
STRAPS: SUPPLEMENTARY MATERIAL 1

Synthetic Training for Accurate 3D Human
Pose and Shape Estimation in the Wild:
Supplementary Material

Akash Sengupta
as2562@cam.ac.uk

Ignas Budvytis
ib255@cam.ac.uk

Roberto Cipolla
rc10001@cam.ac.uk

Department of Engineering
University of Cambridge
Cambridge, UK

This document provides supplementary material for the 3D human shape and pose pre-
diction framework, STRAPS, and the 3D shape evaluation dataset, SSP-3D, presented in the
main manuscript. Section 1 focuses on SSP-3D. We quantitatively compare pre- and post-
optimisation SMPL [6] body model fits (where the latter forms the pseudo-ground-truth 3D
labels in SSP-3D) and explain the role of human annotators in the dataset creation process. In
Section 2, we formally define the PVE-T-SC metric, introduced in the main manuscript and
used to measure 3D body shape prediction error. We also qualitatively compare 3D recon-
structions obtained using ground-truth silhouettes versus silhouettes predicted by DensePose
[1] as inputs to our SMPL regressor. Finally, relevant hyperparameters for both STRAPS and
SSP-3D dataset optimisation are provided in in Table 2.

1 SSP-3D Dataset
In the main manuscript, we present the Sports Shape and Pose 3D (SSP-3D) dataset, which
contains images of tightly-clothed sportspersons with a variety of body shapes. Pseudo-
ground-truth SMPL [6] shape and pose parameters are obtained by fitting the SMPL body
model to target 2D observations (joints and silhouettes) from multiple views, while forcing
the shape parameters to be consistent across views. To prevent getting stuck in bad local
minima, we initialised the pose, shape and camera parameters with estimates from VIBE
[4], a method for SMPL prediction from video. Table 1 reports error metrics between target
2D observations and SMPL body model estimates, both before the optimisation process (i.e.
using the initial VIBE estimates) and after the optimisation process.

1.1 Human annotation
A human annotator was involved in the creation of SSP-3D in two stages: pre-optimisation
and post-optimisation.

Pre-optimisation annotation involved selecting frames where the silhouette segmentation
(predicted by FPN [5] and PointRend [3]) and 2D joint detections, obtained using Keypoint-
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Metric Pre-optimisation Post-optimisation

Silhouette IOU 0.64 0.85
Silhoeutte global accuracy 0.95 0.98
2D Joints Euclidean error 19.4 9.8

Table 1: Optimisation metrics. This table reports error metrics between SMPL body models
and target 2D observations across all samples in SSP-3D. Reported metrics are silhouette
intersection-over-union (IOU), silhouette global accuracy and 2D joints Euclidean error (in
pixels). The post-optimisation SMPL body models have significantly lower error metrics.

RCNN [2], matched the subject in the image accurately. This was crucial since the predicted
silhouettes and 2D joints act as target observations during optimisation. Selected frames also
required good pose and shape initialisations, obtained using VIBE [4].

Post-optimisation annotation involved selecting good SMPL fits (i.e. optimised pose
and shape parameters). The quality of an SMPL fit was judged by (i) the overlap between
the SMPL silhouette and predicted silhouette, (ii) the distance between projected SMPL
joints and predicted joints and (iii) the 3D plausibility of the SMPL body mesh, which was
determined by rendering and viewing the mesh from 3 different camera angles.

2 STRAPS

In the main manuscript, we described STRAPS, a framework for 3D human shape and pose
estimation. Here, we define the metrics used to evaluate STRAPS and give qualitative ex-
amples of predictions from STRAPS when ground truth silhouettes are used as inputs.

2.1 Evaluation metric definitions

For 3D pose accuracy evaluation, we report mean per joint position error (in mm) after rigid
alignment between the ground truth and prediction using Procrustes analysis, abbreviated as
MPJPE-PA. This is a common metric used to evaluate 3D pose estimation approaches. A
formal definition is given in [7].

