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Abstract

We propose Mish, a novel self-regularized non-monotonic activation function which
can be mathematically defined as: f (x) = x tanh(so f t plus(x)). As activation functions
play a crucial role in the performance and training dynamics in neural networks, we val-
idated experimentally on several well-known benchmarks against the best combinations
of architectures and activation functions. We also observe that data augmentation tech-
niques have a favorable effect on benchmarks like ImageNet-1k and MS-COCO across
multiple architectures. For example, Mish outperformed Leaky ReLU on YOLOv4 with
a CSP-DarkNet-53 backbone on average precision (AP50

val) by 2.1% in MS-COCO ob-
ject detection and ReLU on ResNet-50 on ImageNet-1k in Top-1 accuracy by≈1% while
keeping all other network parameters and hyperparameters constant. Furthermore, we
explore the mathematical formulation of Mish in relation with the Swish family of func-
tions and propose an intuitive understanding on how the first derivative behavior may be
acting as a regularizer helping the optimization of deep neural networks. Code is publicly
available at https://github.com/digantamisra98/Mish.

1 Introduction
Activation functions are non-linear point-wise functions responsible for introducing non-
linearity to the linear transformed input in a layer of a neural network. The choice of activa-
tion function is imperative for understanding the performance of a neural network. The pro-
cess of applying an activation function in a layer of a neural network can be mathematically
realized as z = g(y) = g(∑i wixi +b) where z is the output of the activation function g(y). In
early literature, Sigmoid and TanH activation functions were extensively used, which subse-
quently became ineffective in deep neural networks. A less probability inspired, unsaturated
piece-wise linear activation known as Rectified Linear Unit (ReLU) [25, 34] became more
relevant and showed better generalization and improved speed of convergence compared to
Sigmoid and TanH.

Although ReLU demonstrates better performance and stability compared to TanH and
Sigmoid, it is not without weaknesses. One of which is popularly known as Dying ReLU,
which is experienced through a gradient information loss caused by collapsing the negative
inputs to zero. Over the years, many activation functions have been proposed which improve
performance and address the shortcomings of ReLU, which include Leaky ReLU [32], ELU
[6], and SELU [23]. Swish [37], which can be defined as f (x) = xsigmoid(βx), proved to be
a more robust activation function showcasing strong improvements in results as compared to
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Figure 1: (a) Graph of Mish, ReLU, SoftPlus, and Swish activation functions. As illustrated,
Mish and Swish are closely related with both having a distinctive negative concavity un-
like ReLU, which accounts for preservation of small negative weights. (b) The 1st and 2nd

derivatives of Mish and Swish activation functions.

that of ReLU. The smooth, continuous profile of Swish proved essential in better information
propagation as compared to ReLU in deep neural network architectures.

In this work, we propose Mish, a novel self regularized non-monotonic activation func-
tion inspired by the self gating property of Swish. Mish is mathematically defined as:
f (x) = x tanh(so f t plus(x)). We evaluate and find that Mish tends to match or improve the
performance of neural network architectures as compared to that of Swish, ReLU, and Leaky
ReLU across different tasks in Computer Vision.

2 Motivation

Across theoretical research into activation functions, those sharing properties similar to
Swish, which includes non-monotonicity, ability to preserve small negative weights, and a
smooth profile, have been a recurring discussion. For instance, Gaussian Error Linear Units
(GELU) [16] is a popular activation function which has similar properties to that of Swish
and is actively used in the GPT-2 architecture [36] for synthetic text generation. Swish was
discovered by a Neural Architecture Search (NAS) [52] over the space of the non-linear func-
tions by a controlled search agent. An RNN-controller was used as the agent which generated
a new candidate function at each step, for a total of 10K steps, which were then evaluated on
CIFAR-10 classification task using a ResNet-20 defined with that candidate function as its
activation function. The design of Mish, while influenced by the work performed by Swish,
was found by systematic analysis and experimentation over the characteristics that made
Swish so effective. When studying similarly behaved functions like Swish, as illustrated in
Fig. 2 (a), which include arctan(x)so f t plus(x), tanh(x)so f t plus(x), x log(1+arctan(ex)) and
x log(1+ tanh(ex)), where so f t plus(x) = ln(1+ ex), from our ablation study we determined
Mish consistently outperforms the aforementioned functions along with Swish and ReLU.

