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Abstract

Unsupervised deep learning methods have shown promising performance for single-
image depth estimation. Since most of these methods use binocular stereo pairs for
self-supervision, the depth range is generally limited. Small-baseline stereo pairs pro-
vide small depth range but handle occlusions well. On the other hand, stereo images
acquired with a wide-baseline rig cause occlusions-related errors in the near range but
estimate depth well in the far range. In this work, we propose to integrate the ad-
vantages of the small and wide baselines. By training the network using three hor-
izontally aligned views, we obtain accurate depth predictions for both close and far
ranges. Our strategy allows to infer multi-baseline depth from a single image. This
is unlike previous multi-baseline systems which employ more than two cameras. The
qualitative and quantitative results show the superior performance of multi-baseline ap-
proach over previous stereo-based monocular methods. For 0.1 to 80 meters depth range,
our approach decreases the absolute relative error of depth by 24% compared to Mon-
odepth2. Our approach provides 21 frames per second on a single Nvidia1080 GPU,
making it useful for practical applications. The code and dataset are publicly available at
https://github.com/saadi297/MultiBaselineDepth

1 Introduction
Depth estimation is a commonly studied problem in computer vision due to the large number
of applications. Accurate depth information is important for tasks such as 3D reconstruction
and autonomous navigation. In the past, active techniques such as time-of-flight [46] and
structured light [32], and passive systems based on stereo matching [31], and structure from
motion (SFM) [36] have been used for depth estimation.

Recently, with the advancement of deep learning, many researchers have used Convo-
lutional Neural Networks (CNNs) with self-supervision for single image depth estimation.
Self-supervised methods for monocular depth estimation have shown promising performance
in recent years. These methods treat depth estimation as an image reconstruction problem.
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More specifically, a CNN is trained to generate disparity maps that are used to reconstruct
the target images from the reference images. Self-supervised methods are preferred over
supervised deep learning approaches as the former do not require ground truth depth data,
which is expensive and hard to gather.

Existing monocular depth estimation models can be trained by either using monocular
video or rectified stereo pairs. These approaches have some challenges. Besides training a
depth estimation network, monocular video-based methods also require relative pose infor-
mation between the adjacent frames in a sequence. On the other hand, stereo approaches
do not require training a pose estimation network and are more effective than video-based
methods. Despite this advantage, existing stereo techniques use two cameras (left and right
images) with a fixed baseline for training, which can cause occlusion and limited depth
range.

To deal with these problems, researchers have proposed multi-camera systems [15, 25]
with multiple baselines. The advantage of a multi-baseline setup is that it can provide good
depth accuracy both in near and far ranges compared to standard stereo, which only works
well in a certain range. However, the problems with such systems are that they are quite
expensive and have high computational load due to multiple cameras; hence, they are not
commonly used. In this paper, we aim to improve disparity estimation with a monocular
camera by leveraging multiple baselines at training time.

We present an unsupervised learning approach that uses two different baselines during
training and a single image at test time. Our approach makes use of the advantages of multi-
baseline stereo without increasing the computational complexity at inference. In contrast
to two-camera stereo-based monocular methods, our method gives improved disparity maps
in both near and far ranges. To our knowledge, we are the first to employ the principle
of multi-baseline to unsupervised disparity estimation. Experimental results show that our
method yields much improved results compared to stereo-based self-supervised monocular
depth estimation.

2 Related Work
Although various methods have been proposed in the past to extract depth from images, we
discuss the literature related to our work only.

