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Abstract

This paper presents a novel unified one-stage unsupervised learning framework for
point cloud cleaning of noisy partial data from underwater side-scan sonars. By com-
bining a swath-based point cloud tensor representation, an adaptive multi-scale feature
encoder, and a generative Bayesian framework, the proposed method provides robust
sonar point cloud denoising, completion, and outlier removal simultaneously. The con-
densed swath-based tensor representation preserves the point cloud associated with the
underlying three-dimensional geometry by utilizing spatial and temporal correlation of
sonar data. The adaptive multi-scale feature encoder identifies noisy partial tensor data
without handcrafted feature labeling by utilizing CANDECOMP/PARAFAC tensor fac-
torization. Each local embedded outlier feature under various scales is aggregated into a
global context by a generative Bayesian framework. The model is automatically inferred
by a variational Bayesian, without parameter tuning and model pre-training. Extensive
experiments on large scale synthetic and real data demonstrate robustness against en-
vironmental perturbation. The proposed algorithm compares favourably with existing
methods.

1 Introduction

Modern underwater applications, such as bathymetric mapping [15, 26] and autonomous
navigation [18, 25], rely on accurate 3D reconstructions of the seafloor. While the com-
munity has made impressive progress in other domains such as automated driving [7, 21],
reconstructing underwater surfaces remains challenging due to limited visibility and sensor
noise. Side-scan sonar is a standard tool for seafloor imaging. A conventional side-scan
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Figure 1: (left) Robotic system overview. (middle left) Side-scan sonar sensor. (middle
right) Scanning data from side-scan sonar. (right) Detailed view of side-scan sonar data. The
red color represents real seafloor data, including noise. The yellow color represents noise
due to particles in the water and changes in water density.

sonar sensor generates a 2D image of sonar-returned intensity values without explicit depth
information. In contrast, our work is inspired by the development of a novel underwater
sonar system that generates a 3D point cloud of the seafloor. However, unlike point cloud
measurements generated in terrestrial applications (e.g., car-mounted LiDAR), underwater
point clouds generated from sonar are extremely noisy. Thus, new approaches to cleaning
and inferring information from point clouds are required. Compared to electromagnetic sig-
nal based sensors, like cameras and LiDAR, sound waves can travel up to 200 meters in
various water qualities, making sonar a robust sensor for large-scale underwater sensing.
However, underwater point cloud data has challenges like sparsity, highly variable density,
particles in the water, generally higher measurement noise, and noise due to changes in water
density, salinity and temperature. So the sonar data can be noisy and sparse just like Fig. 1.
However, underwater point cloud data has challenges like sparsity, highly variable density,
particles in the water, generally higher measurement noise, and noise due to changes in water
density, salinity and temperature. Thus, sonar point cloud data could be sparse and noisy (as
shown in Fig. 1).

To handle the aforementioned challenges, common approaches for partially observed
data completion capitalize on supervised learning. For example, volumetric convolutional
networks are used to infer the complete 3D geometry from partial point cloud data or from
several partial views from large synthetic datasets [8, 38]. However, there is limited labelled
underwater point cloud data available, rendering these approaches less applicable to bathy-
metric sonar data. Furthermore, heavy underwater noises and outliers create biases that dis-
rupt data completion inferencing. On the other hand, point cloud denoising methods [11, 14]
fail to complete sparse data. Thus, there exists no method to address all challenges of under-
water point clouds, i.e., completing missing data, reducing noise and removing outliers.

In this paper, we propose a unsupervised point cloud analysis method to accomplish de-
noising, outlier removal, and seafloor data completion in a single tensor Bayesian framework.
To the best of our knowledge, we propose the first framework that simultaneously addresses
the three aforementioned point cloud challenges. The proposed approach utilizes variational
Bayesian learning for point cloud analysis directly from the observed data without any pre-
training. Since sonar point cloud data is unordered and noisy, the proposed framework first
tensorizes the sonar point cloud in a swath-based manner, and then exploits a multi-scale
feature encoding based on the tensor factorization. By extracting a feature map from the
partially observed sonar data, the framework maintains and updates the continuing global
seafloor tensor, and detects sparse local outlier noises. The model selections are performed
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automatically without any tuning. This framework enables generation of clean underwater
maps solely from noisy sonar data. The proposed method could potentially be useful for
general bathymetric sonar data shape completion, further seafloor feature registration, and
other robotic perception problems.

