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Abstract

The identification and localization of diseases in medical images using deep learning
models have recently attracted significant interest. Existing methods only consider train-
ing the networks with each image independently and most leverage an activation map for
disease localization. In this paper, we propose an alternative approach that learns dis-
criminative features among triplets of images and cyclically trains on region features to
verify whether attentive regions contain information indicative of a disease. Concretely,
we adapt a distance learning framework for multi-label disease classification to differ-
entiate subtle disease features. Additionally, we feed back the features of the predicted
class-specific regions to a separate classifier during training to better verify the localized
diseases. Our model can achieve state-of-the-art classification performance on the chal-
lenging ChestX-ray14 dataset, and our ablation studies indicate that both distance learn-
ing and region verification contribute to overall classification performance. Moreover,
the distance learning and region verification modules can capture essential information
for better localization than baseline models without these modules.

1 Introduction
Radiography has been widely adopted for detecting a number of thoracic diseases. However,
detecting diseases in X-ray images requires the expert knowledge of radiologists, who are
overburdened and often must quickly review each image. Further, the location of an iden-
tified disease is generally not annotated and so may be unclear to another doctor reviewing
the X-ray. Several datasets have been released for disease classification from chest X-ray
images, including [3, 12, 14, 29], and the use of deep learning models in combination with
the datasets has resulted in much progress [4, 5, 16, 23, 29, 30]. Nevertheless, the identi-
fication and localization of thoracic diseases are still challenging due to subtle inter-disease
differences and large intra-disease variations across different subjects and regions.

The only chest X-ray dataset with disease bounding boxes, ChestX-ray14 [29], has boxes
only for the test partition. Under this constraint, it is difficult to apply supervised learning
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Figure 1: Overview of thoracic disease identification and localization trained on chest X-rays and
image-level disease labels. Given a test image, the model predicts how likely the diseases occur in the
image and localizes their corresponding bounding boxes. Multiple diseases could co-exist in an image.

to disease localization, and two popular weakly supervised approaches have been proposed
for disease identification and localization: CAM-based (class activation map) [34] and MIL-
based (multi-instance learning). Both embed an X-ray image using a pre-trained image em-
bedding network such as ResNet [8] or DenseNet [11]. Under CAM-based, the computed
features are used to train a multi-label classifier on disease labels; and localization is per-
formed based on the class activations in the embedding network [22, 29]. In MIL-based, a
grid is formed from the embedded features and each element of the grid is classified as to
which, if any, diseases occur, indicating which diseases occur in the image; and localization
is performed by combining the grid classifications [16, 17].

In this paper, we focus on multi-label, weakly supervised thoracic disease identification
(we will use the terms identification and classification interchangeably) and localization in
chest X-rays using a weakly supervised learning approach (see Figure 1) . Different from ex-
isting methods that learn a neural network model on each image independently, we leverage
distance learning [1, 10, 13, 26, 32, 33] to learn sufficient feature representations to tackle
multi-label disease classification. In particular, we exploit triplets of images as the inputs to
drive the similarity metric to be small for the pairs of images with similar diseases, and large
for the pairs with different ones. Furthermore, we propose a region verification module that
feeds back the class-specific attentive regions to verify those regions important to disease
classification. The size of the regions vary, in contrast to the full images used with previous
CAM-based approaches and the smaller contexts from the grids used in the MIL-based ap-
proaches. Finally, with the well-learned disease features, our model can be used for disease
localization by incorporating weakly-supervised object detection methods such as CAM.

Evaluation on the ChestX-ray14 dataset shows that our model achieves state-of-the-art
classification performance and consistently outperforms CAM and MIL baselines for multi-
ple diseases. Ablation studies indicate that both distance learning and region verification help
classification performance, with the strongest contribution from region verification. More-
over, our experiments also indicate that both modules improve disease localization over base-
line models without these modules, strengthening the support to the improvement on clas-
sification since the diseases are better localized by verified regional features. In conclusion,
our contributions include: (1) design an end-to-end framework for training multi-label dis-
ease classification and weakly supervised localization simultaneously; (2) extend distance
learning to multi-disease medical images; (3) propose region verification to align disease
classification of a whole image and the local context surrounding the disease.
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2 Related Work

