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Abstract
In this paper, we present a novel low-light image enhancement method called dark

region-aware low-light image enhancement (DALE), where dark regions are accurately
recognized by the proposed visual attention module and their brightness are intensively
enhanced. Our method can estimate the visual attention in an efficient manner using
super-pixels without any complicated process. Thus, the method can preserve the color,
tone, and brightness of original images and prevents normally illuminated areas of the
images from being saturated and distorted. Experimental results show that our method
accurately identifies dark regions via the proposed visual attention, and qualitatively and
quantitatively outperforms state-of-the-art methods.

1 Introduction
Real-world images for outdoor scenes typically contain low-light areas, especially if the
images are captured during nighttime or there exists backlit. However, using these low-light
images, conventional computer vision algorithms (e.g., object detection and tracking) cannot
produce accurate results, because low-light regions cause images to lose local details and
significantly reduce image quality. Therefore, low-light image enhancement is essential to
prevent conventional computer vision algorithms from degrading their performance.

Low-light image enhancement has a long history. For example, Pizer et al. [28] en-
hanced the brightness and contrast of images based on histogram equalization [43]. The
methods in [14, 34] introduced retinex theory [15] for low-light enhancement and used il-
lumination information. High dynamic range (HDR)-based methods [6, 23] have been pro-
posed to enhance the brightness of images, where HDR requires to combine multiple images
with different exposures for the same scene.

Recently, several methods successfully implemented deep neural networks to solve low-
level computer vision problems (e.g., image super-resolution [19], dehazing [3], and derain-
ing [31]). Low-light image enhancement problems have been also addressed in deep learning
frameworks [13]. However, it is nontrivial to train deep neural networks for low-level vision
problems, because the networks require be a large number of paired data (i.e., image and

*Indicates equal contributions. † Corresponding author.
c© 2020. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Pizer, Amburn, Austin, Cromartie, Geselowitz, Greer, ter Haarprotect unhbox voidb@x penalty @M  {}Romeny, Zimmerman, and Zuiderveld} 1987

Citation
Citation
{Zuiderveld} 1994

Citation
Citation
{Kimmel, Elad, Shaked, Keshet, and Sobel} 2003

Citation
Citation
{Shen and Hwang} 2009

Citation
Citation
{Land and McCann} 1971

Citation
Citation
{Fu, Zeng, Huang, Liao, Ding, and Paisley} 2016{}

Citation
Citation
{Ma and Wang} 2015

Citation
Citation
{Lim, Son, Kim, Nah, and Lee} 2017

Citation
Citation
{Cai, Xu, Jia, Qing, and Tao} 2016

Citation
Citation
{Ren, Zuo, Hu, Zhu, and Meng} 2019{}

Citation
Citation
{Kim, Kwon, and Kwon} 2019



2 KWON, KIM, KWON: DARK REGION-AWARE LOW-LIGHT IMAGE ENHANCEMENT

(a) Original image (b) Local illumination synthesis (c) Dark-aware visual
attention

Figure 1: Example of the proposed visual attention for low-light enhancement. (b) Our
method applies a different level of local illumination to each superpixel of a given image. (c)
Our method can generate the attention map, where dark areas that need to be enhanced have
large values and bright areas have small values.

ground truth) for the training. To collect a large number of paired data, in super-resolution
problems, low-resolution images are synthetically generated by applying noise and blur to
high-resolution images. Low-light image enhancement methods [18, 35] also synthetically
generate paired data by applying several different levels of global illumination to the images.
The methods using globally illuminated training images can improve the overall brightness
and contrast of images. However, they cannot accurately enhance the brightness of locally
illuminated regions, which are frequently contained in real-world images. Applying global
illumination is more problematic, if both bright and dark areas exist simultaneously in an
image; bright areas of original images can be over-saturated by global illumination. To solve
this problem, methods in [11, 21, 22] proposed to synthesize realistic illumination. Enlight-
enGAN [11] performed low-light image enhancement in an unsupervised manner without
paired data. Methods in [2, 11, 21] employed attention modules for low-level vision tasks to
focus on the areas, which need to be improved. However, in low-light image enhancement,
the attention mechanism has not been actively studied and was used only to estimate the
illumination channel as an attention map [11, 39].