In summary, we make the following key contributions:

* A robust and efficient unified one-stage unsupervised learning framework for simulta-
neous sonar point cloud completion, denoising, and outlier removal.

* A novel swath-based tensor representation designed for sonar point clouds.

* A multi-scale point cloud feature encoder by tensor factorization.

The first algorithm to analyze underwater point clouds generated by a 3D side-scan
sonar.

 Evaluation of the proposed method on synthetic and real large-scale underwater point
cloud data, demonstrating the stability and efficiency of the proposed algorithm.

2 Related Work

3D Shape Completion. Existing techniques for 3D shape completion can be categorized into
geometry-based, symmetry-driven and learning-based approaches. Geometry-based shape
approaches use partial data to infer the missing data points. For instance, surface reconstruc-
tion methods [4, 9, 23, 36, 39] normally generate smooth interpolations in a 3D mesh to fill
in missing data in locally incomplete scans. But these methods heavily depends on the prior
information. Secondly, symmetry-driven methods [28, 37, 40, 41] were proposed, which
add input to identify symmetry and partially repeating regular structure in objects. These
approaches make assumptions of moderately complete inputs, where the missing shape re-
gions can be copied from the observed regions. However, this assumption often does not
hold in incomplete data of real-world scenarios. Finally, learning-based methods utilize
end-to-end trained neural networks for mapping partial point clouds to complete 3D geom-
etry [8, 29, 30, 38]. However, such supervised algorithms rely on labeled training data and
cannot be easily transferred to new underwater scenarios. In contrast, our technique enables
unsupervised generation of cleaned underwater data from noisy sensor data.

Point Cloud Denoising. 3D point cloud denoising methods aim to filter positional noise.
They can be categorized into mesh-based, projection-based, and graph-based methods. Mesh-
based denoising methods typically use partial differential equations (PDE) and bilateral
filters (BF) [11, 14], but sometimes could lead to shrinkage and deformation [10]. The
projection-based algorithm in [13] achieves denoising by estimating the reference planes of
a point cloud and projecting the noisy point cloud to the reference planes iteratively un-
til convergence. But these methods are very sensitive to parameter tuning. Graph-based
denoising (GBD) methods utilize the graph Laplacian to approximate the surface shape’s
Laplace-Beltrami operator [3, 12, 44]. However, GBD is only practical for the manifold
when consistency graph construction is available. In contract, we explore a unified frame-
work for more general cases without any specific geometrical assumptions.

Outlier Removal. Outlier removal is essential for underwater point clouds. Outlier removal
techniques for point clouds can be categorized into statistical approaches and deep learning
data-driven approaches. Traditional statistical methods utilize robust local statistics with the
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Figure 2: The overall structure of the proposed sonar data cleaning framework.

Raw sonar point cloud Clean seafloor map

rigid structure assumption [5, 27, 34]. The drawback of these methods is that purely statisti-
cal methods do not always retain the desired geometric properties in a 3D shape. The second
type of outlier removal methods leverages 3D point cloud databases [6, 16, 24]. These meth-
ods utilize knowledge about expected outliers, but require careful parameter tuning for new
noise characteristics. In this paper, we propose a parameter-tuning-free framework for point
cloud approximation that infers occluded regions directly from the observed data without
any prior information.

3 Method

3.1 System Setup and Problem Formulation

Fig. 1 illustrates the 3D side-scan sonar and an autonomous underwater vehicle (AUV) on
which it is mounted. As the vehicle moves forward, row-wise bathymetric point cloud data
are collected by the sonar in a swath underneath the AUV that can be up to 200 meters wide.
Sample output data is depicted in Fig. 1.

The proposed framework is illustrated in Fig. 2. First, an observation tensor is con-
structed from the observed point cloud. An unsupervised generative Bayesian network then
provides a CANDECOMP/PARAFAC (CP) decomposition for automatic model selection.
Inference of the models starts from random initialization. Three models are sparse outliers,
a low-rank seafloor tensor, and noise. More detail of the network can be found in Fig. 4.
Each local embedded feature under various scales is simultaneously aggregated into a global
continuous seafloor context by a generative Bayesian framework. The inference converges
when output of the network matches the observation.