Classical Stereo Depth Estimation. Stereo matching that involves two horizontally
displaced cameras to observe a given scene is one of the most popular approaches. The shift
between the corresponding pixels in observed left and right images gives the disparity, which
is inversely proportional to the depth at the pixels. Traditional stereo matching algorithms
usually include all or some of the four tasks: computing the matching cost, aggregating the
cost, computing the disparity, and refining the disparity. A detailed description of these tasks
is given in [31]. Among different stereo matching techniques, semi-global matching (SGM)
[14] is one of the most frequently used approaches because of its efficiency. Single baseline
stereo setup poses some problems. For example, using wider baseline increases the chance of
false matches due to large disparity search range. On the other hand, short baseline reduces
the risk of false matching but suffers from poor accuracy in the far range. It is well known
that using more views can solve these problems. Ito and Ishii [17] proposed using three views
in a triangular configuration to improve the matching and handle the occlusion. Okutomi and
Kanade [25] generated multiple baselines by laterally displacing the camera. They showed
that matching across different baseline stereo images circumvents the problem of incorrect
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matching and results in more accurate disparity maps. Gallup et al. [7] proposed a multi-
baseline, multi-resolution technique and achieved a constant depth accuracy by changing the
baseline and resolution accordingly. Honegger et al. [15] used four cameras in a parallel
arrangement to propose a multi-baseline stereo system that works in real time.

Supervised Monocular and Stereo Depth Estimation. Many supervised learning based
schemes have been proposed for depth extraction. Make3D [30] modified a Markov Random
Field (MRF) to predict the 3D structure of a scene from a single image. Eigen et al. [5] used
two neural networks to infer monocular depth by combining global and local structure of the
input image. Lie et al. [21] showed the advantage of jointly training a CNN and a conditional
random field (CRF) for monocular depth estimation. In [6], authors treat monocular depth
estimation as an ordinal regression problem, while in [20], authors use relative depth maps to
achieve state-of-the-art results. Many researchers have used deep learning for stereo depth
estimation. Zbontar and LeCun [42] proposed two network architectures to compare im-
age patches for computing the stereo matching cost followed by traditional post-processing
steps. Luo et al. [22] obtained better results by treating stereo matching problem as a multi-
class classification task. Kendall et al. [19] presented an end-to-end learning technique for
disparity estimation, which does not require additional post-processing. In [41], authors pro-
posed a multi-scale approach to predict depth from unrectified stereo images. Tosi et al. [37]
combined local and global features to obtain accurate confidence scores. Tulyakov et al.
[39] proposed a stereo matching technique to deal with large memory and dynamic dispar-
ity range requirements. Zhang et al. [43] introduced two additional layers for efficient and
accurate cost aggregation. In [4], authors proposed a faster method of stereo matching by
discarding most of the disparities during cost aggregation.

Unsupervised Monocular and Stereo Depth Estimation. Currently, unsupervised
methods for depth estimation are becoming more popular as they do not require expensive
ground truth data. Garg et al. [8] were the first to propose a fully unsupervised approach
for monocular depth estimation. They used rectified stereo images for training and per-
formed Taylor series expansion to linearize the image warping process. Godard et al. [10]
used the bilinear sampler [18] for image warping and introduced left-right consistency loss
to obtain accurate depth results. In [29], authors imposed trinocular stereo assumptions to
yield enhanced depth results. Poggi et al. [28] deployed a pyramidal architecture to enable
monocular depth estimation on embedded systems, while the authors in [27] used adversarial
learning for stereo depth estimation. Tosi et al. [38] added proxy supervision by obtaining
disparity maps through traditional stereo matching technique. SuperDepth [26] incorporated
Single-Image Super-Resolution (SISR) [33] technique to obtain high resolution disparity
maps. Recently, many researchers have used monocular videos for self-supervision to pre-
dict depth from a single image [11, 12, 45]. Our method uses multi-baseline stereo images
as self-supervision for monocular depth estimation.

3 Unsupervised Multi-Baseline approach
Although supervised learning can be used for multi-baseline stereo, it has its problems.
We can extend the work of [39, 42] to match more than two views, however, using such
approaches has two major drawbacks. First, they require pixel-wise labelling to generate
ground truth depths for training. Second, we also need to use more than two cameras at test
time to perform matching, which is highly undesirable. Therefore, we train the model in a
self-supervised fashion and use a single image for inference.
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Figure 1: The concept behind our training approach. bsmall and blarge refer to small and wide
baselines, respectively.