In this paper, we construct a new dataset, which can be used to learn a visual attention
map. Then, the proposed method enhances the brightness of dark areas, which can be recog-
nized by the aforementioned attention map. We synthesize differently illuminated superpix-
els and generate a locally illuminated image dataset, as shown in Fig.1(b). As a result, our
method can produce more accurate low-light enhanced images than existing deep-learning
based methods. Fig.1(c) shows an estimated visual attention map, where dark areas are ac-
curately recognized and described using large values.

The contributions of our method is as follows:
• We present a new attention module to recognize dark areas. For this purpose, we syn-

thesize images to train the attention map, where each superpixel of the images has a
different local illumination. Experimental results demonstrate the effectiveness of the
proposed dark-aware visual attention.

• We propose a novel low-light enhancement method using the proposed dark-aware vi-
sual attention. We call this method dark region-aware low-light image enhancement
(DALE). Our method can intensively enhance the brightness of dark areas, while pre-
serving the brightness of other areas.

• We exhaustively conduct the experiments to demonstrate the effectiveness of the pro-
posed method and provide a locally illuminated image dataset, which is used in all
experiments. This dataset will be publicly available to re-train conventional low-light
enhancement methods and improve their accuracy.
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2 Related Work

2.1 Low-light image enhancement

Non-deep learning-based techniques such as histogram equalization and its variations [28]
have been commonly adopted for low-light enhancement, in which contrast-limited adap-
tive histogram equalization [43] showed the best performance. Retinex theory was employed
for low-light enhancement in the single-scale retinex-based method [15]. Multi-scale retinex
with color restoration [12] enhanced the single-scale retinex method by adding the color
restoration process. The haze-model was employed to solve low-light enhancement problems
[5], while low-light images are similar to reversed hazy images. Lime [8] used a structure
prior to enhance the brightness of low-light regions and outperformed naturalness preserved
enhancement [37], multi-deviation fusion [6], and simultaneous reflection and illumination
estimation [7]. LECARM [32] presented a new camera response model based on the expo-
sure ratio estimation for each pixel. Inspired by the human visual system, BIMEF [41] pro-
posed a multi-exposure fusion technique for low-light enhancement. Deep learning methods,
MSRNet [35] and LLNet [20], proposed stacked sparse denoising autoencoders to solve low-
light enhancement problems. LightenNet [18] estimated the illumination map using deep
neural networks to improve the brightness of images, while RetinexNet [39] estimated both
reflection and illumination maps, inducing further improvement. DeepFuse [29] solved low-
light enhancement problems by combining HDR with an unsupervised learning method.
MBLLEN [22] improves performance using multi-branch fusion methods. Lv and Lu [21]
improved the accuracy of low-light enhancement using attention mechanisms and produced
the illumination map. In contrast, our method directly recognizes dark areas using visual
attention modules. Thus, our method more intensively enhances the brightness of dark areas.

Most deep-learning-based methods have a difficult in gathering sufficient training im-
ages. To address this problem, methods in [18, 35] synthesized training data by applying
global illumination to the entire image. However, these methods are not suitable for real-
world images, which contain both low-light and normal illumination areas concurrently. Re-
cently, low-lightGAN [13] proposed a generative adversarial network (GAN) in low-light
enhancement. EnlgithenGAN [11] present a low-light enhancement method, which can be
trained without paired dataset in an unsupervised manner. In contrast to these methods, our
method synthesizes training data using superpixels efficiently.

2.2 Attention Mechanism

Attention mechanisms have been widely used in many of recent computer vision tasks. This
attention mechanism stem from the human perception system, where the human brain typ-
ically focus on important areas. In deep learning, the attention mechanism has been imple-
mented using convolution layers, which results in channel and spatial attention networks.
There exists a different type of attention mechanisms, which focuses on an image itself
instead of convolution layers. For example, in deraining problems, the method in [30] recog-
nized raindrop areas using the attention mechanism.