By identifying the three kinds of data from a noisy observation, the proposed framework
enables low-rank tensor estimation, outlier removal, and denoising simultaneously. Learning
a mapping from the noisy point cloud data represents an unsupervised recovery directly from
the noisy sonar data. In order to find the unique model of a seafloor manifold, given a random
initialization, the model selection is conducted automatically via optimizing the following
energy minimization problems:

07 = argmin Byyp)Eor(ri0) (fo (1), Vo) (1)

Here, fg represents a tunable function with given parameters 0, and we implement fy using
a tensor Bayesian completion framework. [E represents the mathematical expectation. Loss
[ is the Kullback-Leibler divergence between the model and observed noisy point cloud ),
and Q is the set of observed elements inside tensor. Random initialization of Gaussian priors
and tensor rank for fy is represented by n. The distribution ¢ is a Gaussian prior that is not
related to noise model p. The noise model of the cleaned tensor X’ is p(X). The learning
converges to the maximized similarity between the predicted seafloor manifold from fy and
the low-rank representation of the seafloor surface.
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Figure 3: The tensor structure is created from bathymetric sonar data.

The observation model of the tensor sonar point cloud can be expressed as
Vo=X+S+7 ()
where X is the cleaned tensor with the global continuing seafloor information. Local outlier
tensor S represents the local information with disconnected components, 7 is the noise tensor
representing the scan noise.

3.2 Point Cloud Adaptive Tensorization Representation.

The three main steps included in the adaptive altitude-based tensorization are voxel construc-
tion, closest element quantization, and adaptive altitude-based filtering.

Point cloud representation. A set of raw side-scan sonar point cloud data can be repre-
sented by a set of unordered points {py,pz,...,py} With p; € R? representing the ith point.
Each p; has world-frame coordinates (x,y,z). N is the number of total points in a batch.
The physical dimension of the underwater scene within the field of view (FOV) is a rect-
angular volume of size L x W x H, from the minimum (Xin,Y,pin, Zmin) to the maximum
(Xmaxs Ymaxs Zmax)- Each point’s information is stored inside the corresponding tensor grid.

Swath-based tensorization of point cloud. Typically, a raw sonar point cloud is com-
posed of millions of points. Directly mapping all the points into a voxel grid imposes compu-
tational burdens due to many empty entries [43]. Thus, we propose a compact swath-based
tensorization for the point cloud representation (as illustrated in Fig. 3). First, the sonar
points are grouped according to voxelization in space. Then the voxel grid is sliced and
reconstructed into a swath-based tensor as in Fig. 3. When AUV drives in the y direction,
the sensor scans the seafloor row by row. In each time frame, the sensor generates a row of
points. The red strip in fig. 3 represents one row of point cloud data that are collected in
one time frame. The value M represents the total number of frames, and m is the time frame
index. Inside each frame, there are I points, each with corresponding index i. The value of
i is normally aligned with x. Each point cloud entry in the tensor has a 5-valued coordinate:
m,i,x,y, 2.

Suppose the data acquisition is ideal and assume that the AUV travels in the direction
of the y axis in the world-coordinate frame. In that case, all points from the same frame
will have the same y value, and these points are collected simultaneously. Thus m becomes
the first mode of the tensor. We quantize the points with index i inside the swath based


Citation
Citation
{Wu, Song, Khosla, Yu, Zhang, Tang, and Xiao} 2015


6 CHEN ET AL.: ROBUST UNSUPERVISED CLEANING OF POINT CLOUD

, Outlier

l«<—>»| Outlier removal
ot
context Map completion

»

an

Clean seafloor
z

Variational
Bayesian

o Missing data | Feature scale | :
Observation sparsity prior CP-rank '
! v :

Point-wise
features

tensor

KL divergence loss

Feature
encoding
Point-wise concat

Figure 4: Detailed sonar point cloud cleaning framework, consisting of four parts: a) adap-
tive multi-scale feature extraction; b) generative Bayesian tensor network; c) variational
Bayesian inference processing.

on the voxel they reside in. Thus i becomes the second mode of the tensor. The point
location attributes (x,y,z) become the third tensor mode j. Thus observed sonar data can be
constructed as a tensor ) € RM*Ix3,