Disease identification. Recently, significant progress on X-ray classification and detection
has been made using deep neural networks. Bar et al. [2] presented an early examination
of the strength of deep learning approaches for pathology detection in chest radiographs.
A number of works developed thoracic disease classification models on the more compre-
hensive ChestX-ray14 dataset [4, 7, 16, 17, 22, 23, 29]. Wang et al. [29] and Rajpurkar et
al. [22, 23] explored the use of deep learning models for disease classification. Li et al. [16]
proposed to unify the training of image-level and box-level labels in one framework with
a customized MIL loss where disease classification is performed on a grid over the image.
Several works applied an attention mechanism to chest X-ray analysis [4, 7, 21]. For ex-
ample, Guan et al. [7] designed an attention guided two-branch network for thorax disease
classification, which helps amplify the high activation regions. Cai et al. [4] presented an
attention mining strategy to improve the model’s sensitivity or saliency to disease patterns.
Liu et al. [17] proposed an alternative method for computing attention based on the differ-
ence between the input image and an image without any disease (a “negative image”), but
did not employ the pair in distance learning. Different from the above methods that only
consider single/pair-level image information and class-agnostic attention features, we take
advantages of triplets of images with distance learning for multi-label disease classification
and cyclically train [20] the networks with class-specific attentive region features.

Weakly-supervised disease localization. Fully supervised detection methods have achieved
great success in identifying objects when trained on a vast number of bounding box anno-
tations [6, 18, 24, 25]. However, such annotations are very expensive to create manually
for medical images, requiring busy radiologists to do the annotation. Therefore, weakly su-
pervised approaches to object localization using disease labels for an image are commonly
used. One popular approach when classification is performed over the full image is to es-
timate disease locations based on class activation maps (CAM) [34] or gradient-weighted
class activation maps (Grad-CAM) [27]. Zhou et al. [34] utilized a global average pool-
ing layer for neural networks to generate CAM that are used to localize objects. The use
of CAM-based methods was employed by [4, 7, 9, 16, 22, 23, 29]. Often, the thresholded
CAM activations are referred to as “attention” or “attentive regions”. In another approach
employing MIL as used by Li et al. [16] and Liu et al. [17], the cells of the image grid for
which diseases are predicted are combined to predict disease locations. Most prior works
leverage attentive activation maps to localize disease regions while neglecting the domain
gap between classification and localization results. We propose region verification which
feeds back CAM-based region features to a local classifier to verify the disease localized by
CAM. Our region verification module is class-specific and could be also incorporated with
other weakly-supervised object localization methods.

Distance learning. Distance (metric) learning (DML) generally works with two types of
data: pair-wise with must-link and cannot-link constraints, and triplet constraints that con-
tains a similar pair and a dissimilar pair. The triplet loss with semi-hard mining was intro-
duced in [26] to compute image embeddings for identifying faces and extended to improve
performance or computation [1, 10]. While earlier distance learning tasks focused on re-
identification [19, 28, 33] of one class of object per image, we investigate how distance
learning can be extended to multi-label disease images. Instead of directly using the disease
features extracted by the pre-trained deep model, we present a first attempt to employ triplet
learning for a multi-label disease classification task.
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Figure 2: Framework of disease identification and localization. Our model takes triplets of images
as the inputs, i.e., anchor, positive, and negative for distance learning, and feeds back the CAM-based
attentive feature to the region classifier for disease verification. The pipeline is trained end-to-end.

3 Approach

An overview of our proposed training framework is shown in Figure 2. Our model takes
triplets of images as the input and consists of three parts: (1) multi-label classification of
the anchor image with a conventionally trained binary cross entropy (BCE) loss (2) distance
learning with triplet loss and multi-label hard example mining and (3) region verification of
attentive local areas with BCE loss. We jointly train the three loss functions end-to-end. We
next describe each component.

3.1 Multi-label classification

A disease identification model takes an input X-ray image xxx and predicts a confidence score
for each disease c by

p(yc|xxx) = σ(www⊤
c fθθθ (xxx)), (1)

where fθθθ (·) is an embedding network parameterized by θθθ , and wwwc is the linear classifier of
disease type c. Here we formulate disease identification as a multi-label classification prob-
lem. Given a training set Dtr = {xxxn,yyyn}N

n=1, in which xxxn is the input image to be classified
and yyyn ∈ ∆C is a vector on the C-dimensional simplex. C is the size of the disease types. We
train the embedding network using empirical risk minimization (ERM) with BCE loss:

L(θθθ ,WG;Dtr) =−∑
n

∑
c

yyyn,c log p(yn,c|xxxn)+(1− yyyn,c) log(1− p(yn,c|xxxn)), (2)

where the global branch classifier WG = {wwwc}C
c=1 and stochastic gradient descent (SGD)

optimization is applied with uniformly sampled instances from Dtr.
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3.2 Multi-label distance learning with triplet loss
We adapt a multi-label classification system to use a triplet loss to encourage images with at
least one common disease to be close together in feature space, and images without any com-
mon disease to be far apart in feature space. A triplet loss minimizes the distance between
the image to be classified, or anchor, and another image of the same type. We examined two
cases as positive examples: (1) only images with an identical set of labels and (2) images
from case (1) and also images with partial label matches. Negative examples were defined
as images for which the intersection of disease labels with the anchor is null. Since small
batches may not contain exact matches for some label combinations, we also proposed to
pre-compute similarity on a randomly selected subset of exact match, partial match, or no
match images, rather than by batch during training, leading to more efficient training.

Specifically, we consider a distance (triplet) learning constraint set Ddl given as follows:

Ddl = {(xxxi,xxx+i ,xxx
−
i )|(xxxi,xxx+i ) ∈ P;(xxxi,xxx−i ) ∈N}, (3)

where i = 1,2, . . . ,M (M is the cardinality of the entire triplet set). P contains positive
pairs and N includes negative pairs. We denote the similarity of two samples as ℓ2 distance
between the feature embeddings and define the hinge loss for one triplet given the anchor xxxi:

l(xxxi,xxx+i ,xxx
−
i ) = [

∥∥ fθθθ (xxxi), fθθθ (xxx
+
i )

∥∥−∥∥ fθθθ (xxxi), fθθθ (xxx
−
i )

∥∥+m]+, (4)

where m is a margin (0.5 in the experiments) that is enforced between positive and negative
pairs. Therefore the triplet loss is minimized over all possible triplets in the distance learning
set Ddl, which can be computed as:

L(θθθ ;Ddl) = ∑
(xxxi,xxx+i ,xxx−i )∈Ddl

l(xxxi,xxx+i ,xxx
−
i ). (5)

Hard example mining. The distance learning constraint set Ddl is constructed by hard ex-

ample mining, i.e., selection of semi-hard training examples relative to the anchor image, to
make training a model more effective [26]. To identify harder examples for training, we sort
the set of positive images and the set of negative images for an anchor image by perceptual
similarity to the anchor using a perceptual hash [17, 31]. To reduce computation prior to
sorting for identifying hard examples for an anchor, a randomly selected set of 1000 nega-
tive examples, and a randomly selected set of up to 500 positive examples were identified
for each anchor. To give preference to exact matches when partial matches are used, we set
25% of the positive examples to be partial matches, while the remainder are exact matches.
The examples for each anchor are randomly selected with a bias towards easier examples
initially and the hardest examples after 10 epochs.

3.3 Region verification
Intuitively, if the disease location is predicted incorrectly, the classification will likely be
incorrect. To align disease localization and classification, we propose to feed the attentive
region features into another region classifier for cyclical training, namely region verification
(RV). In the existing single-class CAM approach, weighted activations for a single class are
used for localization. In contrast, in our multi-label setting, there can be multiple classes. To
handle this, we compute class-dependent activations by projecting back the weights of the
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output layer separately for each class. We then merge the attentive regions of all identified
classes (labeled for training, predicted for testing) in each image and zero out the activations
of non-attentive regions to use as features in region verification. This also contrasts with
related work that uses class-independent, high activation regions.

As shown in Figure 2, we use CAM [34] to identify the region, where the activations at
the last layer of DenseNet are extracted with the weights of global image classifier:

Mc(a,b) = ∑
k

wk
c ·gk(a,b), (6)

where wk
c is the scalar weight of disease class c for feature k. We use gk(a,b) to denote a value

of 2-dimensional spatial point (a,b) with feature k in map gk from the final convolutional
layer of DenseNet-121, where the sizes of k and gk are 1024 and 1024×7×7, respectively.

