
MISRA: MISH ACTIVATION FUNCTION 1

Mish: A Self Regularized Non-Monotonic
Activation Function

Diganta Misra
mishradiganta91@gmail.com

Landskape
KIIT, Bhubaneswar, India

Abstract

We propose Mish, a novel self-regularized non-monotonic activation function which
can be mathematically defined as: f (x) = x tanh(so f t plus(x)). As activation functions
play a crucial role in the performance and training dynamics in neural networks, we val-
idated experimentally on several well-known benchmarks against the best combinations
of architectures and activation functions. We also observe that data augmentation tech-
niques have a favorable effect on benchmarks like ImageNet-1k and MS-COCO across
multiple architectures. For example, Mish outperformed Leaky ReLU on YOLOv4 with
a CSP-DarkNet-53 backbone on average precision (AP50

val) by 2.1% in MS-COCO ob-
ject detection and ReLU on ResNet-50 on ImageNet-1k in Top-1 accuracy by≈1% while
keeping all other network parameters and hyperparameters constant. Furthermore, we
explore the mathematical formulation of Mish in relation with the Swish family of func-
tions and propose an intuitive understanding on how the first derivative behavior may be
acting as a regularizer helping the optimization of deep neural networks. Code is publicly
available at https://github.com/digantamisra98/Mish.

1 Introduction
Activation functions are non-linear point-wise functions responsible for introducing non-
linearity to the linear transformed input in a layer of a neural network. The choice of activa-
tion function is imperative for understanding the performance of a neural network. The pro-
cess of applying an activation function in a layer of a neural network can be mathematically
realized as z = g(y) = g(∑i wixi +b) where z is the output of the activation function g(y). In
early literature, Sigmoid and TanH activation functions were extensively used, which subse-
quently became ineffective in deep neural networks. A less probability inspired, unsaturated
piece-wise linear activation known as Rectified Linear Unit (ReLU) [25, 34] became more
relevant and showed better generalization and improved speed of convergence compared to
Sigmoid and TanH.

Although ReLU demonstrates better performance and stability compared to TanH and
Sigmoid, it is not without weaknesses. One of which is popularly known as Dying ReLU,
which is experienced through a gradient information loss caused by collapsing the negative
inputs to zero. Over the years, many activation functions have been proposed which improve
performance and address the shortcomings of ReLU, which include Leaky ReLU [32], ELU
[6], and SELU [23]. Swish [37], which can be defined as f (x) = xsigmoid(βx), proved to be
a more robust activation function showcasing strong improvements in results as compared to

c© 2020. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Nair and Hinton} 2010

Citation
Citation
{Maas, Hannun, and Ng} 2013

Citation
Citation
{Clevert, Unterthiner, and Hochreiter} 2015

Citation
Citation
{Klambauer, Unterthiner, Mayr, and Hochreiter} 2017

Citation
Citation
{Ramachandran, Zoph, and Le} 2017

https://github.com/digantamisra98/Mish

2 MISRA: MISH ACTIVATION FUNCTION

3 2 1 0 1 2 3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 Mish
ReLU
SoftPlus
Swish

3 2 1 0 1 2 3

0.0

0.2

0.4

0.6

0.8

1.0

Derivatives of Mish and Swish
1st Derivative of Mish
2nd Derivative of Mish
1st Derivative of Swish
2nd Derivative of Swish

(a) (b)
Figure 1: (a) Graph of Mish, ReLU, SoftPlus, and Swish activation functions. As illustrated,
Mish and Swish are closely related with both having a distinctive negative concavity un-
like ReLU, which accounts for preservation of small negative weights. (b) The 1st and 2nd

derivatives of Mish and Swish activation functions.

that of ReLU. The smooth, continuous profile of Swish proved essential in better information
propagation as compared to ReLU in deep neural network architectures.

In this work, we propose Mish, a novel self regularized non-monotonic activation func-
tion inspired by the self gating property of Swish. Mish is mathematically defined as:
f (x) = x tanh(so f t plus(x)). We evaluate and find that Mish tends to match or improve the
performance of neural network architectures as compared to that of Swish, ReLU, and Leaky
ReLU across different tasks in Computer Vision.

2 Motivation

Across theoretical research into activation functions, those sharing properties similar to
Swish, which includes non-monotonicity, ability to preserve small negative weights, and a
smooth profile, have been a recurring discussion. For instance, Gaussian Error Linear Units
(GELU) [16] is a popular activation function which has similar properties to that of Swish
and is actively used in the GPT-2 architecture [36] for synthetic text generation. Swish was
discovered by a Neural Architecture Search (NAS) [52] over the space of the non-linear func-
tions by a controlled search agent. An RNN-controller was used as the agent which generated
a new candidate function at each step, for a total of 10K steps, which were then evaluated on
CIFAR-10 classification task using a ResNet-20 defined with that candidate function as its
activation function. The design of Mish, while influenced by the work performed by Swish,
was found by systematic analysis and experimentation over the characteristics that made
Swish so effective. When studying similarly behaved functions like Swish, as illustrated in
Fig. 2 (a), which include arctan(x)so f t plus(x), tanh(x)so f t plus(x), x log(1+arctan(ex)) and
x log(1+ tanh(ex)), where so f t plus(x) = ln(1+ ex), from our ablation study we determined
Mish consistently outperforms the aforementioned functions along with Swish and ReLU.

