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1 Additional methodology details

Fully connected and convolutional residual blocks

Figure 1 illustrates the residual fully connected block that we use in GTE, and the residual
convolutional block that we use in DSN.

Residual Fully Connected Block Residual Convolutional Block
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Figure 1: The architecture of residual fully connected block; and the residual convolutional
block that are used in the ViewSynth framework.
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Mapping and warping Functions
Mapping grid M2 introduced in Section 3.2 is computed using I and camera parameters

R | 1 } defined by the

C (1>, C). We use intrinsic matrix K,,, and extrinsic matrix E,, = [ 0 1

camera parameters C" for the n'" camera, to obtain-

J
M7 =K | RiRy' [ K5 96 )% il |- |+n]. (1
1

With that, we can find the warped feature representation projected into the target view-
point. Given some feature representation X, the general form of the warp function is -

w(X,M}7%), it Ml e m(X),

0, otherwise.

Warp(X; M/ ;%) = { 2

Where w(X,M'~2(i, j)) represents the bilinear sampling of X at location Milfz, and 7(X)
denotes the grid of spatial positions of X. Note that X can be a feature representation or a
depth image.

Composing G' 72

We compose a grid of transformation related parameters G' 2 € RPw*f and use it in the
GTE (Section 3.2). The relative pose between Ct!) and C?) is E,E[ ™. G'72(i, j) is obtained
by the following concatenation -

Gly? = [Warp (10;M'22) (i, ) , m(X)(.j) , M1, B! ©

f] becomes 17 by concatenating these values.

2 Implementation details

ViewSynth framework jointly penalizes keypoint-descriptor loss L, and view synthesis loss
L,. We use the joint loss function of L., + aL,, and use & = 10 throughout our experiments.
At the start of the training, the backbone network is initialized with Imagenet [1] pre-trained
weights of VGG16 [10]. Fully connected and convolutional layers in VSM are initialized
with Kaiming uniform initializer [4]. We train all parameters of the network using Adam [5]
optimizer with an initial learning rate of 10~*, and batch size of 4. The learning is further
scheduled to drop by a factor of 10 when it plateaus over 30000 iterations. The training image
pairs consist of 640 x 480 resolution depth images for the MSR-7 [9] and TUM [12] datasets,
and 512 x 424 resolution depth images for the CoRBS dataset [13]. We use a batch size of 4,
and only use depth image pairs that have at least 64 correct correspondences between them,
to obtain stable gradient in each iteration. The network is trained until convergence (roughly
60 epochs). We train D2Net [2] and its variants in the same manner. ViewSynth can be
trained with only a small time overhead compared to D2Net (~ 1s vs ~ 0.87s per batch on a
GTX 1080 GPU) with similar convergence time. Inference time is the same as D2Net since
VSM is removed then.
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Method MMAg.1m
ISS [15] + SHOT [8] 23.0
ISS [15] + FPFH [7] 24.3
Harris3D [11] + FPFH [7] 374
Harris3D [11] + SHOT [8] 379
Harris3D [11] + 3DMatch [14] 38.2
Georgakis et al. [3] 41.2
D2Net [2] Collapsed
R2D2 [6] 61.6
R2D2,, [6] 50.1
mD2Net 45.7
D2Net;,, 79.9
ViewSynth (ours) 80.1

Table 1: Keypoint mean matching accuracy (%) on the MSR-7 dataset for 10-frame-apart
training, with 0.1m threshold. It demonstrates superior performance of ViewSynth over all
baselines.

MMA Threshold 0.Im 0.25m 0.5m 0.Im 0.25m 0.5m 0.1lm 0.25m 0.5m
Frames Apart 10 30 10 3 10 30 10 30 10 30 10 30 10 30 10 30 10 30
Dataset TUM CoRBS MSR-7
D2Net Collapsed Collapsed Collapsed
mD2Net 8.72 3.62 20.48 12.60 30.89 21.33 17.10 13.93 29.83 28.13 44.61 42.10 45.69 45.02 61.31 59.55 71.48 69.25
R2D2[6] 20.84 - 3734 - 5059 - 4208 - 5126 - 6343 - 6155 - 6630 - 7258

D2Net,,,  33.38 23.93 53.19 45.82 68.93 61.25 56.73 51.53 71.24 66.65 80.35 75.47 79.87 80.35 89.84 90.30 93.30 93.41
ViewSynth (ours)34.75 35.63 59.45 57.39 77.02 73.65 67.30 52.69 72.43 69.25 81.76 79.16 80.10 80.56 89.70 90.72 93.37 94.19

Table 2: Comparison of MMA on TUM, CoRBS, and MSR-7 datasets, trained on 10/30-
frames-apart setting. Acronyms: mD2Net: modified D2Net; D2Net; , : D2Net with con-
trastive loss formulation; ViewSynth: D2Net;, . + L,, proposed method.

