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Abstract

Geodesic regression has been proposed for fitting the geodesic curve. However, it
cannot automatically choose the dimensionality of data. In this paper, we develop a
Bayesian geodesic regression model on Riemannian manifolds (BGRM) model. To avoid
the overfitting problem, we add a regularization term to control the effectiveness of the
model. To automatically select the dimensionality, we develop a prior for the geodesic
regression model, which can automatically select the number of relevant dimensions by
driving unnecessary tangent vectors to zero. To show the validation of our model, we
first apply it in the 3D synthetic sphere and 2D pentagon data. We then demonstrate the
effectiveness of our model in reducing the dimensionality and analyzing shape variations
of human corpus callosum and mandible data.

1 Introduction

Regression analysis is a predictive modeling technique, which studies the relationship between
dependent variables (objectives) and independent variables (predictors). This technique is
usually used to predict and analyze the causal relationship between variables. The benefits of
regression analysis are numerous, such as: (1) it shows the significant correlation between
the independent variable and dependent variable; (2) it shows the influence of multiple
independent variables on a dependent variable. Regression analysis also allows us to compare
the interactions between variables that measure different scales.

However, linear models are not applicable if the response variable takes the values on the
Riemannian manifold. Manifold learning has been applied in many fields, including domain
adaption, transformation, tensor and shape measurement [6, 7, 11, 12, 19, 20]. However, it
has difficulty in analyzing the shape variations, which are essentially high-dimensional and
nonlinear. Therefore, it is necessary to develop a general regression model and reduce the
dimensionality on manifolds.

Several studies have explored the regression issues on the manifolds, which includes
unrolling method, regression analysis on the group of diffeomorphisms, nonparametric
regression, second order splines, a semiparametric model with multiple covariates, and
geodesic regression [2, 3, 9, 10, 14, 15, 17]. However, these methods does not provide a
Bayesian framework for the generalization of geodesic regression on manifolds. It is thus
necessary to develop such a model to automatically choose the model complexity.
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The purpose of this paper is to develop a generalized Bayesian geodesic regression on
Riemannian manifolds, termed BGRM model. Our model can estimate the relationship
between an independent scalar variable and a dependent manifold-valued random variable.
Our work is inspired by the Bayesian principal component analysis (BPCA) model, which is
introduced in Euclidean space by Bishop [1].

We develop a maximum likelihood posterior model for Bayesian geodesic regression
on manifolds (BGRM). By introducing a prior to the geodesic regression model, we can
automatically select the number of relevant dimensions by driving unnecessary tangent vectors
to zero. The main advantage of our Bayesian geodesic regression approach is that the model is
fully generative. The unnecessary dimensionality of the subspace will be automatically killed,
and the principal models of variation can reconstruct shape deformation of individuals. To
show the validation of our model, we first apply it in the 3D synthetic sphere and 2D pentagon
data. We then use the human corpus callosum and mandible data to show the predicted shapes
using our model. Our results indicate that the BGRM model provides a better description
of the data than PCA [8], principal geodesic analysis (PGA) [5] and probabilistic principal
geodesic analysis (PPGA) [16] estimations. Our model also shows reasonable shape variations
with the increasing of age in a much lower-dimensional subspace.

2 Bayesian linear regression on Euclidean space (BLR)

Before formulating Bayesian geodesic regression on Riemannian manifolds, we first review
Bayesian linear regression on Euclidean space. Fig. 1(a) shows the scheme of linear regression
model. Given the target variable (dependent variable) y ∈Rn, and independent variable x ∈R.
The linear regression model is given by:

y = µ + vx+ ε, (1)

where v ∈ Rn is the unobservable slope parameter, µ ∈ Rn is the unobservable intercept
parameter, and ε is zero mean Gaussian unobservable random variable with the variance τ−1.
Thus, we can rewrite Eq. (1) as:

p(y|x,µ,v,τ) =N (y|µ + vx,τ−1), (2)

where p(·) is the probability, and N is the normal distribution. Consider a data set of
input X = {xn}N

n=1 (xn ∈ R) with corresponding target value Y = {yn}N
n=1 (yn ∈ Rn can be

treated as column vector with the size of d× 1), and these data points are independently
sampled from the normal distribution. Then, the data likelihood is:

p(Y |X ,µ,v,τ) =
N

∏
n=1
N (yn|µ + vxn,τ

−1). (3)