We used a standard six-layered deep convolution neural network architecture to validate
each of the experimental activation functions earlier defined on the CIFAR-10 image classi-

Citation
Citation
{Hendrycks and Gimpel} 2016

Citation
Citation
{Radford, Wu, Child, Luan, Amodei, and Sutskever} 2019

Citation
Citation
{Zoph and Le} 2016

MISRA: MISH ACTIVATION FUNCTION 3

4 3 2 1 0 1 2 3 4

0

1

2

3

4

5

Swish
Mish
arctan(x)softplus(x)
tanh(x)softplus(x)
xlog(1 + arctan(ex))
xlog(1 + tanh(ex))

0 10 20 30 40 50
Epochs

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

Va
lid

at
io

n
Ac

cu
ra

cy

Swish
xlog(1 + tanh(ex))
xlog(1 + arctan(ex))
Mish

(a) (b)
Figure 2: (a) Graph of Mish, Swish, and similar validated experimental functions. (b) Train-
ing curve of a six-layered CNN on CIFAR-10 on different validated activation functions.

fication task. The networks were trained for three runs, each for 50 epochs with RMSProp
as the optimizer. As shown in Fig. 2 (b), we found that Mish performed better than the other
validated functions. Although it can be observed that x log(1+ tanh(ex)) performed at par to
Mish, we noted that its training is often unstable and, in many cases, leads to divergence in
deeper architectures. We observed similar unstable training issues for arctan(x)so f t plus(x)
and tanh(x)so f t plus(x). While all of the validated functions have a similar shape, Mish
proves to be consistently better in terms of performance and stability.

While not evident at first sight, Mish is closely related to Swish, as it can be observed in
the first derivative:

f ′(x) = sech2(so f t plus(x))xsigmoid(x)+
f (x)

x
(1)

= ∆(x)swish(x)+
f (x)

x
(2)

where so f t plus(x) = ln(1+ ex) and sigmoid(x) = 1/(1+ e−x).

From experimental observations, we speculate that the ∆(x) parameter acts like a precon-
ditioner, making the gradient smoother. Preconditioning has been extensively discussed and
used in general optimization problems where the preconditioner, in case of gradient descent
[3, 29] is the inverse of a symmetric positive definite matrix (H−1

k) which is applied to mod-
ify the geometry of the objective function to increase the rate of convergence [1]. Intuitively,
preconditioning makes the objective function much smoother and thus making it easier to
optimize. The ∆(x) parameter mimics the behavior of a preconditioner. It provides a strong
regularization effect and helps make gradients smoother, which corresponds to easier to opti-
mize function contour, which is possibly why Mish outperforms Swish in increasingly deep
and complex neural net architectures.

Mish, additionally, similar to Swish, is non-monotonic, smooth, and preserves a small
amount of negative weights. These properties account for the consistent performance and
improvement when using Mish in-place of Swish in deep neural networks.

Citation
Citation
{Bottou} 2010

Citation
Citation
{Li} 2017

Citation
Citation
{Axelsson and Lindskog} 1986

4 MISRA: MISH ACTIVATION FUNCTION

ReLU: Sharp Transitions, Rough Profile Mish: Smooth Transitions, Smooth Profile

Figure 3: Comparison between the output landscapes of ReLU and Mish activation function

3 Mish
Mish, as visualized in Fig. 1 (a), is a smooth, continuous, self regularized, non-monotonic
activation function mathematically defined as:

f (x) = x tanh(so f t plus(x)) = x tanh(ln(1+ ex)) (3)

Similar to Swish, Mish is bounded below and unbounded above with a range of [≈ -0.31,
∞). The 1st derivative of Mish, as shown in Fig. 1 (b), can be defined as:

f ′(x) =
exω

δ 2 (4)

where, ω = 4(x+ 1)+ 4e2x + e3x + ex(4x+ 6) and δ = 2ex + e2x + 2. Inspired by Swish,
Mish uses the Self-Gating property where the non-modulated input is multiplied with the
output of a non-linear function of the input. Due to the preservation of a small amount of
negative information, Mish eliminated by design the preconditions necessary for the Dying
ReLU phenomenon. This property helps in better expressivity and information flow. Being
unbounded above, Mish avoids saturation, which generally causes training to slow down due
to near-zero gradients [11] drastically. Being bounded below is also advantageous since it
results in strong regularization effects. Unlike ReLU, Mish is continuously differentiable,
a property that is preferable because it avoids singularities and, therefore, undesired side
effects when performing gradient-based optimization.

Having a smooth profile also plays a role in better gradient flow, as shown in Fig. 3,
where the output landscapes of a five-layered randomly initialized neural network with ReLU
and Mish are visualized. The landscapes were generated by passing in the co-ordinates to
a five-layered randomly initialized neural network which outputs the corresponding scalar
magnitude. The output landscape of ReLU has a lot of sharp transitions as compared to
the smooth profile of the output landscape of Mish. Smoother output landscapes suggest
smooth loss landscapes [28], which help in easier optimization and better generalization, as
demonstrated in Fig. 4.