Altitude-oriented dynamic quantization. In practice, gaps are present and point den-
sity is highly variable due to occlusions and sensor noise. These factors can bias the inference
step. Thus, we utilize closest element quantization methods to create an clean tensor. As-
suming that the point cloud is discretized into voxels. For each m, there will be sub-voxels
of size 1 x L x H, which contain L voxels of size 1 x 1 x H. Variables L and H refer to the
original length and height of the overall dimension of point cloud ) in metric units. In the
presence of noise, each 1 x 1 x H voxel may contain multiple points. We therefore quantize
the voxels by choosing the x and y values closest to the center of a voxel, and the z value
from the point with minimum altitude.

Through this tensorization procedure, the irregular distribution of elements of ) are
placed in a compact structure while retaining rich geometry information. Our method there-
fore results in an effective point cloud representation for large-scale, open-space scene learn-
ing problems. It is computationally more efficient than many voxel-based point cloud repre-
sentation by avoiding many empty entries in space [43].

3.3 Adequate Multi-Scale Feature Encoding by Tensor Factorization

An efficient feature encoding method for point clouds relies on an optimal feature map size,
which balances rich geometry and fast computation time. While conventional deep learning
methods use fixed feature map dimensions [21, 46], this paper proposes a novel multi-scale
point cloud feature encoding method by CP factorization [2, 32, 45], under the assumption
that a seafloor can be characterized as a spatially-correlated low-rank tensor.

The CP-factorization lowers the tensor dimension by decomposing it into sets of latent
factor matrices. All latent factors share the same sparsity due to the assumption of under-
lying spatial correlation in continuing seafloor data [31]. And finally, the CP-rank, which
represented the model complexity, is optimized by the continuing global seafloor context
and local outlier information automatically. A tensor can be CP-factorized [20] as follows:
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R
X = Za&l) 0a®oad® = A1, A® A0 3)
r=1

where o denotes the vector outer product, a, denotes the factor vectors of )/, and
{A(”) |n=1,....N } are the latent factor matrices of ). The mode-n factor matrix can be

(n) (n)

T
denoted as row-wise vectors A" = [al RN ] . Here we define tensor mode N as three,

and [[---]] is the notation for CP factorization. CP-rank is represented as R. The tensor’s CP
model decides the rank-one tensors.

3.4 Generative Bayesian Tensor Network

In order to consider the global seafloor context as a low-CP-rank tensor along with outlier
and sparsity simultaneously, the generative hierarchical Bayesian tensor framework is intro-
duced.

Each local embedded feature under various scales is aggregated into a global context.
For the feature scale selection, the corresponding CP-rank is determined by minimizing the
latent space dimension. Corresponding column-wise sparsity is shared by all latent factor
matrices using a covariance matrix A. Thus the latent space retains the seafloor’s global
information,

In
P (A(">M> = HN(a§:)|07A_1) @)
in=1

where p(A) = [I8., Ga(A|co,dp). The independent identically distributed (i.i.d.) gamma
distribution is denoted as Ga, and (cg,dp) represent the sparsity prior of i.i.d. gamma dis-
tributions. As for the local embedding information, the sparse outlier term S is designed to
represent various outliers. It is also modeled by the sparsity inducing prior, but individual
hyperparameters of each element are independent.

p(Saly) = H N( i1 ’2>i3|0’7i;}2v"3) ®

] yeenniN
where p(y) =1, i, Ga (¥, iislan, g) Here 7;, ., represent the individual parameters
and (ao,by) represent the sparsity prior of the i.i.d. gamma distribution. The noise term
7 is also an iid. gamma distribution with (af,b{) as priors: p(7) = Ga(7|af,bf). The
observation model can be expressed as a joint distribution:

p(ValX,50,7) Hp( %) p(Salv) P(A)P()p(%) (©)

Given the Bayesian model, we can use the varational Bayesian approach [42] to perform
the inference, aiming to minimize the error in equation 1.

