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A Supplemental Material
A.1 Notation

I Input image
x Input tensor
F Optical transform family
x̂ Keyed tensor
x̂0 Vectorized optically transformed image
x0 Vectorized raw image
W Layerwise linear transformation
Ŵ Keyed layer, AWA�1

N Compositional conv-net function
Ni Layerwise conv-net function
N (x;W ) Conv-net with input x and parameters W
N̂ Key-net with input Ax and parameters AWA�1

A Optical transformation matrix
g Non-linear activation function
| · |0 L0 norm
a User specified privacy parameter
Fa Fa ✓ F , given privacy parameter a
D Photometric analog elementwise gain and bias
P Stochastic matrix, geometric optical shuffling

A.2 Proof of Commutativity
Lemma A.1. The function composition f (g(h(x))) = P�1(ReLU(Px)) is commutative for
generalized permutation matrix P = DP with permutation matrix P and diagonal matrix D,
if D � 0.

Proof. Let g(x) = ReLU(x) amd f (x) = P�1x and h(x) = Px. The function composition
f (g(h(x))) =P�1(ReLU(Px)) is commutative if the equivalence relation f (g(x))) = g( f (x))
holds. Given a diagonal matrix D � 0 (i.e. has non-negative entries), the product P = DP
for permutation matrix P is non-negative, since permutation matrices are monomial and the
product of non-negative matrices is non-negative. The function y = ReLU(x) is computed
elementwise as yi = max(0, xi). Observe that any non-negative scale factor b is commutative
such that ReLU(bxi) = max(0, bxi) = byi = b ReLU(xi), since a non-negative scaling does
not change the sign of xi. This can be written in matrix notation with b on the diagonal of
D, then ReLU(Dx) = D ReLU(x). Furthermore, since ReLU(x) is computed elementwise
and P is a one-to-one mapping (e.g. a permutation), P�1ReLU(Px) = ReLU(x). Therefore,
P�1D�1ReLU(DPx) = P�1ReLU(D�1DPx) = ReLU(P�1D�1DPx) = ReLU(x).

A.3 Proof of Sparsity Bound
Lemma A.2. Given a sparse matrix W and any A 2 P and B 2 P where P is the family
of generalized doubly stochastic matrices with privacy parameter a , there exists a sparsity
upper bound |AWB|0  a2|W |0.



J. BYRNE, B. DECANN AND S. BLOOM: KEY-NETS 17

x2 = N2(x1) = relu( 
1
−12
1
−22

) =  

1
0
1
0

N(x0) = 1 0 1 0 T Key-Net (Private)

x0 =	 11 12 21 22 T

A1 = D1P1 =
0 0.34 0 0.21
0.52 0 0.19 0
0 0 0.23 0.37
0.15 0.21 0.19 0

x1 = N1(x0) = conv2d(x0;W1)  = 

W1x0= 

−1 1 0 0
0 −1 0 0
0 0 −1 1
0 0 0 −1

11
12
21
22

=
1
−12
1
−22

A2 = D2Π2 =
0.07 0 0 0
0 0 0.09 0
0 0 0 0.02
0 0.83 0 0

x11 = N1(x0) = conv2d(x0; W3 1 = A2W1A1-1)  = 

								W3 1 x10	= 
0.06 −0.21 −0.03 0.25
0.4 0.18 0.01 −0.65
−0.04 −0.02 −0.03 0.06
−1.54 0.42 0.87 −1.49

8.69
9.79
13.03
8.09

= 
0.07
0.09
−0.44
−9.99

x12 = N2(x11) = relu(
0.07
0.09
−0.44
−9.99

) =  

0.07
0.09
0
0

5678N(A1x0) = 1 0 1 0 T

x10	= A1x0 =	 8.69 9.79 13.03 8.09 T

≡Convolutional Network Key-Net (Public)
La

ye
r 2

La
ye

r 1
In

pu
t

Figure 5: Optically Transformed Convolutional Networks. In this example, a 2x2 image
[11,12;21,22] is input to a 2 level convolutional network with a convolutional layer and
ReLU layer, forming an inference x2. The key-net is constructed from the conv-net using
the private keys A, such that A1 is a linear transformation implemented in the optics and
analog processing of a custom vision sensor forming the sensor observation x̂0. This optically
transformed sensor measurement is input to the key-net with output x̂2. The result of a
forward pass in the conv-net is x2 = A�1

2 x̂2, however the raw image x0 is never observed or
recovered to perform inference in the key-net.