Citation
Citation
{Glorot and Bengio} 2010

Citation
Citation
{Li, Xu, Taylor, Studer, and Goldstein} 2018

MISRA: MISH ACTIVATION FUNCTION 5

Figure 4: Comparison between the loss landscapes of (from left to right): (a) ReLU, (b) Mish
and (c) Swish activation function for a ResNet-20 trained for 200 epochs on CIFAR-10.

We observed the loss landscapes [28] of a ResNet-20 [15] equipped with ReLU, Mish,
and Swish activation functions with each trained for 200 epochs for the image classifica-
tion task on the CIFAR-10 dataset. We used a multi-step learning rate policy with the SGD
optimizer for training the networks. As shown in Fig. 4, the loss landscape for the ResNet-
20 equipped with Mish is much smoother and conditioned as compared to that of ReLU
and Swish activation function. Mish has a wider minima which improves generalization
compared to that of ReLU and Swish, with the former having multiple local minimas. Ad-
ditionally, Mish obtained the lowest loss as compared to the networks equipped with ReLU
and Swish, and thus, validated the preconditioning effect of Mish on the loss surface.

3.1 Ablation Study on CIFAR-10 and MNIST
Hyperparameters, including the depth of the network, type of weight initialization, batch
size, learning rate, and optimizer used in the training process, have significant unique effects.
We manipulate different hyper-parameters to observe their effects on the performance of
ReLU, Swish, and Mish activation functions. Firstly, we observe the effect of increasing the
number of layers of a neural network with ReLU, Swish, and Mish on the test accuracy. For
the task, we used the MNIST dataset [26] and trained fully connected networks of linearly
increasing depth. Each layer was initialized with 500 neurons, while Residual Units [15]
were not used since they allow the training of arbitrary deep networks. We used Batch
Normalization [20] layers to decrease the dependence on initialization along with Dropout
[41] of 25%. The network was optimized using SGD [3] with a batch size of 128. For a
fair comparison, the same learning rate was maintained for the three networks with ReLU,
Swish, and Mish. As shown in Fig. 5 (a), post fifteen layers, there was a sharp decrease in
accuracy for both Swish and ReLU, while Mish maintained a significantly higher accuracy
in large models where optimization becomes difficult. This property was later validated in
ImageNet-1k [7] experiments in Section 4.3, where Mish performed superior to Swish in
increasingly large networks.

We also evaluated the robustness of Mish in noisy input conditions where the input
MNIST data was corrupted with additive zero-centered Gaussian Noise with linearly in-

Citation
Citation
{Li, Xu, Taylor, Studer, and Goldstein} 2018

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{LeCun, Cortes, and Burges} 2010

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Ioffe and Szegedy} 2015

Citation
Citation
{Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhutdinov} 2014

Citation
Citation
{Bottou} 2010

Citation
Citation
{Deng, Dong, Socher, Li, Li, and Fei-Fei} 2009

6 MISRA: MISH ACTIVATION FUNCTION

15 17 19 21 23 25
Number of Layers

20

40

60

80

100

Te
st

in
g

Ac
cu

ra
cy

Test Accuracy vs Depth on MNIST

Mish
Swish
ReLU

0 1 2 3 4 5 6 7 8
Standard deviation of input gaussian noise

0

5

10

15

20

Te
st

 L
os

s

Test Loss vs Gaussian Noise on MNIST

Mish
Swish
ReLU

ra
nd

om
_n

or
m

al

ra
nd

om
_u

ni
fo

rm

tru
nc

at
ed

_n
or

m
al

or
th

og
on

al

le
cu

n_
un

ifo
rm

gl
or

ot
_n

or
m

al

gl
or

ot
_u

ni
fo

rm

he
_n

or
m

al

le
cu

n_
no

rm
al

he
_u

ni
fo

rm

70

71

72

73

74

75

Te
st

 A
cc

ur
ac

y

Test Accuracy vs Initializers on CIFAR10

Mish

Swish

(a) (b) (c)
Figure 5: (a) Comparison between Mish, Swish, and ReLU activation functions in terms
of test accuracy with increasing depth of the neural network on the MNIST dataset. (b)
Comparison between Mish, Swish, and ReLU activation functions in terms of test loss with
increasing input gaussian noise on the MNIST dataset. (c) Comparison between Mish and
Swish activation functions in terms of test accuracy with different weight initialization strate-
gies on the CIFAR-10 dataset.

creasing standard deviation. We used a five-layered convolution neural network architecture
optimized using SGD for this task. Fig. 5 (b) demonstrates the consistently better loss with
varying intensity of Input Gaussian Noise with Mish as compared to ReLU and Swish.

Initializers [11] play a crucial role in the performance of a neural network. We observed
the performance of Mish and Swish using different weight initializers, including Glorot ini-
tializer [11], LeCun normal initializer [27], and He uniform variance scaling initializer [13],
in a six-layered convolution neural network. Fig. 5 (c) demonstrates the consistent positive
difference in the performance of Mish compared to Swish while using different initializers.

4 Benchmarks
We evaluated Mish against more than ten standard activation functions on different models
and datasets. Our results show, especially in computer vision tasks like image classification
and object detection, Mish consistently matched or exceeded the best performing network.
We also recorded multiple runs to observe the statistical significance of our results. Along
with the vanilla settings, we also validated the performance of Mish when coupled with
various state of the art data augmentation techniques like CutMix and label smoothing.