To automatically select the principal component, Bayesian geodesic regression model
includes a Gaussian prior over each column of v, which is known as an automatic relevance
determination (ARD) prior. The v is constrained to a zero-mean isotropic Gaussian distribution
with the parameter α:

p(v|α) =N (v|0,α−1I). (4)

Citation
Citation
{Bishop} 1999

Citation
Citation
{Jolliffe} 2011

Citation
Citation
{Fletcher, Lu, Pizer, and Joshi} 2004

Citation
Citation
{Zhang and Fletcher} 2013



ZHANG Y.: BAYESIAN GEODESIC REGRESSION ON RIEMANNIAN MANIFOLDS 3

 
(a) Linear regression (b) Geodesic regression

Figure 1: (a): Schematic of the linear regression, µ is one point (the intercept), v is the tangent
vector (the slope). The black line is the linear regression line f (x) = µ + vx. (b): Schematic
of the geodesic regression on Riemannian manifolds, µ is a base point on the manifold, v is a
point of tangent space. The red line is the geodesic regression line f (x) = Exp(µ,vx).

The logarithm of posterior distribution is given by (see [1] for details):

ln p(v|y) =−τ

2

N

∑
n=1
{yn− (µ + vxn)}2− α

2
vT v+ const.. (5)

The value of α is iteratively estimated as α = N
vT v , if αi (one column of α) is large, the

corresponding vi will be small and thus enforces sparsity by driving the vi to zero. The sparsity
of v has the same effect as removing irrelevant dimensions in the principal subspace.

3 Bayesian geodesic regression on manifolds (BGRM)

3.1 Background: Riemannian Geometry
In this section, we recap three essential concepts (Geodesic, Exponential, and Logarithmic
Map) on the Riemannian Geometry (more details are provided by [16, 19, 20]).

Geodesic. Let (M,g) be a Riemannian manifold, where g is a Riemannian metric on the
manifold M. Consider a curve C(t) : [0,1]→M and let C′(t) = dC/dt be its velocity. We
call C a geodesic if C′(t) is parallel along C, that is: C′′ = dC′

dt = ∇C′C′ = 0, which means the
acceleration vector (directional derivative) C′′ is normal to TC(t)M (the tangent space of M at
C(t)). Note that geodesics are straight lines in Euclidean space (Rn).

Exponential Map. For any point p ∈M and its tangent vector v, let D(p) be the open
subset of TpM defined by: D(p) = {v ∈ TpM|C(1)}, where C is the unique geodesic with
initial conditions C(0) = p and C′(0) = v. The exponential map is the map Expp :D(p)→M
defined by: Expp(vt=1) =C(1), which means the exponential map returns the points at C(1)
when t = 1. Expp(vt) can also be denoted as: Exp(p,vt). In Euclidean space, the exponential
map is the addition operation Expp(vt) = p+ vt.

Logarithmic Map. Given two points p and p′ ∈M, the logarithmic map takes the point
pair (p, p′) and maps them into the tangent space TpM, and it is an inverse of the exponential
map: Log(p, p′)→ TpM. Log(p, p′) can also be denoted as: Logp p′. Because Log is an
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inverse of the exponential map, we can also write: p′ = Exp(p,Log(p, p′)). The Riemannian
distance is defined as d(p, p′) = ‖Logp(p′)‖. In Euclidean space, the logarithmic map is the
subtraction operation: Logp(p′) = p′− p.

3.2 Geodesic regression
Geodesic regression has been proposed by Fletcher [3], the geodesic regression model is
defined as:

Y = Exp(Exp(µ,vX),ε), (6)

where µ is a base point on the manifold, v is a point of tangent space Tµ M, X is the
independent variable, Y is the observed data and ε is a random variable taking values in
the tangent space with the precision τ . Since the exponential map is the addition operation
in Euclidean space, the geodesic regression model coincides with Eq. (1) when M = Rn.
Fig. 1(b) shows the scheme of geodesic regression model.

Eq. (7) is the Riemannian normal distribution NM(µ,τ−1), with its precision parameter τ .
This general distribution can be applied to any Riemannian manifold (see [16] for details).

p(y|µ,τ) = 1
C(µ,τ)

exp
(
−τ

2
d(y,µ)2

)
, where (7)

C(µ,τ) =
∫

M
exp
(
−τ

2
d(y,µ)2

)
dy.