Proof. Let Wk be a sparse matrix with exactly one non-zero element, then the decomposi-
tion W = Âk Wk such that if |W |0 = N then the decomposition has N terms. Then, for any
conformal matrices A and B, AWB = Âk AWkB. Since A 2 P and B 2 P, there exists a de-
composition A = DÂi qiPi (resp. B = DÂ j q jP j). The sparsity pattern is upper bounded
as |A|0  |Âi qiPi|0, when setting D = I. Each term AWiB can be expanded into exactly a2

terms of the form Âi, j qiq jPiWkP j. The product PiWkP j is a permutation of Wk with spar-
sity |PiWkP j|0 = 1. Therefore, the sum of a2 terms will have at most a2 non-zero elements
for every non-zero element in W , hence |AWB|0  a2|W |0.

A.4 Keynet Example
Figure 5 shows a simple example of a key-net. In this example, there is a 2x2 raw image
vectorized into a 4 ⇥ 1 vector (x0) which is input to a two level convolutional network.
This network includes a convolutional layer with kernel [�1,1] (or equivalently a Toeplitz
matrix W1), followed by a ReLU layer. The output of this two layer convolutional network
is a vector [1,0,1,0]T . The key-net uses private keys A1 and A2 to transform the input and
network weights, such that the weights Ŵ1 cannot be factored to recover either A or W . The
key-net operates on the transformed input x̂0 which is observed in a custom designed vision
sensor such that A1 is equivalent to a physically realizable optical and analog transformation
chain. Inference in a key-net operates equivalently to the conv-net with transformed weights
of the form Ŵ = AWA�1, such that the key-net output is a vector x̂2 = A2x2. This output is
equivalent to the conv-net output, encrypted such that x2 = A�1

2 x̂2. This is a homomorphism,
enabled by an optical transformation A1.

A.5 Optical Realization
The sufficient conditions for an optical transform in section 3.1 define a feasible family
of transformations for use in a privacy preserving vision sensor. In this section, we show
that the selected family of optical transforms based on generalized stochastic matrices can
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be physically realized using an analog and optical processing chain based on 3D printed
incoherent fiber bundle faceplates.

An optical fiber bundle faceplate is an optical element constructed using a bundle of
multi-micron-diameter optical fibers bundled into a thin plate with polished faces. An in-
coherent faceplate consists of fiber optic strands that are shuffled and rotated so that the
faceplace will unfaithfully transmit an image from one face to the other, but in a determin-
istic manner. Recent work has demonstrated that optical fiber faceplates can be constructed
using 3D printing of thermoplastic filaments [64]. This enables large scale manufacturing
for design of privacy preserving vision sensors.

Figure 3 shows the design of the optical element to realize a generalized stochastic ma-
trix. In this design strategy, a lens focuses the light field of the scene onto the optical fiber
bundle. This fiber bundle is designed to implement the doubly stochastic matrix, which shuf-
fles observed pixels and re-transmits them to an alternate location, which is then observed
by the CMOS sensor. Next, during pixel readout, analog preprocessing applies an analog
bias and gain. The resulting pixel readouts are converted from analog to digital (ADC) form-
ing the observed sensor measurement. The combination of the fiber bundle to implement
the stochastic matrix fractional shuffling (P) and the analog processing to implement the
pixelwise multiplicative scaling and additive bias (D) results in a physical realization of the
optical transformation in (7). Figure 3 (right) shows the optical simulation of the fiber bundle
for a mild permutation, without analog effects for visualization purposes. Simulation details
are described in Section A.5.