To extract attentive region features, our class-specific activation map considers all feature
maps associated to only “positive” diseases (labels) in the anchor image:

M(a,b) = ∑
c
1[yc = 1] ·Mc(a,b). (7)

Next, we normalize the activation map to [0, 1] over the difference between the maximum
and minumum value over all features. The locations of feature activations that are greater
than a fixed threshold (we empirically set to 0.8 in the experiments) are identified. Then
a rectangular bounding box around the thresholded activations is computed and features
outside the bounding box are zeroed. The resulting features are fed into the region classifier,
which is a separate classifier randomly initialized. Finally, we optimize the region classifier
and the shared embedding network by using a binary cross entropy loss as follows:

L(θθθ ,WRV ;Dtr) =−∑
n

∑
c

yyyn,c logσ(vvv⊤c f ′θθθ (xxx))+(1− yyyn,c) log(1−σ(vvv⊤c f ′θθθ (xxx))), (8)

where WRV = {vvvc}C
c=1 is the region verification classifier and f ′θθθ is the distilled CAM-based

attentive region feature.

3.4 Joint learning and inference
We jointly optimize the parameters of the model. The gradients are computed from three
losses. The main loss L(θθθ ,WG;Dtr) refers to binary cross entropy loss associated with the
whole image prediction from Equation 2. We backpropagate this loss to optimize the pa-
rameters of the feature embedding network and global classifier WG. The region verification
loss L(θθθ ,WRV ;Dtr) is another binary cross entropy loss for disease class predictions from
attentive region features from Equation 8. We use this loss to optimize the shared feature
embedding parameters θθθ and region verification classifier WRV . By doing so, we further
improve the model’s ability to capture intra-image subtle disease features. Based on Equa-
tion 5, L(θθθ ;Ddl) is the triplet loss during learning of inter-image relationships from distance
learning set Ddl. We obtain the final loss Ltotal by adding the three losses together:

Ltotal(θθθ ,WG,WRV ;Dtr) = L(θθθ ,WG;Dtr)+L(θθθ ,WRV ;Dtr)+L(θθθ ;Ddl) (9)

Disease identification. We average the decision values by considering both global and re-
gion classifiers to compute the confidence score for each disease:

ptotal(yc|xxx) = σ(www⊤
c fθθθ (xxx)+ vvv⊤c f ′θθθ (xxx)). (10)
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Disease localization. We average the weights of the global and region classifiers to compute
the activation map for one disease c:

Mc(a,b) = ∑
k

1
2
(wk

c + vk
c) ·gk(a,b). (11)

We normalize the activation map Mc(a,b) and apply a selected threshold to generate the
predicted bounding box. Details and qualitative results can be found in the experiments.

4 Experiments

4.1 Setup

Dataset. We evaluate our approach on the NIH ChestX-ray14 dataset [29], which consists
of 112,120 frontal-view X-ray images of 30,805 patients with 14 disease labels and each
image can have multi-labels, and we follow its official train/test split. In a subset of the test
set used for evaluation of the localization task, 880 images are labeled with 984 bounding
boxes for 8 diseases by board-certified radiologists. We reserved 10% of the images from
the training set as validation based on patient ID, thus insuring that images of an individual
patient are present in only one of the train, validation or test sets. Consequently, we split data
into 77,821/8,703/25,596 images for training/validation/testing.

Evaluation metrics. We follow [16, 17, 29] to evaluate our approach. For disease classifi-
cation, we use AUC scores (the area under the ROC curve) to measure the performance. For
disease localization, we evaluate the detected regions against the ground truth (GT) bound-
ing boxes, using accuracy for a given intersection over union ratio (IoU). The localization
results are only calculated for those 8 disease types with GT provided. A correct localization
is defined when IoU > T, where T is the threshold.

Implementation details. We resize the original 3-channel X-rays from 1024 × 1024 to 224
× 224 for faster processing. We apply a 5 degree random rotation and horizontal flipping
during training for data augmentation. The DenseNet-121 [11] model, pretrained with Ima-
geNet, is used as the backbone because of its better performance on disease classification as
shown in [22]. For all models, we train for at most 30 epochs using SGD with Adam [15].
The initial learning rate is 10−3, which is divided by 10 after E epochs. We tune E on the
validation set and choose the best model via validation performance. For disease localiza-
tion, since no box annotations are available for validation, we apply the same threshold on
CAM for each disease type using 10-fold cross-validation of the test data to predict bounding
boxes and report the results on the localization set.