Figure 1 shows the basic idea of our approach. For training, we use three aligned views
to get two different baselines. The images IL and IR1 act as a small-baseline stereo system,
and hence have fewer occlusions [2] but provide accurate near depth. On the other hand, the
images IL and IR2 act as a wide-baseline stereo system, and thereby have more occlusions but
provide accurate depth at far range. The network outputs occlusion mask M, small-baseline
disparity ds, and disparity dm. The purpose of occlusion mask is to find the occluded pixels in
the disparity dm. The disparities at these occluded pixels are replaced by the corresponding
small-baseline disparities using disparity assignment loss. This is based on the assumption
that occlusion is not a serious problem for small-baseline stereo systems. In the remaining
text, dm will indicate multi-baseline disparity.

3.1 Proposed Network
Given the three rectified images during training, our network learns to infer depth from a
single image at test time. As depicted in Figure 2, the left image IL is fed into the network.
We use a shared encoder and three decoders to train the model. Each of the decoders has
its own purpose. Decoder 1 utilizes small-baseline image pair IL and IR1 to generate small-
baseline disparity map ds, whereas Decoder 2 uses wide-baseline stereo images IL and IR2
for self-supervision to generate left disparity dl and right disparity dr, respectively. Multi-
baseline disparity dm is generated by Decoder 3, which makes use of the image IL, small-
baseline disparity ds, and the occlusion mask M for supervision.

Similar to [13], we compute the occlusion mask M using the left-right consistency check
between the output disparities of Decoder 2,

M = |d′l −dl |> 1, (1)

where d′l is obtained by warping dr to dl . In occluded areas, disparities will have different
values [9]; therefore, we set the threshold to greater than 1 pixel. We assign 1 and 0 to
occluded and non-occluded pixels, respectively.
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Figure 2: Illustration of our multi-baseline approach. We use three decoders for training.
At test time, we only use Decoder 3 to output disparity dm. Occlusion mask M is computed
using left-right consistency check. The function fw performs warping operation. Dotted
lines represent internal signals.

Our network architecture is similar to the encoder-decoder architecture of [10]. The
encoder is based on VGG16 [35] and all the decoders have same architecture, except Decoder
2 has two output channels for the disparity maps. Each decoder outputs disparity maps at
four scales: one-eighth, quarter, half and full resolutions. Note that the three decoders are
only needed for training. Only Decoder 3 is used at inference.

3.2 Training Losses
We train our network with multiple losses. In addition to image reconstruction loss La and
disparity smoothness loss Ls, we also use disparity assignment loss Lda. All the losses are
minimized at four scales.

Image Reconstruction Loss Following [10], we use the weighted sum of SSIM [40] and
L1 loss to minimize the photometric error between the reconstructed and original images,

La(I, I′) =
1
N ∑

i, j

(
α

1−SSIM(Ii j, I′i j)

2
+(1−α)

∣∣Ii j− I′i j
∣∣ ), (2)

where N is the number of pixels, and I and I′ are the original and reconstructed images. To
compute SSIM, we use a block filter of size 3x3 instead of a Gaussian. SSIM loss is based
on three measurements: contrast, luminance and structure. Hence, it is also effective in case
of high illumination differences between left and right stereo images. α is set to 0.85 based
on results in [44].

Disparity Smoothness Loss Similar to [10], we define an edge-aware smoothness loss
to deal with disparity discontinuities.

Ls(d, I) =
1
N ∑

i, j
|∂xdi j|e−|∂xIi j |+ |∂ydi j|e−|∂yIi j |. (3)
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Here d is the disparity, I is the corresponding image, and ∂x, ∂y are the horizontal and vertical
gradients, respectively. Note that this loss discourages disparity smoothness in absence of
small image gradients.