A 3D printed incoherent fiber bundle faceplate includes the following primary design
variables. First, 3D printed optics are air clad such that each fiber strand is separated from
neighboring strands by an air gap. This introduces crosstalk due to cladding leakage between
fiber strands which reduces the optical transmission fidelity. Second, 3D printed optics ex-
hibits a minimum fiber diameter which limits the minimum size of the each optical strand.
This minimum dimension is specified by the diameter of the 3D print head, which is on the
order of 100µm on modern printers. This is two orders of magnitude larger than a pixel pitch
on a CMOS sensor, which requires that each strand covers a pixel neighborhood. Finally,
fiber optic transmission is specified by total internal reflection (TIR), which introduces a
cone of projection from the end of the fiber to the CMOS sensor. This introduces mixed pix-
els where the observed intensity is a mixture of the contribution from all neighboring fibers.
Figure 3 (right) shows examples of these modeling errors which must be addressed during
sensor calibration.

In Section 4, we addressed these modeling errors by simulating the fiber optic bundle
using parameterization demonstrated by Wang et al. [64] and re-training the key-net to be
invariant to these physically realizable effects. In the remainder of this section, we will de-
scribe the simulation of the optical element and the CMOS sensor to simulate the physically
realized optical transformation.

A.5.1 Optical Simulation

An optical fiber bundle is simulated as follows. An image of arbitrary size is input to the
simulation tools. The image pixel size is designer defined. Next a padded mask is defined
that is slightly larger than the input image size, the pad size is designer selectable. The de-
signer then sets the fiber core dimension in the row direction and separately in the column
direction. The simulator allows for a designer defined open area to cladding ratio which al-
lows for image information to be lost due to non-imaging areas in the fiber bundle. Cladding
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and fiber core sizes are converted to number of pixels (using pixel size defined above). A
matrix of the centroids of each fiber core in the bundle is initialized. There is an option for
the designer to set a shearing factor which simulates manufacturing tolerances on the array
of fiber cores used to form the bundle. A masking matrix is defined such that for areas of the
bundle entered on each centroid matrix element and within the defined fiber core diameter
light is transmitted, all other areas are blocked to a designer defined value. The individual
fibers are arranged in a brick-like pattern, i.e. the core centers are offset by one half of the
core diameter as the rows go down. The image is then masked with the core and interstitial
matrices. The script then rasters through the image and fiber bundle to see which parts of
the image fall within allowed fiber cores and which parts are masked. All parts of the im-
age that fall within a given core are intensity averaged which sets the image resolution to
be that of the fiber core size. Lastly the designer can set crosstalk parameters for both the
row and column directions of the bundle which enables the designer to input manufacturing
tolerances and/or use of blocking materials between fibers. The crosstalk value operates like
a kernel where the core image intensity is replaced by the vertical crosstalk factor times the
sum of the four nearest neighbor vertical core elements plus the horizontal crosstalk factor
times the sum of the two nearest neighbor horizontal core elements, normalized to the image
maximum pixel value, for every fiber core in the bundle. This composite image is then taken
as the input to the camera noise model defined below.

Figure 6 shows an example of this simulation. User configurable parameters for the fiber
bundle simulation are:

1. Image size
2. Fiber core size row, column
3. Fiber core/cladding area ratio
4. Fiber bundle shearing factor
5. Fiber interstitial blocking factor
6. Vertical and horizontal fiber crosstalk coefficients

A.5.2 CMOS Sensor Simulation

The sensor noise model begins with a given photon intensity hitting a given pixel, this can
be set by scaling the input image. The mean number of photons is given by µph and assumes
Poisson statistics to calculate the shot noise s2

ph (in the limit of large numbers of photons we
can use a Gaussian approximation to the Poisson distribution, this should be the case for this
system). The sensor has a defined quantum efficiency depending on the wavelength, sensor
materials, and sensor construction geometry, denoted by n This then gives the number of
photo electrons generated in the pixel µe which also follow Poisson statistics as: µe = nµp.
Since the statistics are Poisson the variance is also µe. In addition to shot noise, the sensor
also has a dark noise, i.e. photoelectrons are generated even in the absence of an optical
signal. Usually this dark current is integration time (and temperature) dependent and is due
to thermally induced electrons. The mean dark count is given by a constant term, µ0 and
the integration time dependent term µI ⇥ tint where µd is the sum of these two terms. Since
the thermally induced electrons are also Poisson distributed the dark count variance can be
written as: s2

d = s2
d0 +µItint .

