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A Dropout regularization
Dropout regularization, introduced by Srivastava et al. [19], is one of the most popular
regularization strategies. When applied on a given layer, it randomly drops hidden nodes
along with their connections [8]. During training, in each batch, neurons are multiplied by
a Bernoulli(p) variable, which causes them to nullify with a probability q = 1− p. Each
weight connected to a nullified neuron does not influence the output, thus, it is not updated
by backpropagation at the given training step. Clearly, the remaining weights are trained
regularly. At test time, all outputs are multiplied by p to sustain the overall weight norm.

Besides its great success in improving the generalization of neural networks, Dropout
is also beneficial to avoid saddle points during training due to it stochasticity. Moreover, it
incurs only a small additional complexity since it is linear in the features dimension.

Jindal et al. have used Dropout to deal with noisy labels, by reducing the certainty of a
trained model and making it more robust. After the usual softmax layer, which is located at
the end of the network, they have added a fully connected layer with Dropout, followed by
another softmax layer. This led to a smoother label distribution for each sample, which is
less affected by the noisy labels [9].

Note that each Dropout operation leads to a different approximation of the output of the
network and therefore to a different optimization step. Thus, it is suggested that LSTM and
GRU cells should have the same units dropped at each time step so the prediction would be
consistent with respect to time [5].

Implicit bias. Mianjy et al. [13] study the implicit bias of Dropout [13]. It focuses on
the case of a shallow network with a single hidden layer. Denote its matrices as A ∈ Rm1×n

and B ∈ Rm2×n. By applying Dropout with probability p and using the squared loss, their
optimization objective reads as:

f (A,B) = Ebt∼Ber(p),x∼D

[∥∥∥∥y− 1
p

Bdiag(b)AT x
∥∥∥∥2
]
, (1)

where D is the distribution of x. Notice that when p = 1, we simply get the case without
dropout denoted as:

`(A,B) = E,x∼D
[∥∥y−BAT x

∥∥2
]
. (2)
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First they show that the Dropout objective in (1) can be rewritten as:

f (A,B) = `(A,B)+λ

n

∑
i=1
‖ai‖‖bi‖ , (3)

where λ = 1−p
p , and ai and bi represent the ith columns of A and B respectively. They note

that this is equivalent to the square of the convex Path-Regularization [14], which is the
square-root summation over all paths in the network, where in each path the squared weights
product is calculated. In addition, they argue that the additional term of (3) is an explicit in-
stantiation of the implicit bias of dropout. They then define the term of jointly equalized ma-
trices, where matrices A and B are considered jointly equalized iff ∀i,‖ai‖‖bi‖= ‖a1‖‖b1‖.
This notation is used where it is proven that if (A,B) is a global minimum of (3), then A and
B are jointly equalized. A clear but important observation, is that when y = x and m1 = m2
(the dimensions of A and B are equal) we get an objective of an autoencoder.

DeCov. Cogswell et al. [4] use the fact that Dropout leads to less correlated features.
Denote hn ∈Rd as the activations at a given hidden layer, where n∈ 1, ...,N refers to an index
of one example from a batch of size N. The covariances between all pairs of activations i
and j form the matrix C:

Ci, j =
1
N ∑

n
(hn

i −µi)(hn
j −µ j), (4)

where µi =
1
N ∑n hn

i is the sample mean of activation i over the batch. The matrix C is used
in the DeCov [4] regularization, which explicitly regularizes the covariance of the features
with respect to the training data by adding the following loss:

LDeCov =
1
2
(‖C‖2

F −‖diag(C)‖2
2), (5)

where ‖·‖ is the frobenius norm, and diag(·) returns the diagonal of a matrix. Though useful,
the connection between it and Dropout is not fully established. Moreover, DeCov is even
shown to be adversarial to Dropout on some occasions.

B Autoencoders
Autoencoders have been first introduced in [17] as a neural network that is trained to recon-
struct its input. Their main purpose is learning in an unsupervised manner an “informative”
representation of the data that can be used for clustering. The problem, as formally defined
in [3], is to learn the functions A : Rn→Rp (encoder) and B : Rp→Rn (decoder) that satisfy

argminA,BE[∆(x,B◦A(x)], (6)

where ∆ is an arbitrary distortion function, which is set to be the `2-norm in our case, and E
is the expectation over the distribution of x.