4.1 Statistical Analysis
To evaluate the statistical significance and consistency of the performance obtained by Mish
activation function compared to baseline activation functions, we calculate and compare the
mean test accuracy, mean test loss, and standard deviation of test accuracy for CIFAR-10
[24] classification task using a Squeeze Net [18]. We experimented for 23 runs, each for 50
epochs using the Adam optimizer [22] and changing the activation functions while keeping
every other network parameter constant. Table. 1 shows Mish outperforms other activation
functions with the highest mean accuracy (µacc), second-lowest mean loss (µloss), and third-
lowest standard deviation of accuracy (σacc).

Citation
Citation
{Glorot and Bengio} 2010

Citation
Citation
{Glorot and Bengio} 2010

Citation
Citation
{LeCun, Bottou, Orr, and M{ü}ller} 2012

Citation
Citation
{He, Zhang, Ren, and Sun} 2015{}

Citation
Citation
{Krizhevsky, Hinton, etprotect unhbox voidb@x penalty @M {}al.} 2009

Citation
Citation
{Hu, Shen, and Sun} 2018

Citation
Citation
{Kingma and Ba} 2014

MISRA: MISH ACTIVATION FUNCTION 7

Activation µacc µloss σacc

Mish 87.48% 4.13% 0.3967
Swish [37] 87.32% 4.22% 0.414
GELU [16] 87.37% 4.339% 0.472
ReLU [25, 34] 86.66% 4.398% 0.584
ELU [6] 86.41% 4.211% 0.3371
Leaky ReLU [32] 86.85% 4.112% 0.4569
SELU [23] 83.91% 4.831% 0.5995
SoftPlus 83% 5.546% 1.4015
SReLU [21] 85.05% 4.541% 0.5826
ISRU [4] 86.85% 4.669% 0.1106
TanH 82.72% 5.322% 0.5826
RReLU [48] 86.87% 4.138% 0.4478

Table 1: Statistical results of different activation functions on image classification of CIFAR-
10 dataset using a Squeeze Net for 23 runs.

4.2 CIFAR-10

We compare the performance of different baseline activation functions on the image classi-
fication task of CIFAR-10 dataset [24] using different standard neural network architectures
by just swapping the activation functions and keeping every other network parameter and
training parameter constant. We evaluate the performance of Mish as compared to ReLU
and Swish on various standard network architectures, including Residual Networks [15],
Wide Residual Networks [50], Shuffle Net [51], Mobile Nets [17], Inception Network [42],
and Efficient Networks [43]. Table. 2 shows that Mish activation function consistently out-
performs ReLU and Swish activation functions across all the standard architectures used in
the experiment, with often providing 1% to 3% performance improvement over the baseline
ReLU enabled network architectures.

Architecture Mish Swish ReLU
ResNet-20 [15] 92.02% 91.61% 91.71%
WRN-10-2 [50] 86.83% 86.56% 84.56%
SimpleNet [12] 91.70% 91.44% 91.16%
Xception Net [5] 88.73% 88.56% 88.38%
Capsule Net [40] 83.15% 82.48% 82.19%
Inception ResNet v2 [42] 85.21% 84.96% 82.22%
DenseNet-121 [19] 91.27% 90.92% 91.09%
MobileNet-v2 [17] 86.25% 86.08% 86.05%
ShuffleNet-v1 [51] 87.31% 86.95% 87.04%
Inception v3 [42] 91.19% 91.17% 90.84%
Efficient Net B0 [43] 80.73% 79.37% 79.31%

Table 2: Comparison between Mish, Swish, and ReLU activation functions based on test
accuracy on image classification of CIFAR-10 across various network architectures.

Citation
Citation
{Ramachandran, Zoph, and Le} 2017

Citation
Citation
{Hendrycks and Gimpel} 2016

Citation
Citation
{Krizhevsky, Sutskever, and Hinton} 2012

Citation
Citation
{Nair and Hinton} 2010

Citation
Citation
{Clevert, Unterthiner, and Hochreiter} 2015

Citation
Citation
{Maas, Hannun, and Ng} 2013

Citation
Citation
{Klambauer, Unterthiner, Mayr, and Hochreiter} 2017

Citation
Citation
{Jin, Xu, Feng, Wei, Xiong, and Yan} 2016

Citation
Citation
{Carlile, Delamarter, Kinney, Marti, and Whitney} 2017

Citation
Citation
{Xu, Wang, Chen, and Li} 2015

Citation
Citation
{Krizhevsky, Hinton, etprotect unhbox voidb@x penalty @M {}al.} 2009

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Zagoruyko and Komodakis} 2016

Citation
Citation
{Zhang, Zhou, Lin, and Sun} 2018

Citation
Citation
{Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, and Adam} 2017

Citation
Citation
{Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, and Rabinovich} 2015

Citation
Citation
{Tan and Le} 2019

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Zagoruyko and Komodakis} 2016

Citation
Citation
{HasanPour, Rouhani, Fayyaz, and Sabokrou} 2016

Citation
Citation
{Chollet} 2017

Citation
Citation
{Sabour, Frosst, and Hinton} 2017

Citation
Citation
{Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, and Rabinovich} 2015