We used a standard six-layered deep convolution neural network architecture to validate
each of the experimental activation functions earlier defined on the CIFAR-10 image classi-
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Figure 2: (a) Graph of Mish, Swish, and similar validated experimental functions. (b) Train-
ing curve of a six-layered CNN on CIFAR-10 on different validated activation functions.

fication task. The networks were trained for three runs, each for 50 epochs with RMSProp
as the optimizer. As shown in Fig. 2 (b), we found that Mish performed better than the other
validated functions. Although it can be observed that x log(1+ tanh(ex)) performed at par to
Mish, we noted that its training is often unstable and, in many cases, leads to divergence in
deeper architectures. We observed similar unstable training issues for arctan(x)so f t plus(x)
and tanh(x)so f t plus(x). While all of the validated functions have a similar shape, Mish
proves to be consistently better in terms of performance and stability.

While not evident at first sight, Mish is closely related to Swish, as it can be observed in
the first derivative:

f ′(x) = sech2(so f t plus(x))xsigmoid(x)+
f (x)

x
(1)

= ∆(x)swish(x)+
f (x)

x
(2)

where so f t plus(x) = ln(1+ ex) and sigmoid(x) = 1/(1+ e−x).

From experimental observations, we speculate that the ∆(x) parameter acts like a precon-
ditioner, making the gradient smoother. Preconditioning has been extensively discussed and
used in general optimization problems where the preconditioner, in case of gradient descent
[3, 29] is the inverse of a symmetric positive definite matrix (H−1

k ) which is applied to mod-
ify the geometry of the objective function to increase the rate of convergence [1]. Intuitively,
preconditioning makes the objective function much smoother and thus making it easier to
optimize. The ∆(x) parameter mimics the behavior of a preconditioner. It provides a strong
regularization effect and helps make gradients smoother, which corresponds to easier to opti-
mize function contour, which is possibly why Mish outperforms Swish in increasingly deep
and complex neural net architectures.

Mish, additionally, similar to Swish, is non-monotonic, smooth, and preserves a small
amount of negative weights. These properties account for the consistent performance and
improvement when using Mish in-place of Swish in deep neural networks.
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ReLU: Sharp Transitions, Rough Profile Mish: Smooth Transitions, Smooth Profile

Figure 3: Comparison between the output landscapes of ReLU and Mish activation function

3 Mish
Mish, as visualized in Fig. 1 (a), is a smooth, continuous, self regularized, non-monotonic
activation function mathematically defined as:

f (x) = x tanh(so f t plus(x)) = x tanh(ln(1+ ex)) (3)

Similar to Swish, Mish is bounded below and unbounded above with a range of [≈ -0.31,
∞). The 1st derivative of Mish, as shown in Fig. 1 (b), can be defined as:

f ′(x) =
exω

δ 2 (4)

where, ω = 4(x+ 1)+ 4e2x + e3x + ex(4x+ 6) and δ = 2ex + e2x + 2. Inspired by Swish,
Mish uses the Self-Gating property where the non-modulated input is multiplied with the
output of a non-linear function of the input. Due to the preservation of a small amount of
negative information, Mish eliminated by design the preconditions necessary for the Dying
ReLU phenomenon. This property helps in better expressivity and information flow. Being
unbounded above, Mish avoids saturation, which generally causes training to slow down due
to near-zero gradients [11] drastically. Being bounded below is also advantageous since it
results in strong regularization effects. Unlike ReLU, Mish is continuously differentiable,
a property that is preferable because it avoids singularities and, therefore, undesired side
effects when performing gradient-based optimization.

Having a smooth profile also plays a role in better gradient flow, as shown in Fig. 3,
where the output landscapes of a five-layered randomly initialized neural network with ReLU
and Mish are visualized. The landscapes were generated by passing in the co-ordinates to
a five-layered randomly initialized neural network which outputs the corresponding scalar
magnitude. The output landscape of ReLU has a lot of sharp transitions as compared to
the smooth profile of the output landscape of Mish. Smoother output landscapes suggest
smooth loss landscapes [28], which help in easier optimization and better generalization, as
demonstrated in Fig. 4.
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Figure 4: Comparison between the loss landscapes of (from left to right): (a) ReLU, (b) Mish
and (c) Swish activation function for a ResNet-20 trained for 200 epochs on CIFAR-10.