Disparity Assignment Loss To replace the occluded pixels of the disparity map dm (Fig.
2) by the small-baseline disparity map ds, we again employ the combination of L1 and SSIM
losses as

Lda(ds,dm) = M · 1
N ∑

i, j

(
β

1−SSIM(r ·ds,dm)

2
+(1−β ) |r ·ds−dm|

)
, (4)

where β is the weighting factor set to 0.85 based on experiments (see supplementary mate-
rial), and r is the ratio of wide baseline to small baseline. The occlusion mask M ensures
that only occluded pixels are considered. The factor r is used to scale the disparity ds to
match the disparity range of dm. To ensure that the disparity dm follows the disparity ds in
occluded regions, the gradients for this loss function are not computed with respect to ds. In
other words, only the weights of Decoder 3 will change to minimize Lda. The total loss is the
combination of image reconstruction losses Lrecon, smoothness losses Lsmooth and Decoder 3
loss Ldec3.

Ltotal = Lrecon +λ (Lsmooth)+Ldec3, (5)

where λ is the weighting factor set to 0.1. The losses Lrecon, Lsmooth and Ldec3 are defined as
follows:

Lrecon = La(IL, I′L1)+La(IL, I′L2)+La(IR2, I′R2) (6)

Lsmooth = Ls(ds, IL)+Ls(dl , IL)+Ls(dr, IR2) (7)

Ldec3 = (1−M) ·La(IL, I′L3)+Lda(ds,dm)+λ ·Ls(dm, IL). (8)

In Eq. 8, the term (1−M) ensures that the occluded pixels do not contribute to the image
reconstruction loss La(IL, I′L3). The occluded pixels are filled using Lda loss only.

4 Experimental Results
Due to the unavailability of multi-baseline stereo datasets, researchers have not investigated
the advantages of using more than one baseline during training. Although some researchers
[23, 34] have acquired trinocular stereo datasets from Bumblebee XB3 camera, they are more
focused on localization and mapping. Moreover, these datasets do not provide the calibration
parameters to horizontally align the three views. As the existing stereo-based unsupervised
methods require rectified image pairs for training, such datasets are not feasible to use for the
task of multi-baseline depth estimation. We develop our own dataset to show the importance
of using multiple baselines during training.

We evaluate the effectiveness of our approach both qualitatively and quantitatively. We
compare the performance of our approach with the stereo-based methods proposed in the
past. We compare our results against Monodepth [10], monoResMatch [38], Monodepth2
[11], and 3Net [29]. For fair comparison, we train monoResMatch without the proxy-
supervised loss. The results validate that the proposed approach yields more accurate dispar-
ity predictions.
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Lower the better Higher the better
Method Baseline AbsRel SqRel RMSE RMSELog δ <1.25 δ <1.252 δ <1.253

Depth Range = 0.1-10 m
Monodepth [10]+pp 10cm 0.2378 14.9776 9.321 0.311 0.962 0.973 0.976
Monodepth[10]+pp 54cm 0.3667 24.9676 10.709 0.387 0.953 0.966 0.971

3Net [29]+pp 10cm 0.2076 13.3266 8.868 0.298 0.970 0.977 0.979
3Net [29]+pp 54cm 0.9180 65.9368 14.974 0.612 0.920 0.935 0.942

monoResMatch [38]+pp 10cm 0.5110 35.2223 9.324 0.330 0.958 0.966 0.969
monoResMatch [38]+pp 54cm 0.1784 11.8352 7.499 0.250 0.974 0.981 0.984

Monodepth2 [11] 10cm 0.1182 7.0760 6.892 0.221 0.980 0.986 0.988
Monodepth2 [11] 54cm 0.1863 12.5571 6.949 0.238 0.975 0.982 0.984

Ours 10cm,54cm 0.1232 7.6787 6.273 0.207 0.979 0.986 0.988
Depth Range = 10-80 m

Monodepth [10]+pp 10cm 0.2027 3.8602 9.929 0.311 0.727 0.883 0.940
Monodepth[10]+pp 54cm 0.1772 3.0741 9.834 0.321 0.753 0.882 0.934

3Net [29]+pp 10cm 0.2105 5.2326 10.102 0.301 0.771 0.898 0.942
3Net [29]+pp 54cm 0.1391 2.3609 8.347 0.273 0.829 0.918 0.953

monoResMatch [38]+pp 10cm 0.3239 10.6855 13.157 0.377 0.667 0.843 0.908
monoResMatch [38]+pp 54cm 0.1677 4.7352 9.406 0.287 0.838 0.912 0.945