Citation
Citation
{Huang, Liu, Van Derprotect unhbox voidb@x penalty @M {}Maaten, and Weinberger} 2017

Citation
Citation
{Howard, Zhu, Chen, Kalenichenko, Wang, Weyand, Andreetto, and Adam} 2017

Citation
Citation
{Zhang, Zhou, Lin, and Sun} 2018

Citation
Citation
{Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, and Rabinovich} 2015

Citation
Citation
{Tan and Le} 2019

8 MISRA: MISH ACTIVATION FUNCTION

4.3 ImageNet-1k
Additionally, we compare Mish with Leaky ReLU [32] and Swish for ImageNet 2012 dataset
classification task. ImageNet [7] is considered to be one of the most challenging and signif-
icant classification tasks in the domain of computer vision. ImageNet comprises of 1.28
million training images distributed across 1,000 classes. We use the validation set compris-
ing of 50,000 images to evaluate the performance of the trained networks. We trained the
networks using the DarkNet framework [38] on an AWS EC2 p3.16xlarge instance compris-
ing of 8 Tesla V100 GPUs for a total number of 8 million training steps with batch size,
mini-batch size, initial learning rate, momentum, and weight decay set at 128, 32, 0.01, 0.9,
and 5e-4 respectively.

Model Data Augmentation LReLU/ ReLU † Swish Mish
Top-1 Top- 5 Top-1 Top- 5 Top-1 Top- 5

ResNet-18 [15] No 69.8%† 89.1%† 71.2% 90.1% 71.2% 89.9%
ResNet-50 [15] No 75.2%† 92.6%† 75.9% 92.8% 76.1% 92.8%
SpineNet-49 [8] Yes 77.0%† 93.3%† 78.1% 94% 78.3% 94.6%
PeleeNet [46] No 70.7% 90.0% 71.5% 90.7% 71.4% 90.4%

CSP-ResNet-50 [45] Yes 77.1% 94.1% - - 78.1% 94.2%
CSP-DarkNet-53 [2] Yes 77.8% 94.4% - - 78.7% 94.8%
CSP-ResNext-50 [45] No 77.9% 94.0% 64.5% 86% 78.9% 94.5%
CSP-ResNext-50 [45] Yes 78.5% 94.8% - - 79.8% 95.2%

Table 3: Comparison between Mish, Swish, ReLU and Leaky ReLU activation functions
on image classification of ImageNet-1k dataset across various standard architectures. Data
Augmentation indicates the use of CutMix, Mosaic, and Label Smoothing. † indicate scores
for ReLU.

In Table. 3, we compare the Top-1 and Top-5 accuracy of Mish against ReLU, Leaky
ReLU, and Swish on PeleeNet [46] , Cross Stage Partial ResNet-50 [45], and ResNet-18/50
[15]. Mish consistently outperforms the default Leaky ReLU/ ReLU on all the four network
architectures with a 1% increase in Top-1 Accuracy over Leaky ReLU in CSP-ResNet-50
architecture. Although Swish provides marginally stronger result in PeleeNet as compared
to Mish, we investigate further of the inconsistency of the performance of Swish in a larger
model where we compare Swish, Mish and ReLU in a CSP-ResNext-50 model [45, 47]
where Swish decreases the Top-1 accuracy by 13.4% as compared to Leaky ReLU while
Mish improves the accuracy by 1%. This shows that Swish cannot be used in every architec-
ture and has drawbacks in especially large complex models like ResNext based models. We
also combine different data augmentation techniques like CutMix [49] and Label Smooth-
ing (LS) [33] to improve the baseline scores of CSP-ResNet-50, CSP-DarkNet-53 [2] and
CSP-ResNext-50 models. The results suggest that Mish is more consistent and generally
guarantees performance increase in almost any neural network for ImageNet classification.

4.4 MS-COCO Object Detection
Object detection [10] is a fundamental branch of computer vision that can be categorized
as one of the tasks under visual scene understanding. In this section, we present our exper-
imental results on the challenging Common Objects in Context (MS-COCO) dataset [30].
We report the mean average precision (mAP-50/ mAP@0.5) on the COCO test-dev split, as
demonstrated in Table. 4. We report our results for two models, namely, CSP-DarkNet-53

Citation
Citation
{Maas, Hannun, and Ng} 2013

Citation
Citation
{Deng, Dong, Socher, Li, Li, and Fei-Fei} 2009

Citation
Citation
{Redmon} 2013--2016

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Du, Lin, Jin, Ghiasi, Tan, Cui, Le, and Song} 2019

