUNEtag (d) reacTIVision

(e) BullsEye (f) FourierTag (h) CALTag (i) AprilTag (j) ChromaTag

Figure 2: Examples of existing fiducial marker designs.

rings and dots appear elliptical under projective transformation makes decoding straight-
forward. This design is robust under partial occlusion, blur, and noise. The authors of
reacTIVision [2] proposed topology-based irregular shapes for fast detection (Figure 2(d)). It
supports a large number of markers, with a size that changes based on the number of encoded
features. The design was originally proposed for table-based musical instruments [11] but
can serve as a general-purpose marker. BullsEye is another topological pattern targeting
the same applications as reacTIVision [13] (Figure 2(e)). It improves upon the precision of
reacTIVision and introduces GPU-enabled detection, however, both of these methods target
two-dimensional location and orientation and require multiple markers for pose estimation.

FourierTag [20] encodes information in the amplitude of a marker’s Fourier transform
(Figure 2(f)). It is designed to gradually degrade the quality of encoded information as dis-
tance increases and/or viewing angles worsen, instead of being unrecognizable abruptly. The
high-order bits are encoded with low frequencies and low-order bits with high frequencies.
As a result, the encoded bits have variable length depending on the viewing distance.

CALTag [1] (Figure 2(h)) proposes a high-density marker design as an alternative to
checkerboard patterns and uniquely identifiable markers, with the application of camera cal-
ibration in mind instead of augmented reality. It offers an automatic processing procedure
without parameter fine-tuning, which benefits multi-camera applications.

AprilTag [17, 19] was designed to improve upon ARTag (Figure 2(i)). It proposes a
grid of black and white blocks that serve as a binary payload with guaranteed minimum
Hamming distance between markers undergoing 0, 90, 180, and 270 degree rotations. It
was originally designed to handle partial-occlusion recovery, but the authors concluded that
occluded markers were rarely useful and they instead targeted detection and decoding speed.

ChromaTag [7] features adjacent red and green blocks surrounded by black and white
rings (Figure 2(j)). The red and green pattern is rare in natural scenes and reduces initial
false detections. The black and white rings provide high contrast for localization. In the
CIELAB color space, each color in the design has a consistent value in the A channel and a
different value in the B channel, making the design easy to detect and decode.

Existing designs use hand-crafted patterns and detection algorithms. It is unclear if de-
tection is optimized for the marker or vice versa. To the best of our knowledge, the method
introduced in this paper is the first end-to-end trainable fiducial marker solution. The marker
designs are jointly optimized with their detector, allowing for designs that learn to stand out
from the environment while simultaneously learning to look different than each other.

3 Method
The model used during training is composed of a three-stage generator/augmenter/detector
network (Figure 1). The first stage generates markers through a transposed convolution.
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Figure 3: Superimposed marker without augmentations (Figure3a). Motion Blur at random
angles with varying kernel length 5, 10, and 15 (Figure3 b,c,d). Additive noise ranging (-
0.15,0.15) (Figure3e). Contrast with W = 1.4 and B = 0.4 (Figure3f), W = 0.6 and B = 0.4
(Figure3g), W = 0.6 and B = −0.4, and W = 1.4 and B = −0.4 (Figure3i). White balance
(1.3,0.7,0.7) (Figure3j), (0.7,1.3,0.7) (Figure3k) and (0.7,0.7,1.3) (Figure3l).

The second stage warps them onto a sample image and applies augmentations that simulate
real-world image capture. The final stage estimates the marker’s location, class, and pose.

3.1 Generator
The generator is defined by a transposed convolution where the input is a one-hot vector
indicating the desired class. The transposed convolution consists of a single kernel of size
S×S×C, where S = 128 and C = 30. When the 1×1×C one-hot vector is convolved with
the kernel, the S×S×1 output is a single kernel layer representing an E2ETag image.