Monodepth2 [11] 10cm 0.1932 4.7333 9.930 0.284 0.784 0.906 0.947
Monodepth2 [11] 54cm 0.1223 2.3100 7.896 0.240 0.864 0.937 0.963

Ours 10cm,54cm 0.1276 2.0940 7.967 0.255 0.843 0.928 0.960
Depth Range = 0.1-80 m

Monodepth[10] 10cm 0.1520 4.4573 7.028 0.259 0.890 0.949 0.969
Monodepth [10]+pp 10cm 0.1023 1.5862 5.804 0.202 0.891 0.954 0.976

Monodepth [10] 54cm 0.3192 12.3581 8.279 0.397 0.870 0.921 0.944
Monodepth[10]+pp 54cm 0.1364 3.5626 6.150 0.250 0.892 0.947 0.969

3Net [29] 10cm 0.1047 2.2487 6.036 0.203 0.909 0.959 0.977
3Net [29]+pp 10cm 0.1028 2.1953 5.950 0.201 0.911 0.960 0.977

3Net [29] 54cm 0.2794 11.4045 7.255 0.361 0.897 0.938 0.956
3Net [29]+pp 54cm 0.2779 11.3585 7.214 0.360 0.898 0.938 0.956

monoResMatch [38] 10cm 0.4658 25.1243 10.801 0.377 0.824 0.904 0.939
monoResMatch [38]+pp 10cm 0.3711 20.1240 8.948 0.299 0.864 0.930 0.954

monoResMatch [38] 54cm 0.3129 12.9569 8.748 0.390 0.884 0.925 0.945
monoResMatch [38]+pp 54cm 0.1004 3.3953 5.770 0.194 0.933 0.964 0.977

Monodepth2 [11] 10cm 0.0843 1.7101 5.781 0.184 0.918 0.964 0.979
Monodepth2 [11] 54cm 0.0864 2.3483 4.969 0.186 0.939 0.969 0.981

Ours 10cm,54 cm 0.0643 0.9509 4.695 0.163 0.936 0.971 0.984

Table 1: Evaluation on CARLA dataset. For comparison, we train previous methods sep-
arately with 10 cm and 54 cm baseline stereo images. Maximum predictions of all the net-
works are capped to 80 m. pp stands for post-processing.

4.1 Datasets

CARLA Dataset CARLA simulator [3] is used to acquire the multi-baseline dataset. We
attach three cameras to the vehicle in a parallel arrangement to obtain horizontally aligned
images. In addition, we also add a depth sensor to get ground truth depth maps for evaluation.
We choose the large baseline to be 54 cm, which is equal to the baseline used in KITTI dataset
[24]. The small baseline is chosen as 10 cm. The simulator is run in auto-pilot mode under
clear weather conditions to gather the dataset. The dataset consists of approximately 14000
images, out of which 1300 images are used for evaluation while the remaining are used for
training.

For evaluation, we use the metrics given in [5]: Abs Rel, Sq Rel, RMSE linear, RMSE
log, and threshold-based metrics δ . The predicted disparity maps are converted to depth
maps using baseline and focal length to compute these errors. For our approach, we use 54
cm baseline to get depth predictions. To solve the problem of unmatched regions on the left
border of the disparity maps, we post-processed the results of Monodepth [10], monoRes-
Match [38], and 3Net [29] at test time using the method applied in [10]. In detail, we compute
two disparity maps d and d‘ corresponding to the input image I and its flipped image I‘. The
disparity d‘ is then flipped to get d“, which is aligned with the d. In d“, disparity ramps or
unmatched regions will be located on the right border. To get the final prediction dpp, we
assign 10% left most pixels of d“ to left side of dpp. Similarly, 10% right most pixels of d
are assigned to right side of dpp. The central pixels of dpp are obtained by averaging central
pixels of d“ and d. We report the results with and without post-processing.