Finally, the sum of these sources of photoelectrons charge a capacitor which turns the
signal into a voltage, this gets amplified by a gain stage G and then is ultimately converted
into a digital signal by the ADC. This process is assumed to be linear and the camera usually
has some over system gain Gsys that converts electrons to digital counts out. The final signal
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Figure 6: Optical Simulation of the 3D printed fiber bundle.

is then given by: µgs = Gsys(µe +µd).
Since the signal model is linear and the noise sources are independent, we can RSS the

noise sources. As shown above the readout noise and amplifier noise can be lumped into
a dark noise variance s2

d and finally there is usually a noise associated with the final ADC
stage, s2

q that typically has a uniform distribution and is some camera dependent fraction
of the digital scale output. Performing the RSS we get the total camera noise as: s2

gs =

G2
syss2

d +s2
q +G2

sysµe
Adjustable parameters for the camera noise simulation are:

1. Sensor pixel size and number – microns, N ⇥N
2. Sensor quantum efficiency - n
3. Sensor dark noise – µd , s2

d
4. Sensor integration time - tint
5. Sensor gain on a per pixel basis specified by a gain matrix - Gi j
6. ADC resolution and noise – depth, s2

q

As an example, the input image and final output image of the fiber bundle simulator and
camera noise models is displayed in Figure 6.

A.6 Image Transformation Experiments
A privacy preserving vision system must obscure the image data from the perspective of a
human observer, while allowing for vision based tasks. In this section, we provide ancillary
experiments that demonstrate that off-the-shelf convolutional networks (and architectures)
are subject to a privacy-performance trade-off, which is a limiting factor compared to the
keynet architecture.

In our experiments, we consider face identification and (later) object detection as the
target machine learning tasks. Face identification experiments were performed using the
VGG-16 network architecture, with a pre-trained model [46]. Experiments for object detec-
tion were conducted using a PyTorch implementation of the Faster R-CNN object detector
[52] trained on the MS-COCO dataset [38]. Where applicable, network weights were fine-
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Figure 7: Image transformations. a) Reference images, b) Null-space learning, c) Trained-
system learning, d) Geometric (permutation), low; e) Geometric (permutation), high; e)
Combined geometric (low) and trained-system. Note that each transformation obscures the
image differently.

tuned using the "training" subset and metrics are reported using the "validation" subset. To
report the identification performance of baseline and learned networks, we utilize the Rank-1
classification accuracy. We acknowledge the limitations of the Rank-1 classification accu-
racy as a measure of matching performance [43], but for the purposes of this work it is only
used as as an indicator of acceptable performance from the matcher, rather than a benchmark.
Object detection performance was measured using average precision over 80 classes, using
the standard COCO evaluation metrics [38]. Human perceptual loss in images is measured
by the Structural Similarity Index (SSIM) [66]. The motivation for SSIM as a measurement
to assess human observable changes in differences is owed to the fact that humans are much
more likely to perceive structural changes in images. Therefore, the SSIM is used as a surro-
gate for image reconstruction fidelity between a reference (i.e., unmodified, "clean" image)
and an optically transformed image. SSIM is a single-valued measurement and is defined
in the range [0,1], where 0 denotes no similarity (privacy preserving) and 1.0 denotes the
images are equivalent (not privacy preserving).

A.6.1 Nullspace Learning for Frozen System

In Section 4, we pose a question asking if it is possible to identify an optical transforma-
tion that degrades an input image, while retaining performance of an off-the-shelf (i.e., pre-
trained) ML system. In this experiment, we utilize a learned linear image transformation of
image I to degraded image Î, with gain and bias parameters a and b, respectively. For sim-
plicity, in this experiment, we restrict learning to only the gain parameter, a. Note that we
also performed experiments with bias and gain/bias, which generated similar conclusions.
We also enforce a constraint projection such that Î is in the integer range of [0,255].