4 Experimental Results

4.1 Validation on Synthetic Bathymetric Data

We first quantitatively evaluate the proposed framework on synthetic data that is generated
in a underwater simulation environment using Unreal Engine. In addition to the seafloor, the
simulation models outlier objects and noise. An AUV trajectory of 100m length is simulated,


Citation
Citation
{Tzikas, Likas, and Galatsanos} 2008


8 CHEN ET AL.: ROBUST UNSUPERVISED CLEANING OF POINT CLOUD

using bathymetric data collected with a simulated sonar. The result is a dataset containing a
low-rank tensor X of size 1000 x 500 x 3, i.e., 500,000 points. In total, 30 sets of different
terrain data are generated, with 20 object permutations. Noise is drawn from a Gaussian
noise distribution with A/(0,20) on the depth sensing as yellow noise in Fig. 6. The re-
sulting point cloud is illustrated in Fig. 5. The proposed method takes average five minutes
computation for each data using I3 CPU, and it does not require any pre-training.

0 0
Xtm) Xim)

(a) Ground truth (b) Missing data (c) SB-LME (d) Ours
Figure 5: Exemplary completion result on 22% missing data. Left to right: ground truth,
data input, SB-LME, our method.

Table 1: RMSE results with different missing data between our method and SB-LME [1].

10% 13% 16% 19% 22%
SB-LME [1] 0.0179 0.0253 0.0225 0.0338 0.0268
Ours 0.0068 0.0083 0.0122 0.0088 0.011

As Fig. 5 shows, we randomly delete a portion of data to create artificial sparse block out-
liers and missing data for 20 permutations per data on the simulated bathymetric map for the
observed ). To evaluate the map cleaning performance, we calculate the Root Mean Squared
Error (RMSE) between the data completed with our approach and the ground truth. We com-
pare the proposed technique with one classic unsupervised baseline, SB-LME [1]. Table 1
shows point-cloud completion results for the observed bathymetric data subject to increasing
amounts of incomplete data. With an increase in missing data from 10% to 22%, which is
the common missing data rate on real sonar data, the benchmarked method’s RMSE varies
between 1.79% and 2.68%, while our method consistently outperforms the benchmarks with
RMSE between 0.68% and 1.1%. We also show a visual comparison in Fig. 5.

(b) © (d
Figure 6: Synthetic data with completion and outlier removal: (a) original data including
outlier objects and noise, (b) detail view of original data, (c) Output using the proposed
method, (d) detail view of output data

The simulation further generates bathymetric sonar data containing outlier objects and
noise for evaluating the outlier removal and denoising performance of our approach. Fig. 6
shows the simulated seafloor bathymetric sonar data used for this experiment, which contains
artificial static and moving outlier objects above the seafloor, noise and missing data due to
object occlusions. Here, moving objects mimic moving fishes. The proposed method is
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Table 2: RMSE results with different outliers and noise types.

Methods Static outliers | Moving outliers Noise type All
5 10 5 10 Above | Inside | Under
Object [35] 0.11 | 0.16 0.15 | 0.24 0.05 0.00 0.05 0.40
Guided [17] | 0.27 | 0.59 0.43 | 0.35 0.40 0.47 0.69 0.57
SB-LME [1] | 0.36 | 0.57 0.50 | 0.67 0.46 0.36 0.67 0.46
Bilateral [11] | 1.00 | 1.01 1.01 | 1.07 0.98 0.98 0.98 1.07
Ours 0.05 | 0.09 0.08 | 0.13 0.01 0.00 0.01 0.25

able to identify all simulated outliers and additionally recovers the occluded regions on the
seafloor surface, as further depicted in Fig. 6.

Table 2 illustrates the proposed method’s outlier removal and denoising performance
against state-of-the-art methods: ObjectMaps [35], GuidedFilter [17], SB-LME [1] and Bi-
lateralfilter [11]. Static outliers include sunken objects, moving outliers include fish, and are
generated through the Unreal Engine simulator. The RMSE results show that when noise
and outliers are imposed individually or simultaneously, the proposed method always out-
performs the benchmarks at the three functions. Furthermore, the benchmarked methods
only perform sole functions and do not perform well in the underwater scenario.

4.2 Shape Recovery Results on Real Bathymetric Sonar Data

Field tests are conducted in a large lake. The data consists of multiple straight segments col-
lected using a UAV equipped with a side-scan sonar sensor. Each segment covered a distance
of about 200m in length, resulting in one point cloud covering 200m x 100m seafloor data
and 5SM points. 30 sets of data were collected.

