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This is the supplementary material for our paper in BMVC 2020, titled ‘Attention Distil-
lation for Learning Video Representations”. In this document, we introduce the implementa-
tion details. Moreover, we investigate the predicted attention maps and the learned features
of our model and provide further analysis of our approach.

Network Architecture
We detail the network architecture of our full model (Prob-Atten) in Table 3. Specifically,
our model adopts I3D network [1] as the backbone. We attached the attention modules
to the last Inception Module of the fourth convolution block. The appearance and motion
attention maps, predicted by attention modules, are further used to pool features from the
last Inception Module of the fifth convolution block for classification. And their results are
fused at the end for final recognition. The network takes 24 frames as inputs with dimension
24×224×224×3 (RGB). And the network outputs (a) a downsampled attention map with
size 3×7×7 (three temporal slices with spatial resolution of 7×7); and (b) the action scores
for each category.

Analysis of Attention Distillation
We provide extensive analysis to understand what has been learned by our model. We show
that these attention maps help to locate the spatial extents of actions. And, we study different
approaches to evaluate whether the learned representation is sensitive to motion. Finally, we
provide more visualization of the attention maps of our model.
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Method Prec Recall F1
Gaussian (center prior) 52.6 20.6 29.6
Saliency Map (DSS [2]) 51.2 47.7 49.4

Soft-Atten (RGB) 33.8 40.5 36.9
Soft-Atten (Flow) 39.2 50.0 44.0
Our Appearance 31.5 52.1 39.2

Our Motion 36.3 62.6 46.0
Table 1: Results of action localization using attention maps on THUMOS’13 localization
test set [3]. We report the best F1 score and its precision and recall. Our motion attention
outperforms all baselines that are trained with only action labels.

Does the attention help to localize actions? We evaluate our output attention for action
localization using THUMOS’13 localization dataset [3]–a subset of UCF101 with bounding
box annotations for actions. We present our evaluation metric and discuss our results.

• Evaluation Metric. We consider action localization as binary labeling of pixels and report
the F1 score from Precision-Recall (PR) curve. Specifically, we first rescale both attention
maps and video frames into a fixed resolution (56×56). We then enumerate all thresholds
and binarize the attention map. Each threshold defines a point on the PR curve. Given
a binary attention map, a positive pixel is considered as a true positive if it is inside the
bounding box, or it is within 10-pixel “tolerance zone” of the box. This tolerance is added
to compensate for the reduced resolution of the attention map, as in [6]. We report the best
F1 score on the curve and its corresponding precision and recall.

• Results. We compare attention maps from our model to a set of baseline methods, includ-
ing a fixed Gaussian distribution (center prior), a latest deep saliency model (DSS [2]),
and our Soft-Atten (RGB/Flow). The results are shown in Table 1. Our appearance atten-
tion beats the baselines of center prior and Soft-Atten (RGB), but is worse than Soft-
Atten (flow). Our motion attention achieves the highest score among all methods that only
receive action labels as supervision, and only under-performs DSS. We have to emphasis
that directly comparing our results to DSS is unfair. DSS is trained with pixel-level anno-
tations using external data and runs at the original video resolution, while our attention
maps are trained using clip-level action labels and down-sampled both spatially (32x) and
temporally (8x). These results suggest that our attention maps help to locate the spatial
extent of actions.

Does our method learn better motion representation? We further study how the tempo-
ral order of the input video frames will affect the recognition performance. We conduct an
experiment of classifying reverted videos as in [7, 8]. Specifically, we invert the frame order
for all testing videos of UCF101 and HMDB51. We compare their recognition results with
those from normal temporal order. If a model truly rely on motion representation for the
recognition, this inversion will significantly decrease the recognition performance. We test
the vanilla I3D RGB and flow models, as well as our model. And the results are presented in
Table 2. Not surprisingly, I3D flow model has the largest performance drop. In contrast, I3D
RGB is barely affected by the reverted arrow of time. Our model has a performance drop that
is larger than I3D RGB yet much smaller than I3D flow. This is consistent with our results
on action recognition. Our model does not capture the same level of motion information as
the flow network.

How is the motion encoded? It is also possible that our model simply copies the motion
attention map without encoding motion in the network. To eliminate this hypothesis, we
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Dataset Method Mean Class Accuracy
Original Reverted Delta∆

UCF101
I3D RGB 94.8 94.7 0.1
I3D flow 94.0 89.9 4.1

Ours 95.7 95.1 0.6

HMDB51
I3D RGB 70.9 70.2 0.7
I3D flow 73.9 66.0 7.9

Ours 72.0 70.6 1.4
Table 2: Inverting the arrow of time for action recognition. We train the models on normal
samples, yet test them on videos with reversed temporal order. A large performance drop
indicates that the model has to rely on motion information for the recognition.

experimented with training an RGB network that directly combines a reference motion atten-
tion map and its own appearance attention map for action recognition. The reference motion
attention is produced by a flow network during both training and testing. And the rest of this
network follows exactly the same architecture as our model. This model has an accuracy
of 95.1%/71.6% on UCF101/HMDB51, under-performing our model by -0.6%/-0.4% on
UCF101/HMDB51. These results indicate that the distillation process not only generates
motion attention maps, but also learns motion-aware representation.