Î = aI +b (8)

Next, we define an adversarial loss that combines the primary task and an adversarial
task, where the primary task is face identification and the adversarial task is image recon-
struction (human perception). This loss measures the performance of the target task relative
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a) b) c)

Figure 8: Adversarial learning examples. (a) Nullspace learning (b) Trained system learning
(c) Tiled trained system learning for object detection. These learned degradations exhibit a
clear utility/privacy tradeoff for face identification and object detection.

to the adversarial task, such that this loss is minimized when the target task performance is
maximized and the adversarial task performance is minimized.

loss = Lprimary +Ladversarial (9)

For a frozen ML system, the weights of the network cannot be modified. Intuitively, we
know that in order to retain matching performance, the convolutional responses of the net-
work must be preserved. Therefore, our primary loss (Lprimary) is defined as the L2 difference
of network N at layer k. The idea here is that if the convolutional responses at layer k are
preserved, the downstream network responses will also be preserved.

Lprimary = ||Nk(I)�Nk(Im)||2 (10)

The adversarial loss (Ladversarial) is the compliment of the SSIM function, since our goal
is to minimize the SSIM towards zero.

Ladversarial = 1�SSIM(I, Im) (11)

The middle-left set of images in Figure 7 illustrate an example of a nullspace learned
image transformation for the face identification task, where the primary task loss was applied
at the “conv5” layer of the network. The reference (i.e., unmodified) images are in the upper
left. Note that the transformed images are minimally degraded; they appear darker and with
some high frequency noise. This transformation is not privacy preserving. Metrics from
this experiment are a Rank-1 classification accuracy of 0.921 and an SSIM value of 0.065.
These metrics are also listed in the “Null Space” row of Table 1 and the training output
can be viewed in Figure 9. We emphasize that for this mask model, we were not able to
learn a transformation with a lower SSIM (human perception loss) that achieved reasonable
performance at the identification task.

A.6.2 Trained System Adversarial Learning

The previous experiment provides evidence that there does not exist an optical transforma-
tion that can degrade an input image, while preserving performance of a pre-trained ML
system. The logical next question is to pose the question asking if such an optical transfor-
mation exists if we also jointly minimize a ML task loss (as in §4, Trained System). If we
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can accomplish this joint learning task, a key-net would also be unnecessary, as a fine-tuning
exercise would be sufficient. In this section, we report on such an experiment.

Out joint trained system retains the same mask model as the previous experiment. That
is, the image transformation is linear (8) without a bias parameter. As with the nullspace
learning experiment, we utilize an adversarial loss function, which is now regulated by an b
parameter and switches between values of 0 and 1. When b = 0, the network weights are
updated for the primary task and when b = 0, the transformation weights are updated for the
adversarial task. This approach was considered to ensure degradation of the image would
not be skewed toward background content. Note that for the primary task, the switching
point occurred when the cross-entropy loss on the training set decreased below a value of
0.1 (i.e., saturated). For the adversarial task, the switching point occurred when the Rank-1
classification rate on the validation data decreased below 86%.

loss = aLprimary +(1�b )Ladversarial (12)

Since in this experiment the weights of the ML system are being learned, we must adjust
the Lprimary loss term accordingly. For the face identification task, we set this loss term to
be the cross-entropy loss function. The adversarial loss term, Ladversarial , retains unchanged
(11). The bottom-left set of images in Figure 7 illustrate an example of a transformation
learned from this approach (the reference images are in the upper left). Here, we see a
considerable increase in the magnitude of the transformation. Arguably, it may be possible
to infer that the example images are of faces, but it is very difficult to deduce the identity,
even when provided the reference image data. However, the trade-off for this transformation
is a slightly reduced identification rate. In this experiment, we achieved a rank-1 accuracy of
0.892, before the adversarial loss saturated with an SSIM value of 0.007. This data is also
reported in the “Trained System” row of Table 1 and the training output can be viewed in
Figure 9. Note that the Rank-1 accuracy from training only slightly decreases as a function
of training time. This behavior is due to the cyclical nature of the joint optimization.