Y(m) . Y(m)

(b) Object Maps (c) Guided Filter

. a0
B 400

~ 360
X(m) 50 30 vm)

(d) SBL-ME (e) Bilateral Filter (f) Ours
Figure 7: Real bathymetric sonar data completion and denoising. The green points are the
seafloor, the yellow points are the noise above the seafloor, the dark blue points are the noise
under the seafloor, and the large hole is the missing part of the seafloor data. The qualitative
results show that the proposed algorithm completed the missing data and remove all outlier
noise, whereas other benchmarked methods fail in all tasks.
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(a) (b)
Figure 8: Bathymetric map cleaning from a lawnmower-path field test. (a) Before process-
ing, (b) After processing. The green points are the seafloor, yellow points are the noise above
seafloor and dark blue color points are noise under seafloor.

Furthermore, we performed a large scan data collection following a lawnmower path
combining 6 segments, covering a total area of ca. 1000m x 1000m, and 50M points. In
these data, common effects can be observed, such as underwater noise, outliers and missing
data due to occlusions. Evaluation is qualitative assessment due to missing ground truth data.

Fig. 7 compares the result of the proposed method’s sonar bathymetric data cleaning
benchmarked against the baseline methods. The proposed method results in significantly
cleaner bathymetric data of the seafloor, removing all the yellow noisy points and complet-
ing the seafloor. The baseline methods exhibit larger error in a qualitative comparison than
the proposed methods. As explanation for the large errors, we believe that the real under-
water sonar data is subject to larger and various uncertainties in noise, outliers, and missing
data making it harder to assess than the synthetic benchmarks. We further tested several
supervised deep-learned methods on the data, including [19], [33], and [22]. However, their
models pre-trained on a small synthetic data set did not yield satisfactory results on our data.

Finally, Fig. 8 illustrates our results on the large lawnmower-path experiment. Our results
demonstrate the efficacy of the approach in recovering a complete and organized seafloor
map. Qualitative results show that our approach successfully recovers the seafloor. Ground
truth of seafloor data shows the same average depth with the output as 20m, with the 40m
noise above and Om noise under seafloor being removed successfully.

5 Conclusion

This paper presents a robust technique for underwater bathymetric sonar data cleaning with-
out prior training. The method achieves underwater bathymetric sonar data denoising, outlier
removal, and data completion simultaneously in a single generative Bayesian tensor frame-
work. The proposed framework has been evaluated with both simulated and real sonar point
cloud data. Both quantitative and qualitative results on large-scale data demonstrate the effi-
cacy of the proposed framework over previous methods. While we designed our method for
the challenging task of seafloor point cloud data cleaning, we are interested in extending this
work to point cloud cleaning in other applications in the future.


Citation
Citation
{Hermosilla, Ritschel, and Ropinski} 2019

Citation
Citation
{Rakotosaona, Laprotect unhbox voidb@x protect penalty @M  {}Barbera, Guerrero, Mitra, and Ovsjanikov} 2019

Citation
Citation
{Liu, Sheng, Yang, Shao, and Hu} 2019


CHEN ET AL.: ROBUST UNSUPERVISED CLEANING OF POINT CLOUD 11

References

[1]

(2]

(3]

(4]

(5]

[6]

(8]

[9]

[10]

[11]

[12]

[13]

S Derin Babacan, Martin Luessi, Rafael Molina, and Aggelos K Katsaggelos. Sparse
bayesian methods for low-rank matrix estimation. I[EEE Transactions on Signal Pro-
cessing, 60(8):3964-3977, 2012.

Juan Andrés Bazerque, Gonzalo Mateos, and Georgios B Giannakis. Rank regulariza-
tion and bayesian inference for tensor completion and extrapolation. IEEE transactions
on signal processing, 61(22):5689-5703, 2013.

Mikhail Belkin and Partha Niyogi. Towards a theoretical foundation for Laplacian-
based manifold methods. Journal of Computer and System Sciences, 74(8):1289-1308,
2008.

Matthew Berger, Andrea Tagliasacchi, Lee Seversky, Pierre Alliez, Joshua Levine, An-
drei Sharf, and Claudio Silva. State of the art in surface reconstruction from point
clouds. In Eurographics 2014 STAR Reports, 2014.