3.2 Spatial Warp and Superimposition
The E2ETag image is warped and superimposed into a real image. Background images are
randomly sampled from the COCO [15] and Imagenet [8] data sets and resized to 640×640.
The spatial warping transform is constructed by randomly generating x and y translations
{tx, ty} ranging (0,640), rotation r ranging (0,2π], scaling {sx,sy} ranging (8/128,320/128),
shear {hx,hy} ranging (−3π/12,3π/12), and projective warping {wx,wy} ranging from
(−0.0015,0.0015). Additionally, a shift of −S/2 is applied to both dimensions to zero
center the marker at the origin prior to warping. The resulting projective matrix is

T =

1 0 tx
0 1 ty
0 0 1

×
 1 0 0

0 1 0
wx wy 1

×
cos(r) −sin(r) 0

sin(r) cos(r) 0
0 0 1

×
 1 hy 0

hx 1 0
0 0 1

×
sx 0 0

0 sy 0
0 0 1

×
1 0 −S/2

0 1 −S/2
0 0 1

=

p1 p2 p3
p4 p5 p6
p7 p8 1

 . (1)

The parameters corresponding to rotation, scaling, and shearing (p1, p2, p4, p5, p7, p8) are
used by the loss function for training, as discussed in section 3.5.

3.3 Local and Pixel-Level Augmentations
Four separate augmentations are applied sequentially to images with superimposed markers:
motion blur, white-balance, contrast, and additive noise, as illustrated in Figure 3. Motion
blur is simulated first by convolving a blur kernel with variable angle and length. This kernel
simulates linear camera motion along a direction d uniformly ranging (0,2π] with pixel
length l uniformly ranging (0,10) pixels. Input Image I is convolved with kernel φ(d, l) to
produce the output image IMB = I ∗φ(d, l).

White balance simulates lighting conditions with varied temperatures. Random values
for each channel, uniformly ranging (0.7,1.3), scale each channel of an RGB input image.
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Figure 4: Sample E2ETag and decaying exponential used to encode marker location. Both
marker and location encoding are superimposed the same way into the image. In the location
encoding, dark red indicates a value of 1.0 and dark blue indicates a value of 0.0.

The resulting image is IWB = IMB�C, where C is an image of the same size as IMB where
each channel is given a single scale value and � is an element-wise product.

A contrast augmentation is then used to simulate variations in exposure, post processing,
and light pollution. Contrast considers two random variables: the maximum white W uni-
formly distributed (0.6,1.4) and minimum black B uniformly ranging (−0.4,0.4). Contrast
is adjusted using IC = IWB× (W −B)+B.

Finally, a noise image N with pixel values uniform in the range (−n/2,n/2) is added to
the input image. Image IC is augmented with noise using IN = IC +N. Finally, pixel values
in IN are clipped between 0 and 1.

3.4 Detector
The final stage of the model, used for both training and testing, is the detector. The detector
localizes the marker within the image, classifies it, and estimates the transformation param-
eters. The pre-trained, fully-convolutional network chosen in this work is the DeepLabV3+
architecture [6] with a ResNet18 core [10]. This network was chosen due to its speed, clas-
sification performance, ability to handle multi-scale detection, and high resolution feature
space. Instead of up-sampling back to the input resolution, the output before the first trans-
posed convolution is used and the resulting network down-samples the input image scale
from 640× 640 to 80× 80. A 1× 1× 256× 256 convolution/batchnorm/ReLU block and
1×1×256×37 convolution layer are added to provide an output with the number of chan-
nels used to encode targets. Those channel encodings are described in the following.
3.4.1 Detector Channel Encoding
The first channel, of size 80×80×1, is used to detect and localize the marker. The marker’s
location in the image is encoded via a decaying exponential setting the value at each pixel to
e-(r/64), where r is the distance of each pixel from the center. The decaying exponential im-
age has the same size as the marker with dimensions 128×128. Figure 4 illustrates a marker
image and its corresponding mapping in the first channel before and after warping and su-
perimposing. To detect tag locations, the method begins by finding all regional maxima in
3×3 regions in the 80×80×1 output. If the value of the regional maxima exceeds 0.5, it is
considered a tag center and its sub-pixel peak is estimated using quadratic interpolation.

The next 30 channels, with feature space size 80×80×30, encode marker identities us-
ing softmax pixel-wise classification. Classification is trained equally for all pixels occupied
by the transformed marker. All other grid locations are allowed to choose identities without
affecting the loss, so that uncertainty in detection does not affect classification.

The last six channels of the output, with feature space size 80× 80× 6, contain the
projective parameters (p1, p2, p4, p5, p7, p8) at each pixel location occupied by the marker.