We observed the loss landscapes [28] of a ResNet-20 [15] equipped with ReLU, Mish,
and Swish activation functions with each trained for 200 epochs for the image classifica-
tion task on the CIFAR-10 dataset. We used a multi-step learning rate policy with the SGD
optimizer for training the networks. As shown in Fig. 4, the loss landscape for the ResNet-
20 equipped with Mish is much smoother and conditioned as compared to that of ReLU
and Swish activation function. Mish has a wider minima which improves generalization
compared to that of ReLU and Swish, with the former having multiple local minimas. Ad-
ditionally, Mish obtained the lowest loss as compared to the networks equipped with ReLU
and Swish, and thus, validated the preconditioning effect of Mish on the loss surface.

3.1 Ablation Study on CIFAR-10 and MNIST
Hyperparameters, including the depth of the network, type of weight initialization, batch
size, learning rate, and optimizer used in the training process, have significant unique effects.
We manipulate different hyper-parameters to observe their effects on the performance of
ReLU, Swish, and Mish activation functions. Firstly, we observe the effect of increasing the
number of layers of a neural network with ReLU, Swish, and Mish on the test accuracy. For
the task, we used the MNIST dataset [26] and trained fully connected networks of linearly
increasing depth. Each layer was initialized with 500 neurons, while Residual Units [15]
were not used since they allow the training of arbitrary deep networks. We used Batch
Normalization [20] layers to decrease the dependence on initialization along with Dropout
[41] of 25%. The network was optimized using SGD [3] with a batch size of 128. For a
fair comparison, the same learning rate was maintained for the three networks with ReLU,
Swish, and Mish. As shown in Fig. 5 (a), post fifteen layers, there was a sharp decrease in
accuracy for both Swish and ReLU, while Mish maintained a significantly higher accuracy
in large models where optimization becomes difficult. This property was later validated in
ImageNet-1k [7] experiments in Section 4.3, where Mish performed superior to Swish in
increasingly large networks.

We also evaluated the robustness of Mish in noisy input conditions where the input
MNIST data was corrupted with additive zero-centered Gaussian Noise with linearly in-
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Figure 5: (a) Comparison between Mish, Swish, and ReLU activation functions in terms
of test accuracy with increasing depth of the neural network on the MNIST dataset. (b)
Comparison between Mish, Swish, and ReLU activation functions in terms of test loss with
increasing input gaussian noise on the MNIST dataset. (c) Comparison between Mish and
Swish activation functions in terms of test accuracy with different weight initialization strate-
gies on the CIFAR-10 dataset.

creasing standard deviation. We used a five-layered convolution neural network architecture
optimized using SGD for this task. Fig. 5 (b) demonstrates the consistently better loss with
varying intensity of Input Gaussian Noise with Mish as compared to ReLU and Swish.

Initializers [11] play a crucial role in the performance of a neural network. We observed
the performance of Mish and Swish using different weight initializers, including Glorot ini-
tializer [11], LeCun normal initializer [27], and He uniform variance scaling initializer [13],
in a six-layered convolution neural network. Fig. 5 (c) demonstrates the consistent positive
difference in the performance of Mish compared to Swish while using different initializers.

4 Benchmarks
We evaluated Mish against more than ten standard activation functions on different models
and datasets. Our results show, especially in computer vision tasks like image classification
and object detection, Mish consistently matched or exceeded the best performing network.
We also recorded multiple runs to observe the statistical significance of our results. Along
with the vanilla settings, we also validated the performance of Mish when coupled with
various state of the art data augmentation techniques like CutMix and label smoothing.