In low-light image enhancement problems, attention-guided method in [21] used the at-
tention map and EnlightenGAN [11] proposed a self-regularized attention map to enable
unsupervised learning. In contrast to the aforementioned methods that estimate the attention
maps to obtain exposure and illumination information, our method directly uses the attention
map to enhance the brightness of dark areas.
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(a) (b) (c) (d)

Figure 2: Proposed local illumination method for training data synthesis. (a) Input image,
(b) Global illumination method, (c) Quad-tree-based method [13], and (d) Our superpixel-
based method.

3 The Proposed Method
We construct a new low-light driven training dataset (Section 3.1). Then, we present a novel
attention network to recognize dark areas (Section 3.2). In Section 3.3, we describe the pro-
posed low-light enhancement method with detailed network architectures and loss functions.

3.1 Low-light Driven Training Dataset
To construct a large set of paired data, the deraining method in [40] synthesized raindrops.
The dehazing methods in [3, 17] synthesized haze images using depth information through
single image depth estimation. For low-light enhancement, methods in [18, 35] synthesized
low-light images. However, it is nontrivial for these methods to accurately describe illumi-
nation in real-world. Most conventional methods synthesized global illumination as shown
in Fig.2(b). However, these methods are only suitable for under exposure images and cannot
handle low-light images properly if dark areas are caused by natural illumination. Under the
real-world environment, global and local illumination can exist simultaneously in the same
scene. If we attempt to apply global illumination to real-world images, normally illuminated
areas in the images can be easily saturated. To solve this problem, low-lightGAN [13] pre-
sented a quad-tree local illumination synthesis method, as shown in Fig.2(c).

We propose a local illumination synthesis method based on superpixels, as shown in
Fig.2(d). We apply a randomly different level of illumination to each superpixel and synthe-
size both the low-light and normal illumination areas. In addition, the proposed superpixel-
based method can synthesize local illumination according to object boundaries, because su-
perpixels describe object shapes. The local illumination synthesis using superpixel is formu-
lated as follows:

Ilocal = SLIC(I)×L, for L = {0.1,0.2, ...0.9,1.0}, (1)

where the SLIC function [1] outputs superpixels of image I. In (1), L denotes the illumination
weight. If L = 1.0, the original brightness is maintained. If L = 0.1, the corresponding super-
pixel is considerably darkened. This synthetic data is used to train the dark-aware attention
network, which is explained in the next section.
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(a) (b) (c)

Figure 3: Proposed visual attention map. (a) Input image, (b) Quad-tree-based method [13],
and (c) Our dark-aware attention method.

3.2 Dark-aware Visual Attention
The methods in [7, 8, 34] used existing attention mechanisms and produced illumination
maps based on retinex theory. Lv and Lu [21] estimated attention maps based on max chan-
nels in original and low-light images. CWAN [2] created binary mask maps for the fore-
ground color and used the maps for training. EnlightenGAN [11] used illumination channels
to estimate a self-regularized attention map.

Unlike conventional attention-based low-light enhancement methods, our method can
recognize visually dark areas rather than illumination areas based on retinex theory. Thus,
our method is a visual attention method (i.e., dark-aware attention network), which focuses
on dark areas for low-light image enhancement. To train the proposed dark-aware attention
network in a supervised manner, we synthesize the ground-truth attention map IVA, as fol-
lows:

IVA = I− Ilocal , (2)

where I and Ilocal in (2) denote the original image and locally illuminated image, respec-
tively. Local illumination and superpixels with various forms enable the proposed attention
network to learn various types of bright and dark areas during the training. Fig.3(c) shows
the estimated attention map of the proposed method. Our attention map accurately differ-
entiates between dark areas and bright regions, where bright regions are represented using
small values (i.e., red box) and dark areas are represented using large values. The conven-
tional method [13] cannot accurately estimate visual attention maps with blocking artifacts,
as shown in Fig.3(b).

3.3 Dark Region-aware Low-light Enhancement Network
The proposed low-light enhancement network consists of visual attention and enhancement
networks, as shown in Fig.4. The attention network produces the attention map that can
recognize dark areas, whereas the enhancement network outputs low-light enhanced images.