3.5 Training Details
The network is end-to-end trainable through the detector, augmentation, and warp layers.
While improving the detector, training also encourages marker designs that are easy to detect
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Figure 5: E2ETag markers generated with 30 classes.

and classify. While the detector was mostly pre-trained, the transposed convolution weights
used to generate markers were randomly initialized with Gaussian samples that have mean
0.0 and variance 1.0. The bias was fixed to zero. Outputs of the transposed convolution are
passed through a preliminary contrast augmentation layer then to a sigmoid layer to limit
values between 0 and 1 prior to superimposing into images. Because early layers typically
train much more slowly than later layers, the learning rate of the transposed convolution
was increased by a factor of 1000. The Adam optimizer was used with a learning rate of
2× 10−5, a batch size of 8, and an L2 regularization of 10−4. The complete set of markers
used in evaluation are depicted in Figure 5.

3.6 Backward Propagation Through Warping and Augmentation
When superimposing markers, transformations T were accepted only if each marker corner
remained inside the image bounds. For back-propagation, the inverse transformation T -1

was used to map gradients back to their origins in the marker image. The inverse transform
also ensures that gradients are only applied to the marker; background regions are ignored.
Both forward and backward transformations use bilinear interpolation.

Gradients passed through the motion blur operation are back-propagated by reusing the
motion blur kernel on the gradients. Gradients for white balance and contrast adjustments
are scaled according to their multiplicative factors.

3.7 Loss Function
Loss is the aggregate penalty of errors in classification, localization, and estimation of trans-
form parameters. Detection/localization loss, Lloc, is penalized as the mean-square error,
given by

Lloc =
Rows

∑
i=1

Cols

∑
j=1

(yloc(i, j)− ŷloc(i, j))2/NumPix, (2)

where yloc is the image target localizations, ŷloc is the image with predicted localizations, and
NumPix is the number of pixels within the warped marker region.

Classification loss is the categorical cross-entropy loss of target class versus the predicted
class, given by

Lclass =−
C

∑
c=1

Rows

∑
i=1

Cols

∑
j=1

yclass(i, j,c)� log(max(ŷclass(i, j,c),ε))/(C ·NumPix), (3)

where C is the number of classes, yclass is the image target classifications, ŷclass is the image
with predicted classifications, and ε = 10-9 is a constant used to prevent division by zero.
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The projective transformation parameters are not penalized directly; instead, the corners
of the target marker and the predicted marker are calculated from the estimated projective
parameters. Parameters p3 and p6 are set to zero to isolate transformation from localization.
The predicted corners ĉ and target corners c are both normalized by the standard deviation
of the target corners σc to produce cN and ĉN . Normalizing the corners allows projective
transforms to be penalized with scale invariance, preventing large markers from dominating
training. The K strongest target localizations in yloc determined the grid locations to sample
the transformations. Here, the strongest K = 5 detections were chosen to sample the true
center and its four abutting neighbors. Projective transformation loss is the mean-absolute
error between normalized predicted and target corners, defined by

Lproj =
K

∑
k=1

4

∑
i=1

2

∑
j=1
|ĉN(i, j,k)− cN(i, j,k)|/(8 · k), (4)

where j is the index for an (x,y) coordinate, i is the index for the corner, and k is the index
for each localization maxima. Finally, the total loss L is an aggregate of all losses, given by

L = a ·Lclass +b ·Lloc +Lproj, (5)

where a = 100 and b = 50 are scalar constants derived empirically to balance training.

4 Results
E2ETag is compared to two state-of-the-art fiducial marker methods: ChromaTag and April-
Tag. Two different metrics are used to evaluate performance: detection and classification.
For detection accuracy, the intersection over union (IoU) derived from the corner locations is
used and a true positive detection is defined by IoU greater than 50% with the ground truth.
Classification performance is simply evaluated as correct or incorrect class output.

4.1 Data Collection
For each image used in the evaluation, a single ChromaTag, AprilTag, and E2ETag are placed
in a scene with similar pose. Each of these methods was configured to support 30 different
marker classes (AprilTag and ChromaTag use 16H5 encoding). Images with all three markers
in each frame are captured at 3024× 3024 resolution with a 35mm equivalent focal length
of 52mm. They are captured in seven different environments, placed in varying lighting
environments, and mounted on man-made structures as well as natural environments.