In the most popular form of autoencoders, A and B are neural networks [16]. In the
special case that A and B are linear operations, we get a linear autoencoder [2].

Since in training one may just get the identity operator for A and B, which keeps the
achieved representation the same as the input, some additional regularization is required.
One option is to make the dimension of the representation smaller than the input. Another
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Figure 1: Empirical eigenvalue distribution of submatrices sampled from an ETF with β =
0.8 and γ = 0.5.

option is using denoising autoencoders [20]. In these architectures, the input is disrupted by
some noise (e.g., additive white Gaussian noise or erasures using Dropout) and the autoen-
coder is expected to reconstruct the clean version of the input.

Another major improvement in the representation capabilities of autoencoders has been
achieved by the variational autoencoders [10]. These encode the input to latent variables,
which represent the distribution that the data came from, and decode it by learning the pos-
terior probability of the output from it.

Autoencoders may be trained in an end-to-end manner or gradually layer by layer. In the
latter case, they are ”stacked” together, which leads to a deeper encoder. In [12], this is done
with convolutional autoencoders, and in [21] with denoising ones.

B.1 Use of autoencoders for classification.

Autoencoders are also used for classification by using the encoder as a feature extractor
and "plugging" it into a classification network. This is mainly done in the semi-supervised
learning setup. First, the autoencoders are trained as described above in an unsupervised way.
Then (or in parallel), the encoder is used as the first part of a classification network, and its
weights may be fine tuned or not vary during training [10]. Notice that different types of
autoencoders may be mixed to form new ones, as in [15], which uses them for classification,
captioning, and unsupervised learning.

C The connection between ETF and MANOVA

It has been demonstrated in [6] that frames that reach the Welch bound (also known as
Equiangular Tight Frames(ETF)), have MANOVA distribution. The eigenvalue distribution
of the submatrices of an ETF is shown empirically to resemble the MANOVA distribution
(see Fig. 1 as an example).
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Figure 2: An illustration (1D case) of the equivalence between a convolution with three
kernels and a multiplication with the equivalent Toeplitz matrix. Notice that the coherence
of the convolution Toeplitz matrix is the same as the coherence of the smaller convolution
stride matrix (marked by dashed lines).

In a following work [7], the relationship between the MANOVA distribution and ETFs
has been further supported by showing similarity between the moments of the MANOVA
distribution and the ones of the ETF. The d-th moment of a random subset in F is defined as

md
∆
=

1
n
E[Tr((FPFT )d)], (7)

where Tr(·) is the trace operator and P is a diagonal matrix with independent Bernoulli(p)
elements on its diagonal.

It has been proven for d = 2,3,4 that these moments are lower bounded by the moments
of matrices with the Wachter’s classical MANOVA distribution, plus a vanishing term (as n
goes to infinity with m

n held constant). The bound is proven to hold with equality for ETFs,
where in the case of d = 4 it is shown that it holds only for ETFs. This leads us to assume
that the subsets of ETF matrices indeed have MANOVA distribution.

D Regularizing convolution kernels
To apply our regularization on convolutional layers, we may use their corresponding convo-
lution Toeplitz matrix as illustrated in Fig. 2. Notice that the coherence of the convolution
Toeplitz matrix is the same as the coherence of the smaller convolution stride matrix (marked
by dashed lines) and thus, we apply the regularization directly on the stride convolution ma-
trix. Yet, for simplicity, we just regularize the coherence between the convolution kernels
(the matrix marked in red in Fig. 2), which is the central part of the stride matrix. In the
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multi-dimensioanl case, each kernel is column-stacked and treated as a column vector in the
regularized matrix.

E Implementation details
Fashion MNIST. The Fashion MNIST [22] is a dataset similar to MNIST but with fashion
related classes that are harder to classify compared to the standard MNIST. It is composed
of 60,000 examples as the train set, and 10,000 as the test set. Each example is a 28×28
grayscale image, associated with a label from 10 fashion related classes.