Citation
Citation
{Wang, Li, and Ling} 2018

Citation
Citation
{Wang, Liao, Yeh, Wu, Chen, and Hsieh} 2019

Citation
Citation
{Bochkovskiy, Wang, and Liao} 2020

Citation
Citation
{Wang, Liao, Yeh, Wu, Chen, and Hsieh} 2019

Citation
Citation
{Wang, Liao, Yeh, Wu, Chen, and Hsieh} 2019

Citation
Citation
{Wang, Li, and Ling} 2018

Citation
Citation
{Wang, Liao, Yeh, Wu, Chen, and Hsieh} 2019

Citation
Citation
{He, Zhang, Ren, and Sun} 2016

Citation
Citation
{Wang, Liao, Yeh, Wu, Chen, and Hsieh} 2019

Citation
Citation
{Xie, Girshick, Doll{á}r, Tu, and He} 2017

Citation
Citation
{Yun, Han, Oh, Chun, Choe, and Yoo} 2019

Citation
Citation
{M{ü}ller, Kornblith, and Hinton} 2019

Citation
Citation
{Bochkovskiy, Wang, and Liao} 2020

Citation
Citation
{Girshick, Donahue, Darrell, and Malik} 2014

Citation
Citation
{Lin, Maire, Belongie, Hays, Perona, Ramanan, Doll{á}r, and Zitnick} 2014

MISRA: MISH ACTIVATION FUNCTION 9

[2] and CSP-DarkNet-53+PANet+SPP [2, 14], where we retrained the backbone network
from scratch by replacing the activation function from ReLU to Mish.

We also validate our results by using various data augmentation strategies, including Cut-
Mix [49] , Mosaic [2], self adversarial training (SAT) [2], Dropblock regularization [9] and
Label Smoothing [33] along with Mish. As per the results demonstrated in Table. 4, simply
replacing ReLU with Mish in the backbone improved the mAP@0.5 for CSP-DarkNet-53
and CSP-DarkNet-53+PANet+SPP by 0.4%. For CSP-DarkNet-53, we achieve state of the
art mAP@0.5 of 65.7% at a real-time speed of 65 FPS on Tesla V100. Additionally, CSP-
DarkNet-53 was used as the backbone with a Yolov3 detector [39] as its object detection
head. We use multi-input weighted residual connections (MiWRC) [44] in the backbone and
train the model with a cosine annealing scheduler [31]. We also eliminate grid sensitivity
and use multiple anchors for single ground truth for the detector. Experiments were done on
a single GPU to enable multi-scale training with default parameters, including epochs, initial
learning rate, weight decay, and momentum set at 500500, 0.01, 5e-4, and 0.9, respectively.

Model Size Data Augmentation ReLU Mish
CSP-DarkNet-53 [2] (512 x 512) No 64.5% 64.9%
CSP-DarkNet-53 [2] (608 x 608) No - 65.7%

CSP-DarkNet53+PANet+SPP [2, 14] (512 x 512) Yes 64.5% 64.9%

Table 4: Comparison between ReLU and Mish activation functions on object detection on
MS-COCO dataset.

We provide further comparative results using the YOLOv4 [2] detector, as demonstrated
in Table. 5. Using Mish, we observed a consistent 0.9% to 2.1% improvement in the AP50

val

on test size of 736. We evaluated three variants of YOLOv4, which are: YOLOv4pacsp,
YOLOv4pacsp-s, and YOLOv4pacsp-x. All three variants use a CSP-DarkNet-53 [45] and CSP-
PANet in the backbone coupled with a CSP-SPP [14] (Spatial Pyramid Pool) module where
the latter two variants denote the tiny and extra-large variant of YOLOv4pacsp.

Detector Activation APval AP50
val AP75

val APS
val APM

val APL
val

YOLOv4pacsp-s
Leaky ReLU 36.0% 54.2% 39.4% 18.7% 41.2% 48.0%

Mish 37.4% 56.3% 40.0% 20.9% 43.0% 49.3%

YOLOv4pacsp
Leaky ReLU 46.4% 64.8% 51.0% 28.5% 51.9% 59.5%

Mish 46.5% 65.7% 50.2% 30.0% 52.0% 59.4%

YOLOv4pacsp-x
Leaky ReLU 47.6% 66.1% 52.2% 29.9% 53.3% 61.5%

Mish 48.5% 67.4% 52.7% 30.9% 54.0% 62.0%

Table 5: Comparison between Leaky ReLU and Mish activation functions on object detection
on MS-COCO 2017 dataset with a test image size of 736 x 736.

4.5 Stability, Accuracy, and Efficiency Trade-off
Mish is a novel combination of three activation functions, which are TanH, SoftPlus, and
the identity function. In practical implementation, a threshold of 20 is enforced on Softplus,
which makes the training more stable and prevents gradient overflow. Due to the increased
complexity, there is a trade-off between the increase in accuracy while using Mish and the

Citation
Citation
{Bochkovskiy, Wang, and Liao} 2020

Citation
Citation
{Bochkovskiy, Wang, and Liao} 2020

Citation
Citation
{He, Zhang, Ren, and Sun} 2015{}

Citation
Citation
{Yun, Han, Oh, Chun, Choe, and Yoo} 2019

Citation
Citation
{Bochkovskiy, Wang, and Liao} 2020

Citation
Citation
{Bochkovskiy, Wang, and Liao} 2020

Citation
Citation
{Ghiasi, Lin, and Le} 2018

Citation
Citation
{M{ü}ller, Kornblith, and Hinton} 2019

Citation
Citation
{Redmon and Farhadi} 2018

Citation
Citation
{Tan, Pang, and Le} 2019

Citation
Citation
{Loshchilov and Hutter} 2016

Citation
Citation
{Bochkovskiy, Wang, and Liao} 2020

Citation
Citation
{Bochkovskiy, Wang, and Liao} 2020

Citation
Citation
{Bochkovskiy, Wang, and Liao} 2020

Citation
Citation
{He, Zhang, Ren, and Sun} 2015{}

Citation
Citation
{Bochkovskiy, Wang, and Liao} 2020

Citation
Citation
{Wang, Liao, Yeh, Wu, Chen, and Hsieh} 2019

Citation
Citation
{He, Zhang, Ren, and Sun} 2015{}

10 MISRA: MISH ACTIVATION FUNCTION

increase in computational cost. We address this concern by optimizing Mish using a CUDA
based implementation, which we call Mish-CUDA which is based on PyTorch [35].