4.1 Statistical Analysis
To evaluate the statistical significance and consistency of the performance obtained by Mish
activation function compared to baseline activation functions, we calculate and compare the
mean test accuracy, mean test loss, and standard deviation of test accuracy for CIFAR-10
[24] classification task using a Squeeze Net [18]. We experimented for 23 runs, each for 50
epochs using the Adam optimizer [22] and changing the activation functions while keeping
every other network parameter constant. Table. 1 shows Mish outperforms other activation
functions with the highest mean accuracy (µacc), second-lowest mean loss (µloss), and third-
lowest standard deviation of accuracy (σacc).
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Activation µacc µloss σacc

Mish 87.48% 4.13% 0.3967
Swish [37] 87.32% 4.22% 0.414
GELU [16] 87.37% 4.339% 0.472
ReLU [25, 34] 86.66% 4.398% 0.584
ELU [6] 86.41% 4.211% 0.3371
Leaky ReLU [32] 86.85% 4.112% 0.4569
SELU [23] 83.91% 4.831% 0.5995
SoftPlus 83% 5.546% 1.4015
SReLU [21] 85.05% 4.541% 0.5826
ISRU [4] 86.85% 4.669% 0.1106
TanH 82.72% 5.322% 0.5826
RReLU [48] 86.87% 4.138% 0.4478

Table 1: Statistical results of different activation functions on image classification of CIFAR-
10 dataset using a Squeeze Net for 23 runs.

4.2 CIFAR-10

We compare the performance of different baseline activation functions on the image classi-
fication task of CIFAR-10 dataset [24] using different standard neural network architectures
by just swapping the activation functions and keeping every other network parameter and
training parameter constant. We evaluate the performance of Mish as compared to ReLU
and Swish on various standard network architectures, including Residual Networks [15],
Wide Residual Networks [50], Shuffle Net [51], Mobile Nets [17], Inception Network [42],
and Efficient Networks [43]. Table. 2 shows that Mish activation function consistently out-
performs ReLU and Swish activation functions across all the standard architectures used in
the experiment, with often providing 1% to 3% performance improvement over the baseline
ReLU enabled network architectures.

Architecture Mish Swish ReLU
ResNet-20 [15] 92.02% 91.61% 91.71%
WRN-10-2 [50] 86.83% 86.56% 84.56%
SimpleNet [12] 91.70% 91.44% 91.16%
Xception Net [5] 88.73% 88.56% 88.38%
Capsule Net [40] 83.15% 82.48% 82.19%
Inception ResNet v2 [42] 85.21% 84.96% 82.22%
DenseNet-121 [19] 91.27% 90.92% 91.09%
MobileNet-v2 [17] 86.25% 86.08% 86.05%
ShuffleNet-v1 [51] 87.31% 86.95% 87.04%
Inception v3 [42] 91.19% 91.17% 90.84%
Efficient Net B0 [43] 80.73% 79.37% 79.31%

Table 2: Comparison between Mish, Swish, and ReLU activation functions based on test
accuracy on image classification of CIFAR-10 across various network architectures.
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4.3 ImageNet-1k
Additionally, we compare Mish with Leaky ReLU [32] and Swish for ImageNet 2012 dataset
classification task. ImageNet [7] is considered to be one of the most challenging and signif-
icant classification tasks in the domain of computer vision. ImageNet comprises of 1.28
million training images distributed across 1,000 classes. We use the validation set compris-
ing of 50,000 images to evaluate the performance of the trained networks. We trained the
networks using the DarkNet framework [38] on an AWS EC2 p3.16xlarge instance compris-
ing of 8 Tesla V100 GPUs for a total number of 8 million training steps with batch size,
mini-batch size, initial learning rate, momentum, and weight decay set at 128, 32, 0.01, 0.9,
and 5e-4 respectively.

Model Data Augmentation LReLU/ ReLU † Swish Mish
Top-1 Top- 5 Top-1 Top- 5 Top-1 Top- 5

ResNet-18 [15] No 69.8%† 89.1%† 71.2% 90.1% 71.2% 89.9%
ResNet-50 [15] No 75.2%† 92.6%† 75.9% 92.8% 76.1% 92.8%
SpineNet-49 [8] Yes 77.0%† 93.3%† 78.1% 94% 78.3% 94.6%
PeleeNet [46] No 70.7% 90.0% 71.5% 90.7% 71.4% 90.4%

CSP-ResNet-50 [45] Yes 77.1% 94.1% - - 78.1% 94.2%
CSP-DarkNet-53 [2] Yes 77.8% 94.4% - - 78.7% 94.8%
CSP-ResNext-50 [45] No 77.9% 94.0% 64.5% 86% 78.9% 94.5%
CSP-ResNext-50 [45] Yes 78.5% 94.8% - - 79.8% 95.2%

Table 3: Comparison between Mish, Swish, ReLU and Leaky ReLU activation functions
on image classification of ImageNet-1k dataset across various standard architectures. Data
Augmentation indicates the use of CutMix, Mosaic, and Label Smoothing. † indicate scores
for ReLU.