Antoni Buades, Bartomeu Coll, and J-M Morel. A non-local algorithm for image de-
noising. In Conference on Computer Vision and Pattern Recognition, 2005.

Frédéric Chazal, David Cohen-Steiner, and Quentin Mérigot. Geometric inference for
probability measures. Foundations of Computational Mathematics, 11(6):733-751,
2011.

Siheng Chen, Baoan Liu, Chen Feng, Carlos Vallespi-Gonzalez, and Carl Welling-
ton. 3D point cloud processing and learning for autonomous driving. arXiv preprint
arXiv:2003.00601, 2020.

Angela Dai, Charles Ruizhongtai Qi, and Matthias NieBner. Shape completion using
3D-encoder-predictor CNNs and shape synthesis. In Conference on Computer Vision
and Pattern Recognition, 2017.

James Davis, Stephen R Marschner, Matt Garr, and Marc Levoy. Filling holes in com-
plex surfaces using volumetric diffusion. In Proceedings. First IEEE International
Symposium on 3D Data Processing Visualization and Transmission, pages 428—441.
IEEE, 2002.

Jean-Emmanuel Deschaud and Francois Goulette. Point cloud non local denoising
using local surface descriptor similarity. 2010.

Julie Digne and Carlo De Franchis. The bilateral filter for point clouds. Image Pro-
cessing On Line, 7:278-287, 2017.

Chinthaka Dinesh, Gene Cheung, Ivan V Bajic, and Cheng Yang. Fast 3D point
cloud denoising via bipartite graph approximation & total variation. arXiv preprint
arXiv:1804.10831, 2018.

Chaojing Duan, Siheng Chen, and Jelena Kovacevic. Weighted multi-projection: 3D
point cloud denoising with tangent planes. In IEEE Global Conference on Signal and
Information Processing, 2018.



12

CHEN ET AL.: ROBUST UNSUPERVISED CLEANING OF POINT CLOUD

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

[26]

[27]

(28]

Abderrahim Elmoataz, Olivier Lezoray, and Sébastien Bougleux. Nonlocal discrete
regularization on weighted graphs: a framework for image and manifold processing.
IEEE Transactions on Image Processing, 17(7):1047-1060, 2008.

Jay Gao. Bathymetric mapping by means of remote sensing: methods, accuracy and
limitations. Progress in Physical Geography, 33(1):103-116, 2009.

Leonidas Guibas, Dmitriy Morozov, and Quentin Mérigot. Witnessed k-distance. Dis-
crete & Computational Geometry, 49(1):22-45, 2013.

Kaiming He, Jian Sun, and Xiaoou Tang. Guided image filtering. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 35(6):1397-1409, 2012.

Tata Herbert, Nzelibe Ifechukwu Ogochukwu, and Ayodeji John Faneye. Bathymetric
mapping for safe navigation: A case study of part of Lagos Lagoon, 2019.

Pedro Hermosilla, Tobias Ritschel, and Timo Ropinski. Total denoising: Unsupervised
learning of 3D point cloud cleaning. In International Conference on Computer Vision,
2019.

Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM
Review, 51(3):455-500, 2009.

Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Bei-
jbom. Pointpillars: Fast encoders for object detection from point clouds. In Computer
Vision and Pattern Recognition, 2019.

Minghua Liu, Lu Sheng, Sheng Yang, Jing Shao, and Shi-Min Hu. Morphing and
sampling network for dense point cloud completion. arXiv preprint arXiv:1912.00280,
2019.

Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc Alexa. Laplacian mesh opti-
mization. In Proceedings of the 4th International Conference on Computer Graphics
and Interactive Techniques in Australasia and Southeast Asia, pages 381-389. ACM,
2006.

Xiaojuan Ning, Fan Li, Ge Tian, and Yinghui Wang. An efficient outlier removal
method for scattered point cloud data. PLOS ONE, 13(8):¢0201280, 2018.

Dongdong Peng, Jiaqi Gao, and Tian Zhou. Underwater terrain matching navigation
based on Gaussian process regression with a multi-beam bathymetric sonar. The Jour-
nal of the Acoustical Society of America, 146(4):3089-3089, 2019.

William D Philpot. Bathymetric mapping with passive multispectral imagery. Applied
Optics, 28(8):1569-1578, 1989.