Visual Attention Network (VAN). The proposed VAN adopts the U-Net [33] structure
(i.e., encoder and decoder) as a backbone network. The first convolution layer has the kernel
of 3× 3 size with stride 1. The Encoder has three convolution layers, residual blocks, and
two down-sample layers, as shown in Fig.4. Residual Blocks consist of convolution layers
with the kernels of 1× 1 size, ReLUs, and squeeze-and-excitation blocks [9], which have
different dilation factors (i.e., 3, 2, and 1). The decoder has three convolution layers, residual
blocks, and two up-sample layers. Residual Blocks use different dilation factors (i.e., 1, 2,
and 3).
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Figure 4: The proposed network architecture consisting of visual attention network
(VAN), enhancement network (EN), and residual block (RB).

We compute l2 loss between the estimated attention map VA(Ilocal) and ground truth
IVAGT at the pixel level:

La = ‖VA(Ilocal)− IVAGT‖2 , (3)

where Ilocal in (1) denotes the low-light image with locally illuminated areas and the function
VA estimates visual attention maps. We also calculate perceptual loss, which measures the
similarity between VA(Ilocal) and IVAGT at the feature level:

Lp = ‖φ(VA(Ilocal)+ Ilocal)−φ(IGT )‖1, (4)

where φ is 16-th feature map obtained by the pre-trained VGG-16 network [4] and IGT de-
notes ground truth for the low-light enhanced image. Then, the total loss for VAN is designed
as follows.

LVAN = λ1La +λ2Lp, (5)

where λ1 and λ2 are weighting hyper-parameters.
Enhancement Network (EN). The proposed EN enhances the brightness of low-light

images using the estimated visual attention maps. The EN takes the concatenation of low-
light image and visual attention map as an input. Similar to the VAN, all convolution layers
have the kernel of 3×3 size with stride 1. Three residual blocks use different dilation factors
from 3 to 1, while we concatenate all residual blocks to fuse the information.

We compute l2 loss between the low-light enhanced image EN(IEN) and ground truth
IGT at the pixel level:

Le = ‖EN(IEN)− IGT‖2, (6)

where IEN =VAN(Ilocal)+ Ilocal . We also calculate perceptual loss, which measures the sim-
ilarity between EN(IEN) and IGT at the feature level:

Lep = ‖φ(EN(IEN))−φ(IGT )‖1. (7)

The total variation loss aims to make output images spatially smooth:

Ltv =
1

CHW
‖5x EN(IEN)+5yEN(IEN)‖2, (8)
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(a) Input (b) Input+visual attention map (c) Without refinement (d) With refinement
Figure 5: Ablation Study 1: the proposed adversarial learning refinement.

Figure 6: Ablation Study 2: the proposed visual attention map. First row: input images,
Second row: estimated visual attention maps.

where 5x and 5y differentiate the images via the x and y directions. C, H, and W are the
channel, height, and width of the enhanced image, respectively. Then, the total loss for EN
is designed as follows.

LEN = λ1Le +λ2Lep +λ3Ltv. (9)

4 Experiments
For training, we synthesized locally illuminated images using the DIV2K [36] and Flickr2K
[36] datasets, as explained Section 3.1. The proposed visual attention network was trained
with learning rate of 1e− 5 for 130 epochs, whereas the proposed enhancement network
was trained with learning rate of 1e− 5 for 40 epochs. We trained the whole network for
24 hours on NVIDIA GeForce GTX TITAN Xp GPUs. Hyper-parameters λ1 and λ2 in (5)
were set to 0.5 and 1, respectively Hyper-parameters λ1, λ2, and λ3 in (9) were set to 1, 5,
and 1, respectively. We randomly cropped approximately 3500 images with 2K resolutions
into 240× 240 patches. We compared our method (DALE) with state-of-the-art methods
including NPE [38], LIME [8], MEF [24], and DICM [16].

4.1 Ablation Study
Refinement via adversarial learning. The proposed visual attention intensively enhances
the brightness of dark areas, while it preserves the brightness of other regions. Thus, if the
visual attention map is accurately estimated, the following enhancement network has lit-
tle effect on the performance of low-light enhancement and parameters of the network are
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Table 1: Quantitative comparison with state-of-the-art low-light enhancement methods
using NIQE and BRISQUE. Red and blue numbers denote the best and second best results,
respectively.