Additional Visualizations. We provide additional visualization of attention maps in Fig 1.
The figure follows the same format as Fig. 2 in our paper. These results further verify that (1)
the appearance and motion attention maps are qualitatively different and (2) these attention
map at good at localizing the actions, e.g., the actors or the moving regions.

What has been learned? Our visualization and action localization experiment suggest that
our model learns to locate moving regions from video frames. However, when we invert
the temporal order of frames, our learned features are not as sensitive as those from flow
network. These results illustrate a key challenge for learning motion-aware representations.
How the model learns to identify moving regions is not necessarily the right representation
to encode motion. This is the same pitfall faced by our work and many previous work [4, 5].
And this challenge remains open.
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Our Full Model Soft Attention
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Our Full Model Soft Attention
Soccer Penalty
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Our Full Model Soft Attention
Playing Sitar

Our Full Model Soft Attention
Archery

Our Full Model Soft Attention
Apply Lipstick
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Figure 1: Visualization of attention maps from our full model and Soft-Atten. For each 24
frames video clip, we plot the attention heatmap over the first frame and last frame. Our
model produces qualitatively different appearance and motion attention maps. And these
attention maps are better at localizing the actions when compared to vanilla soft attention.
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ID Branch Type Kernel Size
(THW)

Stride
(THW)

Output Size
(THWC)

Depth Comments (Loss)

1

Backbone
(shared)

Convolution 7x7x7 2x2x2 12x112x112x64 1
2 Max Pool 1x3x3 1x2x2 12x56x56x64 0
3 Convolution 1x1x1 1x1x1 12x56x56x64 1
4 Convolution 3x3x3 1x1x1 12x56x56x192 1
5 Max Pool 1x3x3 1x2x2 12x28x28x192 0
6 Inception 3a 12x28x28x256 2
7 Inception 3b 12x28x28x480 2
8 Max Pool 3x3x3 2x2x2 6x14x14x480 0
9 Inception 4a 6x14x14x512 2

10 Inception 4b 6x14x14x512 2
11 Inception 4c 6x14x14x512 2
12 Inception 4d 6x14x14x528 2
13 Inception 4e 6x14x14x832 2 Branching

14

Motion
Attention
Branch

Max Pool
(on Inception 4e)

2x3x3 2x2x2 3x7x7x832 0

15 Convolution 1x3x3 1x1x1 3x7x7x128 1

16 Convolution 1x1x1 1x1x1 3x7x7x1 1
KL Loss

(Attention Distillation)

17
Gumbel Softmax

(Sampling)
3x7x7x1 0 Sampling Attention Map

18

Appearance
Attention
Branch

Max Pool
(on Inception 4e)

2x3x3 2x2x2 3x7x7x832 0

19 Convolution 1x3x3 1x1x1 3x7x7x128 1

20 Convolution 1x1x1 1x1x1 3x7x7x1 1
KL Loss

(Regularization)

21
Gumbel Softmax

(Sampling)
3x7x7x1 0 Sampling Attention Map

22

Motion
Action
Branch

Max Pool
(on Inception 4e)

2x2x2 2x2x2 3x7x7x832 0

23 Inception 5a 3x7x7x832 2
24 Inception 5b 3x7x7x1024 2

25
Weighted
Avg Pool

2x7x7 1x1x1 2x1x1x1024 0
Weights from Gumbel Softmax

(Motion Attention Map)
26 Fully Connected 2x1x1x101 1
27 Avg Pool 2x1x1 1x1x1 1x1x1x101 0

28 Softmax 1x1x1x101 0
Cross Entropy Loss

(Action Recognition)

29

Appearance
Action
Branch

Max Pool
(on Inception 4e)

2x2x2 2x2x2 3x7x7x832 0

30 Inception 5a 3x7x7x832 2
31 Inception 5b 3x7x7x1024 2

32
Weighted
Avg Pool

2x7x7 1x1x1 2x1x1x1024 0
Weights from Gumbel Softmax

(Appearance Attention Map)
33 Fully Connected 2x1x1x101 1
34 Avg Pool 2x1x1 1x1x1 1x1x1x101 0

35 Softmax 1x1x1x101 0
Cross Entropy Loss

(Action Recognition)
Table 3: Network Architecture of our full model (Prob-Atten). The network attaches appear-
ance and motion attention moduels to a backbone I3D network. We list details of all opera-
tions in the network, as well as where the loss functions are attached. Note that the predicted
scores from Motion Action Branch and Appearance Action Branch are fused at the end for
final recognition.