The markers were attached to a cardboard square, 7.62×7.62 cm, and mounted to dif-
ferent surfaces including trees, poles, a stone structure, a reflective glass window, and a
chain-link fence. Seven different markers were used with identities 5, 6, 7, 9, 11, 19, and
27. Twenty-five images from each environment were captured at five different angles (−80◦,
−40◦, 0◦, 40◦, 80◦) and five different distances (1, 2, 3, 4, and 5 meters). The true corner
locations were hand-annotated for each marker at the original resolution 3024× 3024 and
downsampled to 640×640.

4.2 Performance Comparison
The chosen metric for localization accuracy is the IOU of the quadrilaterals defined by the
corners of the predicted and annotated corners. Recall and precision are used to evaluate the
performance of localization. True positives require 50% IoU with the ground truth quadrilat-
erals. False negatives are defined by an undetected ground truth marker. Precision and recall
versus distance from the marker and the viewing angle are shown in Figure 6.
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(a) Precision and Recall vs Tag Area

(b) Confusion Matrix from Aug-
mented Training Set(c) Precision and Recall vs Viewing Angle

Figure 6: Precision and Recall curves ((a) and (c)) across distance from the marker in meters
and viewing angle of the marker in degrees. For each graph AprilTag is blue, ChromaTag
is red, and E2ETag is green. Precision and Recall are indicated by a dotted and solid line
respectively. The confusion matrix for marker classification is also given in (b).

Classification accuracy is also evaluated using precision and recall. In this case, only
markers with the correct class prediction are counted toward the true positive rate. Thus, a
false positive has either less than 50% IoU, incorrect class prediction, or both. The results
on the left side of Figure 6 do not consider classification errors, while the results on the right
side of Figure 6 require correct classification.

Under all conditions, E2ETag has higher precision than AprilTag or ChromaTag. E2ETag
also has a higher recall at each viewing angle and for very small tags. AprilTag has higher
recall for midrange tag sizes, however, those appear to come at the expense of precision.

While bit encoding methods like AprilTag and ChromaTag are designed to be class-
agnostic, E2ETag only encourages this through randomized training. Therefore, to demon-
strate the performance of different markers, a confusion matrix (Figure 6b) was generated for
all 30 classes. This test is done with Imagenet and COCO background images to adequately
gather a large sample size of every marker class. The test is designed to demonstrate perfor-
mance for difficult predictions. The maximum marker size for this experiment is 32 pixels
to encourage a high rate of misclassification. The accuracy ranges from 26.78% to 40.67%
across all the markers and the misclassification rate between any two markers ranges from
0.47% to 7.19%. Thus, some markers are more easily classified in highly challenging en-
vironments. However, it should be noted that misclassification is rare in practice and often,
when detected, the marker is also classified correctly, as illustrated in Figure 6a and 6c.

The results of average precision and recall under various augmentations are shown in
Table 1. This table presents results on the original images, as well as those images with
isolated augmentations of each type applied to every image in the test set. This includes
varying blur, noise, contrast, and white balance.

The most significant detriments to AprilTag are additive noise, large blur, and heavy
green white balance. ChromaTag is sensitive to noise and low contrast. In contrast, E2ETag
experiences a minimal loss of performance across all augmentations, with the exception of
large motion blur. Interestingly, E2ETag has better recall under additive noise, dark contrast,
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Raw Blur Noise Contrast (B,W) White Balance
l = 5 l = 10 l = 15 (-0.15,0.15) (0.4,1.4) (0.4,0.6) (-0.4,0.6) (-0.4,1.4) R G B

April
Precision 0.5093 0.5789 0.5303 0.4375 0.4775 0.6047 0.5437 0.8000 0.6477 0.6429 0.4655 0.5392

Recall 0.3143 0.3143 0.2000 0.1200 0.3029 0.2971 0.3200 0.3886 0.3257 0.3086 0.3086 0.3143
Precision Code 0.5093 0.5789 0.5303 0.4375 0.4775 0.6047 0.5437 0.8000 0.6477 0.6429 0.4655 0.5392