Activation Data Type Forward Pass Backward Pass
ReLU fp16 223.7µs ± 1.026µs 312.1µs ± 2.308µs

SoftPlus fp16 342.2µs ± 38.08µs 488.5µs ± 53.75µs
Mish fp16 658.8µs ± 1.467µs 1.135ms ± 4.785µs

Mish-CUDA fp16 267.3µs ± 1.852µs 345.6µs ± 1.875µs
ReLU fp32 234.2µs ± 621.8ns 419.3µs ± 1.238µs

SoftPlus fp32 255.1µs ± 753.6ns 420.2µs ± 631.4ns
Mish fp32 797.4µs ± 1.094µs 1.689ms ± 1.222µs

Mish-CUDA fp32 282.9µs ± 876.1ns 496.3µs ± 1.781µs

Table 6: Comparison between the runtime for the forward and backward passes for ReLU,
SoftPlus, Mish and Mish-CUDA activation functions for floating point-16 and floating point-
32 data.

In Table. 6, we show the speed profile comparison between the forward pass (FWD) and
backward pass (BWD) on floating-point 16 (FP16) and floating-point 32 (FP32) data for
ReLU, SoftPlus, Mish, and Mish-CUDA. All runs were performed on an NVIDIA GeForce
RTX-2070 GPU using standard benchmarking practices over 100 runs, including warm-up
and removing outliers.

Table. 6 shows the significant reduction in computational overhead of Mish by using
the optimized version Mish-CUDA which shows no stability issues, mirrors the learning
performance of the original baseline Mish implementation and is even faster than native
PyTorch Softplus implementation in single precision, making it more feasible to use Mish in
deep neural networks. Mish can be further optimized using the exponential equivalent of the
TanH term to accelerate the backward pass, which involves the derivative computation.

5 Conclusion
In this work, we propose a novel activation function, which we call Mish. Even though Mish
shares many properties with Swish and GELU like unbounded positive domain, bounded
negative domain, non-monotonic shape, and smooth derivative, Mish still provides under
most experimental conditions, better empirical results than Swish, ReLU, and Leaky ReLU.
We expect that a hyperparameter search with Mish as a target may improve upon our results.
We also observed that the state of the art data augmentation techniques like CutMix and other
proven ones like Label Smoothing behave consistently with the expectations.

Future work includes optimizing Mish-CUDA to reduce the computational overhead fur-
ther, evaluating the performance of the Mish activation function in other state of the art mod-
els on various tasks in the domain of computer vision, and obtaining a normalizing constant
as a parameter for Mish which can reduce the dependency on using Batch Normalization
layers. We believe it is of theoretical importance to investigate the contribution of the ∆(x)
parameter at the first derivative and understand the underlying mechanism on how it may
be acting as a regularizer. A clear understanding of the behavior and conditions govern-
ing this regularizing term could motivate a more principled approach to constructing better
performing activation functions.

Citation
Citation
{Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, etprotect unhbox voidb@x penalty @M {}al.} 2019

MISRA: MISH ACTIVATION FUNCTION 11

6 Acknowledgements
The author would like to dedicate this work to the memory of his late grandfather, Prof.
Dr. Fakir Mohan Misra. The author would also like to offer sincere gratitude to everyone
who supported during the timeline of this project including Sparsha Mishra, Alexandra Deis
from X – The Moonshot Factory, Ajay Uppili Arasanipalai from University of Illinois - Ur-
bana Champaign (UIUC), Himanshu Arora from Montreal Institute for Learning Algorithms
(MILA), Javier Ideami, Federico Andres Lois from Epsilon, Alexey Bochkovskiy, Chien-
Yao Wang, Thomas Brandon, Soumik Rakshit from DeepWrex, Less Wright, Manjunath
Bhat from Indian Institute of Technology - Kharagpur (IIT-KGP), Miklos Toth and many
more including the Fast.ai team, Weights and Biases community and everyone at Landskape.

References
[1] Owe Axelsson and Gunhild Lindskog. On the rate of convergence of the preconditioned

conjugate gradient method. Numerische Mathematik, 48(5):499–523, 1986.

[2] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal
speed and accuracy of object detection. arXiv preprint arXiv:2004.10934, 2020.

[3] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Pro-
ceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[4] Brad Carlile, Guy Delamarter, Paul Kinney, Akiko Marti, and Brian Whitney. Im-
proving deep learning by inverse square root linear units (isrlus). arXiv preprint
arXiv:1710.09967, 2017.

[5] François Chollet. Xception: Deep learning with depthwise separable convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1251–1258, 2017.

[6] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep
network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289,
2015.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248–255. Ieee, 2009.