R Pincus, V Barnett, and T Lewis. Outliers in statistical data. j. wiley & sons 1994,
xvii. 582 pp.,£ 49.95. Biometrical Journal, 37(2):256-256, 1995.

Joshua Podolak, Philip Shilane, Aleksey Golovinskiy, Szymon Rusinkiewicz, and
Thomas Funkhouser. A planar-reflective symmetry transform for 3D shapes. In ACM
Transactions on Graphics (TOG), volume 25, pages 549-559. ACM, 2006.



CHEN ET AL.: ROBUST UNSUPERVISED CLEANING OF POINT CLOUD 13

[29] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. PointNet: Deep learning
on point sets for 3D classification and segmentation. In Computer Vision and Pattern
Recognition, 2017.

[30] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. PointNet++: Deep
hierarchical feature learning on point sets in a metric space. In Conference on Neural
Information Processing Systems, 2017.

[31] Stephan Rabanser, Oleksandr Shchur, and Stephan Giinnemann. Introduction to
tensor decompositions and their applications in machine learning. arXiv preprint
arXiv:1711.10781, 2017.

[32] Piyush Rai, Yingjian Wang, Shengbo Guo, Gary Chen, David Dunson, and Lawrence
Carin. Scalable bayesian low-rank decomposition of incomplete multiway tensors. In
ICML, 2014.

[33] Marie-Julie Rakotosaona, Vittorio La Barbera, Paul Guerrero, Niloy J Mitra, and Maks
Ovsjanikov. PointCleanNet: Learning to denoise and remove outliers from dense point
clouds. In Computer Graphics Forum. Wiley Online Library, 2019.

[34] Peter J Rousseeuw and Mia Hubert. Robust statistics for outlier detection. Wiley Inter-
disciplinary Reviews: Data Mining and Knowledge Discovery, 1(1):73-79, 2011.

[35] Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, Mihai Dolha, and Michael
Beetz. Towards 3D point cloud based object maps for household environments.
Robotics and Autonomous Systems, 56(11):927-941, 2008.

[36] Kripasindhu Sarkar, Kiran Varanasi, and Didier Stricker. Learning quadrangulated
patches for 3D shape parameterization and completion. In 3D Vision, 2017.

[37] Ivan Sipiran, Robert Gregor, and Tobias Schreck. Approximate symmetry detection in
partial 3D meshes. In Computer Graphics Forum, volume 33, pages 131-140. Wiley
Online Library, 2014.

[38] Shuran Song, Fisher Yu, Andy Zeng, Angel X Chang, Manolis Savva, and Thomas
Funkhouser. Semantic scene completion from a single depth image. In Conference on
Computer Vision and Pattern Recognition, 2017.

[39] Olga Sorkine and Daniel Cohen-Or. Least-squares meshes. In Proceedings Shape
Modeling Applications, 2004.

[40] Minhyuk Sung, Vladimir G Kim, Roland Angst, and Leonidas Guibas. Data-driven
structural priors for shape completion. ACM Transactions on Graphics (TOG), 34(6):
175, 2015.

[41] Sebastian Thrun and Ben Wegbreit. Shape from symmetry. In International Conference
on Computer Vision, 2005.

[42] Dimitris G Tzikas, Aristidis C Likas, and Nikolaos P Galatsanos. The variational ap-
proximation for Bayesian inference. IEEE Signal Processing Magazine, 25(6):131—
146, 2008.



14 CHEN ET AL.: ROBUST UNSUPERVISED CLEANING OF POINT CLOUD

[43] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang,
and Jianxiong Xiao. 3D ShapeNets: A deep representation for volumetric shapes. In
Computer Vision and Pattern Recognition, 2015.

[44] Jin Zeng, Gene Cheung, Michael Ng, Jiahao Pang, and Cheng Yang. 3D point cloud
denoising using graph Laplacian regularization of a low dimensional manifold model.
arXiv preprint arXiv:1803.07252, 2018.

[45] Qibin Zhao, Liqing Zhang, and Andrzej Cichocki. Bayesian cp factorization of in-
complete tensors with automatic rank determination. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 37(9):1751-1763, 2015.

[46] Yin Zhou and Oncel Tuzel. VoxelNet: End-to-end learning for point cloud based 3D
object detection. In Conference on Computer Vision and Pattern Recognition, 2018.