Recall Code 0.3143 0.3143 0.2000 0.1200 0.3029 0.2971 0.3200 0.3886 0.3257 0.3086 0.3086 0.3143
Chroma
Precision 0.6375 0.6780 0.6875 0.6944 0.0039 0.6923 0.0000 0.5556 0.2981 0.6000 0.3086 0.7576

Recall 0.2914 0.2286 0.1886 0.1429 0.1143 0.2571 0.0000 0.2571 0.2743 0.2914 0.2857 0.2857
Precision Code 0.5397 0.6545 0.6667 0.4211 0.0000 0.4595 0.0000 0.4462 0.2313 0.5526 0.2000 0.5000

Recall Code 0.1943 0.2057 0.1714 0.0457 0.0000 0.0971 0.0000 0.1657 0.1943 0.2400 0.1600 0.0914
E2ETag
Precision 0.9340 0.9394 0.9302 0.9583 0.9439 0.9412 0.9691 0.9528 0.9196 0.9340 0.9252 0.9333

Recall 0.5657 0.5314 0.4571 0.3943 0.5771 0.5486 0.5371 0.5771 0.5886 0.5657 0.5657 0.5600
Precision Code 0.9271 0.9294 0.9130 0.9464 0.9368 0.9259 0.9659 0.9412 0.9072 0.9263 0.9158 0.9271

Recall Code 0.5086 0.4514 0.3600 0.3029 0.5086 0.4286 0.4857 0.4571 0.5029 0.5029 0.4971 0.5086

Table 1: Results on real images with and without augmentations. Precision Code and Recall
Code require correct classification. Each of the augmentations are applied individually to
the entire set of Real Images. Specifications are given for the augmentations, where blur is
applied at random angles for each length and white balance augments each color channel
using R:(1.3,0.7,0.7), G:(0.7,1.3,0.7), and B:(0.7,0.7,1.3).

and high contrast, than on the original images. However, it does have worse classification
performance under all augmentations.

To illustrate two ideal success cases, the network outputs are visualized in Figure 7a. The
80×80 detection and classification outputs are upsampled and overlaid on the image. Two
additional cases for difficult detections under challenging presentations where the method
succeeds are shown Figure 7b. In both of these challenging cases, AprilTag and ChromaTag
fail to detect the markers. The images in Figure 7c show examples of failed detections where
the marker localization does not exceed the required threshold of 0.5. These failures are
likely due to the relatively small size of the tags in the image, which are contained within a
12x12 and 18x18 pixel area.

4.3 Hardware and Processing Time
The method was implemented with MATLAB using the Deep Learning Toolbox. The com-
puter used for training and forward inference has an Intel i9-9900K 8-core CPU, NVIDIA
RTX2080ti GPU, and 16 GB of DDR4 RAM. Detection on a 640×640 frame operates at
10 frames per second. ChromaTag and AprilTag, both explicitly designed for efficiency, are
considerably faster at 900 fps, and 50 fps, respectively.

5 Conclusion
By training both the marker designs and the detector together under challenging conditions,
the method proposed method is able to outperform existing methods at detection and clas-
sification. The improvements are especially pronounced for challenging scenes and when
images are corrupted by poor exposure, motion blur, and noise. It is noteworthy that the
detector was never trained on real images, where the tag was physically placed in the scene,
and it is likely that performance would improve even further if the tag designs were fixed
and the detector was fine-tuned on real images.

The method is flexible and allows for a wide range of modifications. For example, it
would be trivial to change the number of distinct markers, the shape of the markers, or even
to place fixed designs into the markers. More generally, the proposed method provides a
framework for using deep neural networks to design objects that can be placed and easily
detected in the real world.
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(a) Easy samples with successful localization and classification.

(b) Difficult samples with successful localization and classification shown at 200% crop.

(c) Samples with failed detections shown at 400% crop.

Figure 7: Leftmost images in each row illustrate the detection channel (red with peak shown
in green). The center images of each row illustrate the three largest classification channel
output predictions (blue, magenta, cyan). The rightmost images of each row illustrate the
projective transformation as colored lines around the marker and AprilTag (blue lines) and
ChromaTag (red lines) detections are shown, when detection was successful.
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