The architecture we used is based on LeNet5, and was changed a bit to examine a case
where m > n. The FC layers were changed from 400→ 120→ 84→ 10 to 400→ 800→ 10.
For the FC layers, the ETF parameter was set to 100, and the Dropout to 0.5. For the
convolutional layers, when used as a sole regularizer, the ETF parameter was increased to
1000. The batch size was 128 and the score was taken as the best one in 400 epochs. The
optimizer used was ADAM with a learning rate that diminished from 10−3 to 10−5.

CIFAR-10. The CIFAR-10 dataset is composed of 10 classes of natural images with 50,000
training images, and 10,000 testing images. Each image is an RGB image of size 32×32.

The architecture is based on a variant of Lenet5 for this data set. It involves 5×5×32 and
5×5×64 convolution layers with 2×2 max pooling, followed by two FC layers of 1600→
1024→ 10. For the FC layers, the ETF parameter was set to 10 when it is the sole regularizer,
and to 1 when combined with Dropout. For the convolutional layers, it was set to 10. The
Dropout parameter was 0.5. The batch size was 128 and the score was taken as the best one
in 300 epochs. The optimizer used was Nesterov Momentum with a momentum parameter
of 0.9 and a learning rate that diminished from 10−2 to 10−3.

Tiny ImageNet. The Tiny Imagenet dataset is composed of 200 classes of natural images
with 500 training examples per class, and 10,000 images for validation. Each image is an
RGB image of size 64×64. It is tested by top-1 and top-5 accuracy.

The architecture we use is an adaptation of the VGG-16 model [18] to the Tiny Imagenet
dataset [1]. It consists of ten 3×3 convolution layers, separated to four parts: two layers with
64 feature maps, two with 128, three with 256, and three with 512. All parts are separated
by a 2×2 max pool, and after the last convolutional layer there is no pooling but FC layers
of 25088→ 4096→ 2048→ 200.

For the FC layers, the ETF parameter was set to 10 when it is the sole regularizer, and
to 1 when combined with Dropout. For convolutional layers, it was set to 1. The Dropout
parameter was 0.5. The batch size was 64 and the score was taken as the best one in 50
epochs. The optimizer used was Nesterov Momentum with a momentum parameter of 0.9
and a learning rate that diminished from 10−2 by a factor of 5 when the validation top-1
accuracy ceased increasing.

Convolution regularization details. In the convolution regularization experiments, we
apply the dropout and ETF regularization as follows. For Fashion MNIST and CIFAR 10,
we apply the regularization on the second convolutional layer - right before the FC ones. For
Tiny ImageNet, we apply it on the last three convolution layers - the ones with feature maps
of size 512. Dropout in all cases is applied once after the convolutional layers. In the case of
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the first two networks, it is applied after the pooling operation that follows the convolutions
(since this gives better performance with Dropout).

Penn Tree Bank. We perform word level prediction experiments on the Penn Tree Bank
data set [11]. It consists of 929,000 training words, 73,000 validation words, and 82,000 test
words. The vocabulary has 10,000 words. In this data set, we measure the results by the
attained perplexity, which we aim at reducing.

The architecture is as described in [23]. Two models are considered, where all of them
involve LSTMs with two-layer, which are unrolled for 35 steps. The small model includes
200 hidden units, and the medium includes 650.

Small model parameters: When used as a sole regularizer, the ETF parameter was set to
1, and when combined with Dropout, to 0.1. The Dropout was set to 0.75. The score was
taken as the best one in 30 epochs on the validation set. The optimizer used was stochastic
gradient descent (SGD) and the learning rate diminished from 1 by a factor of 0.7.

Medium model parameters: When used as a sole regularizer, the ETF parameter was set
to 50, and when combined with Dropout, to 1. The Dropout was set to 0.5. The score was
taken as the best one in 45 epochs on the validation set. The optimizer used was SGD and
the learning rate diminished from 1 by a factor of 0.8.
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