Given a data set of input X = {xn}N
n=1 (xn ∈ R) with corresponding target value Y =

{yn}N
n=1 (yn ∈Rn can be treated as column vector with the size of d×1) on general manifolds.

Each target value yn is independent of the Riemannian normal distribution. Therefore, the
data likelihood on Riemannian manifolds is defined as:

p(Y |X ,µ,v,τ) =
N

∏
n=1
NM(yn|Exp(µ,vxn),τ

−1). (8)

Taking the logarithm of the Eq. (8), we have

ln p(Y |X ,µ,v,τ) =−N ln C− τ

2

N

∑
n=1
{Log(yn,Exp(µ,vxn))}2. (9)

3.3 Regularized geodesic regression
The overfitting problem can be caused by a complex model that is trained on a small number
of datasets. To avoid the overfitting problem, we add a regularization term in Eq. (9), thus the
total energy function (E) is given by:

E =
1
2

N

∑
n=1
{Log(yn,Exp(µ,vxn))}2 +

γ

2
vT v, (10)

Choosing the optimal dimensionality is significant, we need to find the appropriate number
of basis functions to determine a suitable value of the regularization coefficient γ . Therefore,
it is necessary to develop a method which can automatically choose the dimensionality of
data.
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3.4 Bayesian geodesic regression
To automatically select the principal geodesic from data, we also include a Gaussian prior
over each column of v. Supposing that v is constrained to a zero-mean isotropic Gaussian
distribution, which has a single parameter α , so that:

p(v|α) =N (v|0,α−1I). (11)

Since the posterior distribution p(v|y) is proportion to p(y|x,v,τ)× p(v|α), the logarithm
of posterior distribution is equivalent to take the logarithm of p(y|x,v,τ)× p(v|α). Then the
log of the data likelihood can be computed as:

E= lnp(v|y) =−N ln C− τ

2

N

∑
n=1
{Log(yn,Exp(µ,vxn))}2− α

2
vT v+ const.. (12)

Maximization of this posterior distribution with respect to v is equivalent to the minimiza-
tion of the sum-of-squares error function with the addition of a quadratic regularization term,
corresponding to Eq. (10) with γ = α/τ .

Similar to the BLR model, the value of α is iteratively estimated as α = N
vT v , and then

enforces sparsity by driving the corresponding component vi to zero. More specifically, if
αi is large, vi will be effectively removed. This arises naturally because the larger αi is, the
lower probability of vi will be. Therefore, we can automatically select the dimensionality of v,
and it has the same effect as removing irrelevant dimensions in the principal subspace. Fig. 2
is the graphical representation of BGRM model.

Figure 2: Probabilistic graphical representation of BGRM model. In the blue box, it has
N data points, for each independent observation yn, it is together with the corresponding
independent variable xn, and it is associated with τ,µ and v. Here, v is controlled by the
hyperparameter α .

3.4.1 Gradient terms

We use gradient descent to maximize the posterior distribution in Eq. (12), and update the
parameters µ,v and τ . However, the computation of the gradient term requires us compute the
derivative of Exp(vxn,µ), which can be separated into a derivation with respect to the initial
point µ , and respect to the initial velocity v (please refer to [3] for the details of derivations).

Now we are able to take the gradient of Eq. (12) with respect to different parameters: µ,v
and τ and get the following gradient terms:
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Gradient for µ: the gradient of µ is

∇µ(E) =−
N

∑
n=1

τdµ Exp(µ,vxn)
†Log(yn,Exp(µ,vxn)), (13)

where † represents adjoint operation, for any u and w

〈dµ Exp(µ,vxn)u,w〉= 〈u,dµ Exp(µ,vxn)
†w〉.

Gradient for v: the gradient of v can be computed as

∇v(E) =−
N

∑
n=1

τxndvExp(µ,vxn)
†Log(yn,Exp(µ,vxn))−αv. (14)

Gradient for τ : the gradient of τ is computed as

∇τ(EL) =
N

∑
n=1

1
C(τ)

An−1

∫ R

0

r2

2
Exp(−τ

2
r2)

n

∏
k=2

k−1/2
k ×

fk(
√

kkr)dr− 1
2
{Log(yn,Exp(µ,vxn))}2dr,

(15)

where An−1 is the surface area of n−1 hypershpere. r is radius, kk is the sectional curvature.
R = minvR(v), and R(v) is the maximum distance of Exp(µ,rv), v is a point of unit sphere
Sn−1 ⊂ Tµ M. However, this formula only validates for simple connected symmetric spaces,
other spaces should be changed according to the different definitions of the probability density
function (PDF) in Eq. (7) (please see [16] for details).