In Table. 3, we compare the Top-1 and Top-5 accuracy of Mish against ReLU, Leaky
ReLU, and Swish on PeleeNet [46] , Cross Stage Partial ResNet-50 [45], and ResNet-18/50
[15]. Mish consistently outperforms the default Leaky ReLU/ ReLU on all the four network
architectures with a 1% increase in Top-1 Accuracy over Leaky ReLU in CSP-ResNet-50
architecture. Although Swish provides marginally stronger result in PeleeNet as compared
to Mish, we investigate further of the inconsistency of the performance of Swish in a larger
model where we compare Swish, Mish and ReLU in a CSP-ResNext-50 model [45, 47]
where Swish decreases the Top-1 accuracy by 13.4% as compared to Leaky ReLU while
Mish improves the accuracy by 1%. This shows that Swish cannot be used in every architec-
ture and has drawbacks in especially large complex models like ResNext based models. We
also combine different data augmentation techniques like CutMix [49] and Label Smooth-
ing (LS) [33] to improve the baseline scores of CSP-ResNet-50, CSP-DarkNet-53 [2] and
CSP-ResNext-50 models. The results suggest that Mish is more consistent and generally
guarantees performance increase in almost any neural network for ImageNet classification.

4.4 MS-COCO Object Detection
Object detection [10] is a fundamental branch of computer vision that can be categorized
as one of the tasks under visual scene understanding. In this section, we present our exper-
imental results on the challenging Common Objects in Context (MS-COCO) dataset [30].
We report the mean average precision (mAP-50/ mAP@0.5) on the COCO test-dev split, as
demonstrated in Table. 4. We report our results for two models, namely, CSP-DarkNet-53
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[2] and CSP-DarkNet-53+PANet+SPP [2, 14], where we retrained the backbone network
from scratch by replacing the activation function from ReLU to Mish.

We also validate our results by using various data augmentation strategies, including Cut-
Mix [49] , Mosaic [2], self adversarial training (SAT) [2], Dropblock regularization [9] and
Label Smoothing [33] along with Mish. As per the results demonstrated in Table. 4, simply
replacing ReLU with Mish in the backbone improved the mAP@0.5 for CSP-DarkNet-53
and CSP-DarkNet-53+PANet+SPP by 0.4%. For CSP-DarkNet-53, we achieve state of the
art mAP@0.5 of 65.7% at a real-time speed of 65 FPS on Tesla V100. Additionally, CSP-
DarkNet-53 was used as the backbone with a Yolov3 detector [39] as its object detection
head. We use multi-input weighted residual connections (MiWRC) [44] in the backbone and
train the model with a cosine annealing scheduler [31]. We also eliminate grid sensitivity
and use multiple anchors for single ground truth for the detector. Experiments were done on
a single GPU to enable multi-scale training with default parameters, including epochs, initial
learning rate, weight decay, and momentum set at 500500, 0.01, 5e-4, and 0.9, respectively.

Model Size Data Augmentation ReLU Mish
CSP-DarkNet-53 [2] (512 x 512) No 64.5% 64.9%
CSP-DarkNet-53 [2] (608 x 608) No - 65.7%

CSP-DarkNet53+PANet+SPP [2, 14] (512 x 512) Yes 64.5% 64.9%

Table 4: Comparison between ReLU and Mish activation functions on object detection on
MS-COCO dataset.

We provide further comparative results using the YOLOv4 [2] detector, as demonstrated
in Table. 5. Using Mish, we observed a consistent 0.9% to 2.1% improvement in the AP50

val

on test size of 736. We evaluated three variants of YOLOv4, which are: YOLOv4pacsp,
YOLOv4pacsp-s, and YOLOv4pacsp-x. All three variants use a CSP-DarkNet-53 [45] and CSP-
PANet in the backbone coupled with a CSP-SPP [14] (Spatial Pyramid Pool) module where
the latter two variants denote the tiny and extra-large variant of YOLOv4pacsp.