NIQE / BRISQUE DICM LIME MEF NPE
LIME [8] 3.63 / 26.8 4.35 / 22.3 3.83 / 24.1 3.84 / 26.1
BIMEF [42] 3.38 / 26.8 3.55 / 23.2 3.13 / 19.3 3.5 / 24.5
RetinexNet [39] 4.31 / 26.7 4.91 / 26.1 4.90 / 26.0 4.07 / 26.9
EnlightenGAN [11] 3.05 / 26.3 3.37 / 20.6 2.89 / 23.6 3.34 / 27.3
DALE 3.78 / 21.4 4.33 / 22.2 4.01 / 22.8 3.38 / 22.1
DALEGAN 3.61 / 22.2 4.16 / 23.5 3.80 / 23.9 3.31 / 19.6

Table 2: Quantitative comparison with state-of-the-art low-light enhancement methods
using LOE. Red and blue numbers denote the best and second best results, respectively.

LOE DICM LIME MEF NPE
LIME [8] 1260.8 1323.8 1079.4 1119.6
BIMEF [42] 351.82 478.57 325.86 308.12
RetinexNet [39] 1565.8 1882.5 1777.4 1224.5
EnlightenGAN [11] 1318.8 1361.5 1141.9 1346.2
DALE 888.7 810 829.2 678.7
DALEGAN 920.91 849.6 892.4 714.6

hardly updated. To solve this problem, we trained the network in an adversarial manner
(i.e., DALEGAN). We used the enhancement network as a generative network and employed
PatchGAN [10, 27] as a discriminator network. Fig.5 shows that the enhancement network
with adversarial learning further enhanced the brightness of low-light region.
Dark-aware visual attention. Fig.6 shows examples of estimated visual attention maps. The
proposed visual attention method accurately recognized dark areas in low-light images. The
method did not focus on bright areas such as sky regions, because the regions appear clearly
and there exist sufficient brightness. In the last column of Fig.6, the visual attention method
produced very small values for a tree or left person, because they received direct sunlight. In
contrast, the method produced large values for a right person, because he was in dark areas.

4.2 Comparison with Other Methods
We quantitatively evaluated several methods in terms of lightness order error (LOE) [38],
naturalness image quality evaluator (NIQE) and blind/referenceless image spatial quality
evaluator (BRISQUE) [25] i.e., no-reference image quality evaluation metric in [26]. Tables
1 and 2 show the low-light enhancement results for five standard benchmark datasets, which
contain real-world low-light images. The proposed DALE and EnlightenGAN showed state-
of-the-art performance in terms of NIQE and BRISQUE, where overall image quality has
been improved. In terms LOE, BIMEF produced the best results. Please note that LOE eval-
uates the degree of light distortion. However, it produces good scores (i.e., small values),
even though the brightness of images is not much improved.

Thus, BIMEF still has visually low-light regions, as shown in the second row of Fig.7(b).
In contrast, LIME, EnlightenGAN, and the proposed DALE produced qualitatively better
low-light enhance results than BIMEF, although they have very high values of LOE.

Fig.7(a) qualitatively compared saturation and details of low-light enhanced images.
Fig.7(b) qualitatively compared lightness distortion using LOE maps in low-light enhanced
images. As shown in the third row of Fig.7(c), LIME over-improved the brightness of im-
ages, which results in saturation problmes. BIMEF and MBLLEN produced clear images but
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(a) Qualitative comparison on saturation and details

(b) Qualitative comparison on lightness distortion

(c) Qualitative comparison with other methods
Figure 7: Qualitative comparison with state-of-the-art-methods. (b) first and third rows:
input images, second and fourth rows: estimated LOE maps.

lacked the brightness. EnlightenGAN produced good image enhancement results. However,
some colors distorted. In contrast these methods, the proposed DALE qualitatively outper-
forms other state-of-the-art methods.

5 Conclusion
In this paper, we present a novel low-light enhancement method (DALE) based on a new
visual attention network that can recognize dark regions. We synthesize different local il-
lumination for each super-pixel and accurately estimate the brightness of low-light images
using synthetic training images. Experimental results demonstrate that our method outper-
forms state-of-the-art methods.
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