Table 1 shows the detailed results on different depth ranges. From the results, it is seen
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Figure 3: Qualitative comparison of disparity maps (first two columns) and depth maps (last
column) on CARLA dataset. Zoomed-in views show that our method produces better results
for both close and far objects.

that Monodepth [10], Monodepth2 [11] and 3Net [29] trained on wide baseline perform
better at depth range greater than 10 meters. This is due to the fact that wide baseline can
not deal with the occlusions caused by near objects. The monoResMatch [38] trained on
10 cm baseline performs worst among all the methods. For 0.1 to 80 meters depth range,
our approach outperforms previous methods. This is expected as our method makes use of
both narrow and wide baselines. Although post-processing considerably improves the results
Monodepth, monoResMatch and 3Net, our approach does not require any post-processing.

For qualitative comparison, we provide disparity maps and zoomed-in views as shown
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Figure 4: Qualitative comparison of disparity maps (first two columns) and depth maps (last
column) on small objects dataset. Our method generates more accurate predictions with
sharp boundaries.

in Figure 3. Results illustrate that small baseline tends to over-smooth the disparity predic-
tions in far regions due to lower depth resolution. On the contrary, wide baseline provides
more accurate predictions for far regions but generates severe occlusion artifacts for closer
surfaces. Methods trained on wide baseline also perform worst in estimating the depth of
thin surfaces such as poles. From the results, it is obvious that for close and far regions,
our approach performs similar to small and large baselines, respectively. Hence, producing
much improved depth estimates.

Small Objects Dataset We prepare another dataset to demonstrate the usefulness of
our approach on real scenes. The dataset is captured using Microsoft LifeCam webcam.
Instead of using three cameras, we employ single camera and displace it laterally to acquire
three parallel images of each scene similar to [16]. Zaber’s A-LSQ600D motorized linear
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translation stage is used to control the position of camera. We capture the images of small
objects to build the dataset of 5800 images. Training and test sets contain 5500 and 300
images respectively. All the objects are placed within two meters range. We set the small
and wide baselines to 2 mm and 10 mm, respectively.

We show the results in Figure 4. Results clearly depict the superior performance of
our approach over single baseline methods. The disparity maps of Figure 4 illustrate that
for closer objects, our method produces crisp and accurate disparity maps similar to small
baseline. In contrast, wide baseline generates serious artifacts near close object boundaries.
The depth maps provide the clear picture of far objects. For far objects, small baseline fails
to estimate accurate depth. On the other hand, multi-baseline method gives much accurate
depth predictions similar to wide baseline. Again the results verify the efficacy of multi-
baseline training over single baseline training.

4.2 Implementation Details
We implement our network in Tensorflow [1]. We train the model for 70 epochs with batch
size of 8. All other hyperparameters are set as in [10]. We use Adam Optimizer with decay
parameters β1 and β2 set to 0.9 and 0.999, respectively. Epsilon ε is set to 10−8. We use
a learning rate of 10−4 for first 35 epochs, 10−8 for 36 to 53 epochs, and 10−16 for last
17 epochs. The same hyperparameters were used for both datasets, showing generalization
across datasets. All the images are sub-sampled to 256×512 before passing into the network.
We also perform color augmentation as in [10]. Training on 13000 images for 70 epochs
takes around 36 hours on Nvidia GTX 1080 GPU. The number of trainable parameters are
approximately 66.2 million. It should be noted that at test time, we only use the output of
decoder 3; therefore, depth prediction is fast and inference time of the network is 21 frames
per second. A CPU implementation on an Intel Core i5 processor with 8GB RAM provides
2 frames per second.

5 Conclusion
In this work, we propose a novel multi-baseline technique for unsupervised monocular depth
estimation. We overcome the shortcomings of single-baseline stereo supervision by training
the model with two stereo baselines. Our model combines the advantages of small and wide
baseline stereo systems. Unlike previous stereo approaches that work well in a certain range,
our method generates accurate disparity maps both in near and far ranges. Furthermore, our
method uses only a single camera at test time to predict multi-baseline depth. This is in con-
trast to traditional multi-baseline systems, which require more than two cameras to provide
real time depth. Therefore, the proposed method is well-suited for practical applications.
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