For 3D shape accuracy evaluation, we report two metrics: PVE-T-SC and mean intersection-
over-union (mIOU). “PVE-T” represents mean per-vertex Euclidean error (in mm) in a neu-
tral T-pose - i.e. the pose contribution to the per-vertex error is removed by first reposing the
mesh to a neutral T-pose. Reposing is trivial using the SMPL body model, since the SMPL
pose parameters (i.e. joint rotation vectors) can simply be set to zero. However, there is
an inherent ambiguity between 3D subject size/scale and distance from camera. Since the
true camera location relative to the 3D subject (and the focal length) is unknown, it is not
possible to estimate the absolute size of the subject given an image. This is not accounted for
by vanilla PVE-T. We want to measure shape accuracy up to scale by eliminating the con-
tribution of this ambiguity to PVE-T. To do so, we carry out a scale-correction step (hence
the “SC” in PVE-T-SC), which rescales the predicted vertex mesh such that the root mean
square distance (RMSD) of the predicted vertices from their mean is the same as the RMSD
of the target vertices from their mean. The RMSD of a vertex mesh with N vertices {vi}N

i=1
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is defined as

RMSD
(
{vi}N

i=1
)
=

√
∑

N
i=1 ||vi−vmean||22

N
, (1)

where vmean ∈ R3 is the mean vertex location. Given predicted vertices {v̂i}N
i=1 and target

vertices {vi}N
i=1, scale-corrected predicted vertices are obtained by

v̂SC
i =

RMSD
(
{vi}N

i=1

)
RMSD

(
{v̂i}N

i=1

) (v̂i− v̂mean)+vmean. (2)

After scale correction, the PVE-T-SC over an evaluation dataset with M samples is given by

PVE-T-SC =
M

∑
m=1

N

∑
i=1

||vm
i − v̂SC

i
m||2

NM
. (3)

We use PVE-T-SC (in mm) as a shape accuracy metric since it is invariant to pose and scale.

2.2 Qualitative examples using ground truth silhouettes as inputs
In the main manuscript, we use DensePose [1] to obtain silhouettes at test-time. However,
DensePose may predict erroneous silhouettes, particularly for subjects with outlier body
shapes. In Figure 1, we compare predictions made using DensePose silhouettes as inputs
versus using ground truth silhouettes from SSP-3D. The ground-truth silhouettes were ob-
tained using FPN [5] with PointRend [3] and curated by human annotators when creating
SSP-3D, as described in Section 1. We show that having access to high-quality silhouettes
allows our method to predict body shape accurately, even for challenging examples with
extreme outlier subjects.
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Hyperparameter Symbol (used in paper) Value

Synthetic data generation:
Shape augmentation sampling variance σ2

n 2.25 for all n ∈ {1, ...,10}
Uniform noise range for 2D joints - [-8, 8] pixels
Uniform noise range for vertices
(for silhouette edge corruption) - [-10, 10] mm
Limb removal probability - 0.1
Occlusion box probability - 0.5
Occlusion box size - 48 pixels
Camera translation sampling mean Mean of t (0, 0.2, 42.0)
Camera translation sampling variance Variance of t (0.05, 0.05, 8.3)
Camera rotation R I
Camera focal length Part of K 5000.0
Proxy representation width and height W and H 256×256 pixels

Optimisation:
Reprojection error weight λ j 1
Silhouette error weight λS 50
Angle prior weight λa 1
GMM pose prior weight λθ 1
Shape regulariser weight λβ 2
Pose regulariser weight λ

θ init 1000
Silhouette width and height W and H 512×512 pixels

Table 2: Hyperparameter values not provided in the main manuscript.
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Figure 1: Qualitative comparison between 3D predictions using DensePose [1] versus
ground-truth silhouettes (from SSP-3D) as inputs. This figure illustrates that high-quality
silhouettes that accurately follow the subject’s body shape can improve 3D shape predictions
using our approach.
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