R2D2 [6] originally trains using images of 192 x 192 resolution but the images of MSR-
7, TUM and CORBS come in higher resolution. We resize the images in these datasets to
256 x 192 for the R2D2 training to fit them in the GPU memory, while maintaining the aspect
ratio of the images, and the image height used in the original paper.

3 Additional quantitative results

Table 1 shows that ViewSynth outperforms all competing methods on MSR-7 3D keypoint
matching task. Table 2 shows that in different training settings of the MSR-7, TUM and
CoRBS dataset, ViewSynth outperforms other baselines in most cases. For the 0.5m thresh-
old, ViewSynth beats the baselines in all settings.

4 Additional qualitative results

We present the qualitative comparison between mD2net, D2Net; , , ViewSynth (D2Net; ,, +
L)) in pairwise image matching task for MSR-7 [9], TUM RGBD-SLAM [12] and CoRBS
[13] datasets. In all cases, the networks are trained on the respective datasets in 30-frames-
apart setting. For pairwise matching, we extract 50 keypoints from each image, and match
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the keypoints according to their descriptor similarity. We show the qualitative results on the
MSR-7 [9] dataset in Figure 2, 3 and 4. Qualitative results on the TUM RGBD-SLAM [12]
dataset are in Figure 5, 6, and 7. Qualitative results on the CoRBS [13] dataset are in Figure
8, 9 and 10. We only show the correct keypoint matches between the images. The higher
the number of correct matches, the better the keypoint-descriptor set. We also qualitatively
show the effectiveness of our proposed View Synthesis Module (VSM) (see Section 3.2 in
the original paper) in Figure 11.
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Figure 2: Pairwise keypoint matching on MSR-7 dataset. Top row: mD2Net, middle row:
D2Net;,,,, bottom row: ViewSynth (D2Net;,,, + L,). ViewSynth obtains the highest number
of correct matches between image pairs.
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Figure 3: Pairwise keypoint matching on MSR-7 dataset. Top row: mD2Net, middle row:
D2Nety,,,, bottom row: ViewSynth (D2Net;,, + L,). ViewSynth obtains the highest number
of correct matches between image pairs.
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Figure 4: Pairwise keypoint matching on MSR-7 dataset. Top row: mD2Net, middle row:
D2Net;,,,, bottom row: ViewSynth (D2Net;,,, + L,). ViewSynth obtains the highest number
of correct matches between image pairs.
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Figure 5: Pairwise keypoint matching on TUM dataset. Top row: mD2Net, middle row:
D2Net;,,,, bottom row: ViewSynth (D2Net;,,, + L,). ViewSynth obtains the highest number
of correct matches between image pairs.
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Figure 6: Pairwise keypoint matching on TUM dataset. Top row: mD2Net, middle row:
D2Net;,,,, bottom row: ViewSynth (D2Net;,,, + L,). ViewSynth obtains the highest number
of correct matches between image pairs.
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Figure 7: Pairwise keypoint matching on TUM dataset. Top row: mD2Net, middle row:
D2Net;,,,, bottom row: ViewSynth (D2Net;,,, + L,). ViewSynth obtains the highest number
of correct matches between image pairs.
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Figure 8: Pairwise keypoint matching on CoRBS dataset. Top row: mD2Net, middle row:
D2Net;,,,, bottom row: ViewSynth (D2Net;,,, + L,). ViewSynth obtains the highest number
of correct matches between image pairs.
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Figure 9: Pairwise keypoint matching on CoRBS dataset. Top row: mD2Net, middle row:
D2Net;,,,, bottom row: ViewSynth (D2Net;, ,, + L,). ViewSynth obtains the highest number
of correct matches between image pairs.
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Figure 10: Pairwise keypoint matching on CoRBS dataset. Top row: mD2Net, middle row:
D2Net;,,,, bottom row: ViewSynth (D2Net;,,, + L,). ViewSynth obtains the highest number
of correct matches between image pairs.
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Occlusion and
Missing Depth

Image I Image I® Synthesized Image [(?

Figure 11: View synthesis examples using our ViewSynth framework. Top two rows: MSR-
7, middle two rows: TUM, bottom two rows: CoRBS dataset. Blue highlighted area indi-
cates the parts of /(2) that are occluded in /"), Red highlight indicates the change in pose
between /1), 1) and the missing information in /(). /) shows that VSM can synthesize
the depth views in the blue occluded regions.
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