[8] Xianzhi Du, Tsung-Yi Lin, Pengchong Jin, Golnaz Ghiasi, Mingxing Tan, Yin Cui,
Quoc V Le, and Xiaodan Song. Spinenet: Learning scale-permuted backbone for
recognition and localization. arXiv preprint arXiv:1912.05027, 2019.

[9] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock: A regularization method for
convolutional networks. In Advances in Neural Information Processing Systems, pages
10727–10737, 2018.

[10] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierar-
chies for accurate object detection and semantic segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 580–587, 2014.

12 MISRA: MISH ACTIVATION FUNCTION

[11] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feed-
forward neural networks. In Proceedings of the thirteenth international conference on
artificial intelligence and statistics, pages 249–256, 2010.

[12] Seyyed Hossein HasanPour, Mohammad Rouhani, Mohsen Fayyaz, and Mohammad
Sabokrou. Lets keep it simple, using simple architectures to outperform deeper and
more complex architectures. arXiv preprint arXiv:1608.06037, 2016.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages 1026–1034, 2015.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling
in deep convolutional networks for visual recognition. IEEE transactions on pattern
analysis and machine intelligence, 37(9):1904–1916, 2015.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[16] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

[17] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Effi-
cient convolutional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017.

[18] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 7132–7141,
2018.

[19] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
connected convolutional networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017.

[20] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[21] Xiaojie Jin, Chunyan Xu, Jiashi Feng, Yunchao Wei, Junjun Xiong, and Shuicheng
Yan. Deep learning with s-shaped rectified linear activation units. In Thirtieth AAAI
Conference on Artificial Intelligence, 2016.

[22] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[23] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-
normalizing neural networks. In Advances in neural information processing systems,
pages 971–980, 2017.

[24] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny
images. 2009.

MISRA: MISH ACTIVATION FUNCTION 13

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[26] Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database. ATT
Labs [Online]. Available: http://yann. lecun. com/exdb/mnist, 2, 2010.

[27] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient
backprop. In Neural networks: Tricks of the trade, pages 9–48. Springer, 2012.

[28] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the
loss landscape of neural nets. In Advances in Neural Information Processing Systems,
pages 6389–6399, 2018.

[29] Xi-Lin Li. Preconditioned stochastic gradient descent. IEEE transactions on neural
networks and learning systems, 29(5):1454–1466, 2017.

[30] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in
context. In European conference on computer vision, pages 740–755. Springer, 2014.

[31] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts.
arXiv preprint arXiv:1608.03983, 2016.

[32] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve
neural network acoustic models. In Proc. icml, volume 30, page 3, 2013.

[33] Rafael Müller, Simon Kornblith, and Geoffrey E Hinton. When does label smoothing
help? In Advances in Neural Information Processing Systems, pages 4696–4705, 2019.

[34] Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann
machines. In Proceedings of the 27th international conference on machine learning
(ICML-10), pages 807–814, 2010.

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library. In Advances in Neural
Information Processing Systems, pages 8024–8035, 2019.

[36] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. Language models are unsupervised multitask learners. OpenAI Blog, 1
(8):9, 2019.

[37] Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions.
arXiv preprint arXiv:1710.05941, 2017.

[38] Joseph Redmon. Darknet: Open source neural networks in c. http://pjreddie.
com/darknet/, 2013–2016.

[39] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

http://pjreddie.com/darknet/
http://pjreddie.com/darknet/

14 MISRA: MISH ACTIVATION FUNCTION

[40] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between cap-
sules. In Advances in neural information processing systems, pages 3856–3866, 2017.

[41] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.
The journal of machine learning research, 15(1):1929–1958, 2014.

[42] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In Proceedings of the IEEE conference on computer vision and pat-
tern recognition, pages 1–9, 2015.

[43] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking model scaling for convolu-
tional neural networks. arXiv preprint arXiv:1905.11946, 2019.

[44] Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet: Scalable and efficient
object detection. arXiv preprint arXiv:1911.09070, 2019.

[45] Chien-Yao Wang, Hong-Yuan Mark Liao, I-Hau Yeh, Yueh-Hua Wu, Ping-Yang Chen,
and Jun-Wei Hsieh. Cspnet: A new backbone that can enhance learning capability of
cnn. arXiv preprint arXiv:1911.11929, 2019.

[46] Robert J Wang, Xiang Li, and Charles X Ling. Pelee: A real-time object detection
system on mobile devices. In Advances in Neural Information Processing Systems,
pages 1963–1972, 2018.

[47] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated
residual transformations for deep neural networks. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 1492–1500, 2017.

[48] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li. Empirical evaluation of rectified
activations in convolutional network. arXiv preprint arXiv:1505.00853, 2015.

[49] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and
Youngjoon Yoo. Cutmix: Regularization strategy to train strong classifiers with lo-
calizable features. In Proceedings of the IEEE International Conference on Computer
Vision, pages 6023–6032, 2019.

[50] Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

[51] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shufflenet: An extremely
efficient convolutional neural network for mobile devices. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 6848–6856, 2018.

[52] Barret Zoph and Quoc V Le. Neural architecture search with reinforcement learning.
arXiv preprint arXiv:1611.01578, 2016.