4.2 Disease identification
Main results. We compare our model’s disease identification performance to four baselines
as shown on the left side of Table 1 on the official test split of the ChestXray14 dataset.
We did not compare against Guan et al. [7] who tested on a different split. The left two
[22, 29] are whole image, CAM-based models and the right two [16, 17] are MIL-based
models. Note that Li et al. [16] and CIA-Net [17] used a combination of 70% unannotated
data and 70% annotated cross-validation test data for training. The other models, including
ours, are trained only on unannotated data. The results show that our model, which uses
region verification and distance learning, outperforms all baselines on average, and is the
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Disease [29] [22]∗ [16]⋄ [17]⋄ Ours w/o RV w/o DL
Atelectasis 0.700 0.755 0.80 0.79 0.845 0.802 0.833

Cardiomegaly 0.810 0.867 0.87 0.87 0.905 0.856 0.887
Effusion 0.759 0.815 0.87 0.88 0.877 0.849 0.861

Infltration 0.661 0.694 0.70 0.69 0.817 0.797 0.799
Mass 0.693 0.802 0.83 0.81 0.859 0.826 0.835

Nodule 0.669 0.735 0.75 0.73 0.824 0.752 0.792
Pneumonia 0.658 0.698 0.67 0.75 0.804 0.751 0.791

Pneumothorax 0.799 0.828 0.87 0.89 0.871 0.802 0.858
Consolidation 0.703 0.722 0.80 0.79 0.810 0.774 0.803

Edema 0.805 0.835 0.88 0.91 0.862 0.813 0.857
Emphysema 0.833 0.856 0.91 0.93 0.896 0.757 0.879

Fibrosis 0.786 0.803 0.78 0.80 0.849 0.793 0.836
Pleural_Thickening 0.684 0.749 0.79 0.80 0.829 0.779 0.805

Hernia 0.872 0.894 0.70 0.92 0.927 0.823 0.832
Mean 0.745 0.789 0.81 0.83 0.855 0.798 0.833

Table 1: AUC-ROC score of different disease identification methods. Our model outperforms
state-of-the-art methods, including Wang et al. [29], CheXNet [22], Li et al. [16], and CIA-Net [17].
The ablation results (gray) of variants of our model without region verification (RV) and distance
learning (DL) are better than vanilla DenseNet-121 [22] without these modules. Note that ⋄ denotes
using additional bounding box supervision and ∗ denotes based on our implementation; results for other
models are from the papers. Bold and underline indicate the best and second best results, respectively.

top-performing model for 10 of the 14 diseases, indicating the effectiveness of joint use of
region verification and distance learning for improving disease identification performance.

Our end-to-end framework can be applied to various other backbones with modest hyper-
parameter tuning such as changing the input image resolution and threshold of CAM. We
tested the performance of the vanilla ResNet-50 [8] network, which achieved 0.770 mean
AUC-ROC. When ResNet-50 was used as the backbone in our proposed model, it achieved
0.822 mean AUC-ROC, demonstrating the applicability and effectiveness of distance learn-
ing and region verification modules when applied to another popular backbone network.

Ablation studies. We show ablation studies in Table 1. We consider the individual contribu-
tions of region verification and of distance learning to our model’s performance on the right
side of Table 1 (in gray). Note that use of both modules improves on the performance of
one alone, indicating that they model complementary information. We can further compare
the performance of our base model with only distance learning (labeled “w/o RV”) or only
region verification (labeled “w/o DL”) to the column headed [22], which we re-implemented
and which serves as a base model to which the region verification and distance learning
modules are added. We can note that each module alone improves performance over the
baseline.

Learning with hard examples. In our model in Table 1, the hard positive examples included
partial label matches (Section 3.2). When positive/negative examples are randomly selected
without considering hardness, performance decreases from 0.855 to 0.840, verifying the
utility of hard examples. Including partial matches vs. identical matches only performed
similarly (0.855 vs. 0.853), indicating positive examples need not include partial matches.
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T (IoU) Method Ate. Car. Eff. Inf. Mas. Nod. Pn1 Pn2 Mean

0.1

[29] 0.69 0.94 0.66 0.71 0.40 0.14 0.63 0.38 0.57
[16]⋄ 0.71 0.98 0.87 0.92 0.71 0.40 0.60 0.63 0.73
[17] 0.39 0.90 0.65 0.85 0.69 0.38 0.30 0.39 0.60
Ours 0.59 0.99 0.85 0.76 0.61 0.23 0.68 0.49 0.65