4 Evaluation

4.1 Data
Sphere. To validate our model on the spherical manifold, we simulate a random sample
of 293 data points (3D) on a unit sphere with known parameters (ground truth) in Table 1.
The points are randomly sampled given the µ , v, and the precision τ (please refer to [4] for
generating points on a sphere). The ground truth µ is generated from random uniform points
on the sphere, and v is generated from a random Gaussian matrix.

In Table 1, the recovered parameters µ,v, and τ of our BGRM model are closer to ground
truth than three baseline methods (PPGA, PGA and PCA). We can visualize the estimated
geodesic in Fig. 3(a). The blue line is the true geodesic. The red line is the estimated geodesic
of BGRM model, and the green line is the estimated geodesic of PPGA model. Although
both the PPGA and BGRM model can recover the geodesic, our BGRM model kills the
unnecessary dimensionality of v. The true v has the size of 3×2, and our BGRM model kills
the second column, which is much smaller than the first column. This result demonstrates the
ability of our model in automatical dimensionality selection.

To show the correctness of our model, we also compare the estimation results of our
model with PCA in the Euclidean space. As shown in Fig. 3(b), the estimated geodesic of
BGRM model is a curve on the sphere, but the estimated geodesic of PCA is a straight line,
which is below the sphere. And this leads to the unobserved PCA results on the sphere.
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(a) (b)

Figure 3: (a): Geodesic regression on sphere using BGRM and PPGA model. The blue line is
the ground truth geodesic. The red line is the estimated geodesic of BGRM model. The green
line is the estimated geodesic of PPGA model. (b): The comparison of estimated geodesic
of BGRM and PCA model. The red line is the estimated geodesic of BGRM in (a). The
black line is the estimated geodesic using PCA, which is a straight line (below the sphere)
and cannot be visualized in (a).

Pentagon. To evaluate our model in a high dimensional data, we first apply the BGRM
model in analyzing shape variations of synthetic pentagon dataset. This synthetic data contains
a collection of 50 pentagon shapes with x from 1 to 50. Each pentagon has the 2×26 points.
We aim to predict the new pentagon shapes when x is from 51 to 100. The regression result is
shown in Fig. 4(a). The pentagon shape shrinks with the increasing of the x. This example
illustrates our model is applicable in analyzing the shape variations of data. In addition,
Fig. 4(b) shows that our BGRM model reduces the dimensionality of pentagon data from 52
to 2. The red dash line is the reduced number of the tangent vector (v), and the blue dash line
is the original number of v.

Corpus Callosum Aging. To show the effectiveness of BGRM model in the real shape
changes, we use corpus callosum data, which are extracted from the MRI scans of human
brains. This data contains a collection of 40 shapes with age from 0 to 80 years. Each corpus
callosum shape has the 2×65 points. As shown in Fig. 5, we show the corpus callosum shape
changes using the BGRM and BLR model. From Fig. 5(a), there are more changes with

Table 1: Parameters comparison between ground truth and the estimation of BGRM, PGA
and PCA models ([·]T is the transpose of a matrix).

µ v τ

Ground truth [0.7704,0.4155,0.4836]T
[

0.0755 −0.2771 −0.2784
−0.0002 0.0007 0.0100

]T

100

BGRM [0.8728,0.2916,0.3913]T
[
0.0739 −0.2577 −0.2239

]T 98.3399

PPGA [16] [0.8674,0.2735,0.4157]T
[

0.0773 −0.2849 −0.1873
−0.0006 0.0012 0.0098

]T

103.817

PGA [5] [0.8848,0.2850,0.3687]T
[

0.0752 −0.1070 −0.0978
−0.0076 0.0748 0.0761

]T

N/A

PCA [8] [0.8680,0.2797,0.3618]T
[

0.0717 −0.1065 −0.0979
−0.0083 0.0746 0.0751

]T

N/A

Citation
Citation
{Zhang and Fletcher} 2013

Citation
Citation
{Fletcher, Lu, Pizer, and Joshi} 2004

Citation
Citation
{Jolliffe} 2011



8 ZHANG Y.: BAYESIAN GEODESIC REGRESSION ON RIEMANNIAN MANIFOLDS

(a) Shape variations of pentagon (b) Reduced dimensionality

Figure 4: The shape variations of pentagon and reduced dimensionality using BGRM model.
(a): The color from blue to red is the corresponding x of each shape. The shape shrinks with
the increasing of x. (b): BGRM model automatically selects the first two dimensionalities out
of 52 in total.