Detector Activation APval AP50
val AP75

val APS
val APM

val APL
val

YOLOv4pacsp-s
Leaky ReLU 36.0% 54.2% 39.4% 18.7% 41.2% 48.0%

Mish 37.4% 56.3% 40.0% 20.9% 43.0% 49.3%

YOLOv4pacsp
Leaky ReLU 46.4% 64.8% 51.0% 28.5% 51.9% 59.5%

Mish 46.5% 65.7% 50.2% 30.0% 52.0% 59.4%

YOLOv4pacsp-x
Leaky ReLU 47.6% 66.1% 52.2% 29.9% 53.3% 61.5%

Mish 48.5% 67.4% 52.7% 30.9% 54.0% 62.0%

Table 5: Comparison between Leaky ReLU and Mish activation functions on object detection
on MS-COCO 2017 dataset with a test image size of 736 x 736.

4.5 Stability, Accuracy, and Efficiency Trade-off
Mish is a novel combination of three activation functions, which are TanH, SoftPlus, and
the identity function. In practical implementation, a threshold of 20 is enforced on Softplus,
which makes the training more stable and prevents gradient overflow. Due to the increased
complexity, there is a trade-off between the increase in accuracy while using Mish and the
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increase in computational cost. We address this concern by optimizing Mish using a CUDA
based implementation, which we call Mish-CUDA which is based on PyTorch [35].

Activation Data Type Forward Pass Backward Pass
ReLU fp16 223.7µs ± 1.026µs 312.1µs ± 2.308µs

SoftPlus fp16 342.2µs ± 38.08µs 488.5µs ± 53.75µs
Mish fp16 658.8µs ± 1.467µs 1.135ms ± 4.785µs

Mish-CUDA fp16 267.3µs ± 1.852µs 345.6µs ± 1.875µs
ReLU fp32 234.2µs ± 621.8ns 419.3µs ± 1.238µs

SoftPlus fp32 255.1µs ± 753.6ns 420.2µs ± 631.4ns
Mish fp32 797.4µs ± 1.094µs 1.689ms ± 1.222µs

Mish-CUDA fp32 282.9µs ± 876.1ns 496.3µs ± 1.781µs

Table 6: Comparison between the runtime for the forward and backward passes for ReLU,
SoftPlus, Mish and Mish-CUDA activation functions for floating point-16 and floating point-
32 data.

In Table. 6, we show the speed profile comparison between the forward pass (FWD) and
backward pass (BWD) on floating-point 16 (FP16) and floating-point 32 (FP32) data for
ReLU, SoftPlus, Mish, and Mish-CUDA. All runs were performed on an NVIDIA GeForce
RTX-2070 GPU using standard benchmarking practices over 100 runs, including warm-up
and removing outliers.

Table. 6 shows the significant reduction in computational overhead of Mish by using
the optimized version Mish-CUDA which shows no stability issues, mirrors the learning
performance of the original baseline Mish implementation and is even faster than native
PyTorch Softplus implementation in single precision, making it more feasible to use Mish in
deep neural networks. Mish can be further optimized using the exponential equivalent of the
TanH term to accelerate the backward pass, which involves the derivative computation.

5 Conclusion
In this work, we propose a novel activation function, which we call Mish. Even though Mish
shares many properties with Swish and GELU like unbounded positive domain, bounded
negative domain, non-monotonic shape, and smooth derivative, Mish still provides under
most experimental conditions, better empirical results than Swish, ReLU, and Leaky ReLU.
We expect that a hyperparameter search with Mish as a target may improve upon our results.
We also observed that the state of the art data augmentation techniques like CutMix and other
proven ones like Label Smoothing behave consistently with the expectations.

Future work includes optimizing Mish-CUDA to reduce the computational overhead fur-
ther, evaluating the performance of the Mish activation function in other state of the art mod-
els on various tasks in the domain of computer vision, and obtaining a normalizing constant
as a parameter for Mish which can reduce the dependency on using Batch Normalization
layers. We believe it is of theoretical importance to investigate the contribution of the ∆(x)
parameter at the first derivative and understand the underlying mechanism on how it may
be acting as a regularizer. A clear understanding of the behavior and conditions govern-
ing this regularizing term could motivate a more principled approach to constructing better
performing activation functions.
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