0.3

[29] 0.24 0.46 0.30 0.28 0.15 0.04 0.17 0.13 0.22
[16]⋄ 0.36 0.94 0.56 0.66 0.45 0.17 0.39 0.44 0.50
[17] 0.34 0.71 0.39 0.65 0.48 0.09 0.16 0.20 0.38
Ours 0.51 0.96 0.56 0.67 0.45 0.16 0.43 0.21 0.50

0.5

[29] 0.05 0.18 0.11 0.07 0.01 0.01 0.03 0.03 0.06
[16]⋄ 0.14 0.84 0.22 0.30 0.22 0.07 0.17 0.19 0.27
[17] 0.19 0.53 0.19 0.47 0.33 0.03 0.08 0.11 0.24
Ours 0.20 0.92 0.19 0.39 0.20 0.06 0.18 0.04 0.27

0.7

[29] 0.01 0.03 0.02 0.00 0.00 0.00 0.01 0.02 0.01
[16]⋄ 0.04 0.52 0.07 0.09 0.11 0.01 0.05 0.05 0.12
[17] 0.08 0.30 0.09 0.25 0.19 0.01 0.04 0.07 0.13
Ours 0.04 0.72 0.03 0.15 0.02 0.00 0.03 0.01 0.13

Table 2: Accuracy (in %) of different disease localization methods under various T (IoU). Using
the CAM [34] weakly-supervised localization method, our model is on par or even surpasses SOTA
methods, including Wang et al. [29], Li et al. [16], and CIA-Net [17]. ⋄ denotes using additional
bounding box supervision. Pn1: Pneumonia. Pn2: Pneumothorax.

Model IoU (0.1) IoU (0.3) IoU (0.5) IoU (0.7)
Full model 0.65 0.50 0.27 0.13

w/o DL 0.62 0.49 0.27 0.06
w/o RV 0.60 0.48 0.24 0.10

Table 3: Ablation studies on distance learning (DL) and region verification (RV) modules for disease
localization. We show overall accuracy with different thresholds.

4.3 Disease localization

Main results. We compare the localization performance of our model to the three baseline
models used in Table 2 that provided quantitative localization results. For the MIL-based
models [16, 17], we compare when the models are trained without any test data; that is,
when no disease bounding boxes are used (in cross-validation). The performance of our
model was similar to that of the best performing model, Li et al. [16], except when T (IoU)
was 0.1, where it was second best.

Ablation studies. We analyze the effect of different modules for disease localization. In Ta-
ble 3, we show ablation results of full models without distance learning and region verifica-
tion, respectively. Note that each of the modules does contribute to the overall performance
of the model, and that overall, region verification contributed more strongly. This stronger
contribution may be expected since region verification tends to insure that the identified re-
gion contains the features of the targeted disease.

Qualitative results. We show qualitative results in Figure 3 for one example of each of
the 8 diseases with location labels. We observe for these images that the probability of the
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(6) Nodule (0.8291) (7) Pneumonia (0.9790) (8) Pneumothorax (0.6406)

(3) Effusion (0.6995) (4) Infiltrate (0.8650) (1) Atelectasis (0.8468) (2) Cardiomegaly (0.8351)

(5) Mass (0.8107)

00020810_003 00012288_000 00026555_001 00016417_008

00026261_001 00027470_006 00010610_003 00016429_015

Figure 3: Qualitative results of 8 disease types. For each sample, we show the original image,
CAM-based [34] heat map, localization result as well as confidential score. Green and red boxes
indicate ground truth and predicted result, respectively. Image IDs are in the top-left corner.

disease, shown next to the disease name, indicates that the disease is present and that the
high activations in the heatmap are aligned with the ground truth disease locations.

5 Discussion
In this paper we proposed the use of distance learning and region verification for disease
identification and localization. We used disease-specific region features which provide a
variable size context. Our ablation studies indicate that this strongly improves disease iden-
tification and localization performance. This strong contribution may be expected since
region verification tends to insure that the identified region contains the features of the tar-
geted disease. We also investigated the use of distance learning with hard example mining
for a multi-label task. We observed that use of triplets containing hard examples improves
performance, and that the positive examples can be selected from either identical disease
label matches only or also include partial label matches. Our experiments showed that each
method individually leads to performance improvement, and together offer state-of-the-art
performance for disease identification and competitive performance for localization.
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