the increasing of age in the posterior part of the corpus callosum. This result is significantly
better than the regression results in BLR model, in which shapes are almost overlaying with
each other due to the shape geometry does not consider in the Euclidean space of BLR model.
Also, as shown in Fig. 5(b), our BGRM model reduces the dimensionality of corpus callosum
data from 130 to 31. Dimensionality is omitted in Fig. 5(c) if it is greater than 45.

Figure 5: The regression results comparison of BGRM (a) and BLR (b) model using corpus
callosum data. The estimated shapes are shown as the sequence from 1 (cyan) to 100 (pink).
The color bar indicates the age in years. (c): The reduced dimensionality of BGRM model.

Mandible shape. We also evaluate our BGRM model in estimating the shape variations
of human mandible growths. The mandible data are extracted from a collection of CT scans
of human mandibles. It contains 77 subjects and the age is from 0 to 19 years. We sample
2×400 points on the boundaries. Fig. 6(a) shows the estimated mandible shape variations
using BGRM model, there are more variations in the head part of mandible shape. When the
age is between 14 and 20 years, the mandible is dramatically increased, which coincides with
the results in [13]. As shown in Fig. 6(b), our BGRM model reduces the dimensionality of
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mandible data from 800 to 76. Dimensionality is omitted in Fig. 6(b) if it is greater than 100.

(a) Estimated mandible shapes (b) Reduced dimensionality comparison

Figure 6: (a): The estimated human mandible shape using BGRM; (b): The comparison of
original dimensionality and reduced dimensionality of BGRM model.

Table 2: R2 statistic of predicting shapes

Datasets Pentagon Corpus callosum Mandible
Linear regression 0.0135 0.0194 0.0518

Geodesic regression [3] 0.0223 0.0234 0.0873
ShapeNet [18] 0.3911 0.3854 0.1738

BGRM 0.4318 0.4279 0.2146

4.2 Significance analysis

To show the significance of our model, we report the R2 value in Eq. (16), which is between
[0,1]. The higher the R2 value is, the more variations are explained by the model, and the
better of model in predicting the shape.

R2 = 1− Unexplained variation
Total variation

= 1− ∑
N
i=1(yi− y′i)

2

∑
N
i=1(yi− ȳ)2

, (16)

where y′i is the predicted shape, ȳ is the mean shape of Y and N is the number of shapes.
Table 2 compares the R2 statistic of our BGRM model with linear regression, geodesic

regression model and ShapeNet. The R2 values of three datasets from our BGRM model are
larger than that of other models. The lower value of the geodesic regression model means
that shape variability is not well modeled by age since age only describes a small fraction
of the shape variation. Other factors (gender, weight, etc.) can also affect shape changes.
However, the coefficient of determination (R2 values) of our model demonstrates that age
is an important factor that affects these shapes. Therefore, our BGRM model is better than
state-of-the-art methods and effective in predicting shape variations.
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5 Discussion
From the above experiments, we find that the proposed BGRM model is able to predict the
shape changes with a higher R2 value. Although the R2 value of the mandible dataset is not as
significant as the other two datasets, which is caused by little variations of the original data,
BGRM model still has a higher R2 value than three baseline methods. In addition, we also
calculate the p-values of three datasets (0.7485, 0.9780, and 0.3478, respectively). These
results imply that predicting shapes are similar to true shapes. However, one weakness of our
model is that it is sensitive to large changes in shape.

6 Conclusion
In this paper, we develop a Bayesian geodesic regression model on Riemannian manifolds. By
introducing a prior to the geodesic regression model, we can automatically select the number
of relevant dimensions by driving unnecessary tangent vectors to zero. We use maximum
a posterior method to estimate model parameters. Four experimental results indicate that
our BGRM model takes the advantages of automatically reducing the dimensionality of the
subspace and shows the reasonable shape variations. There are some obvious next steps. More
data can be applied in our model. The model can also be extended to develop a Bayesian
poly-nomial geodesic regression model on Riemannian manifolds.
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