A.6.3 Geometric Trained System

In the previous two experiments, the image transformation directly modified the value(s) of
the image data. This is not the only mechanism for generating an image transformation.
As described in §3.3, we can also create a permutation matrix to “shuffle” the image data,
which can destroy visual cues for human identification. Intuitively, we expect that permuting
an image would cause a pretrained ML algorithm to fail at its task on this type of data. In
this section, we explore whether it is possible to finetune a pretrained network to perform its
primary task, except with permuted image data.

In this experiment, the actual image transformation is not learned. Instead, the transfor-
mation function was carefully crafted to minimize convolutional responses specifically from
the VGG-16 network. The transformation function used permutes blocks of neighboring
pixels globally an locally. The global transformation is a constant translation for each block.
The local transformation is a localized permutation within the image block. This approach
also allows us to regulate (or parameterize) the “amount” of shuffling that is applied. Op-
tically, this mask model is a surrogate for a custom optical element utilizing fiber bundles.
The top-right and middle-right set of images in Figure 7 illustrate examples of permuted
images using a low-shuffling (top-right) and a high-shuffling (middle-right) approach. Note
that the low-shuffling approach appears similar to a blurring function. These images are still
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Table 1: Summary of baseline and optical transformation performance for the face identifi-
cation task.

Experiment Rank-1 Accuracy SSIM

None (Baseline) 0.945 1.0
Null Space 0.921 0.065
Trained System 0.892 0.007
Geometric (low) 0.940 0.339
Geometric (high) 0.830 0.057
Combined 0.891 0.004

very human recognizable. The high-shuffling approach however generates images that are
not human recognizable. As with the trained system adversarial learning results, it may be
possible to deduce that these (permuted) images are of faces, but it is not possible to infer
identity. We observed that after finetuning the VGG-16 network, the validation accuracy sat-
urated at approximately 94% and 83% for the low-shuffling and high-shuffling approaches,
respectively. These metrics are also reported in Table 1 in the “Geometric (low)” and “Geo-
metric (high)” rows, respectively. The training output can be viewed in Figure 9. Note that
for the “high” geometric transformation, the initial identification performance decreases to
zero, but is quickly recovered (up to a point). Again, we find there is a privacy trade-off
between the achieved identification performance and the reconstruction loss. We hypothe-
size that this loss in identification performance is due to violating locality of feature data and
introducing edges from each local permutation block.

A.6.4 Combined Trained System

In this experiment, we combine the trained system approaches in §A.6.2 and §A.6.3. Here,
the finetuned network for a “low” geometric transformation is also trained to learn a degraded
image (8). We do not perform this experiment with the “high” geometric transformation be-
cause the identification performance is too low (83%) and learning the image degradation
would only further reduce performance. The bottom-right row of images in Figure 7 il-
lustrates examples of this transformation. This combination of transformations achieved a
negligible difference in rank-1 identification accuracy (0.891 vs. 0.892) and SSIM value
(0.004 vs 0.007) compared to the trained system approach without geometric permuting of
the image data. These metrics are reported in Table 1 within the “Combined” row and the
training output can be viewed in Figure 9.

A.6.5 Object Detection

The previous experiments demonstrate that for the face identification task, it is possible to
(digitally) apply an optical transformation to an image that strongly reduces human percep-
tion (via SSIM) with a small loss in identification performance. Assuming the optical trans-
formations are physically realizable, the image data is not representative of an end-to-end
image acquisition to classification task. In an end-to-end task, the face data must be detected
from a raw, full-scene image, prior to classification. As such, we performed an experiment
to evaluate whether faces could be detected on transformed images.

In our preliminary face detection experiment, we applied the trained system optical trans-
form (§A.6.2) to images in the VGG-Face-1 validation set and executed a face detector. The
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Figure 9: Summary of Rank-1 classification performance achieved for each face identifi-
cation learning experiment vs. training run-time. A privacy preserving ML system must
achieve similar performance to the unmodified baseline (dashed). Note that all of these
approaches exhibit some amount of privacy-performance trade-off.

face detector was based on the Faster-R-CNN convolutional network and trained to detect
faces in natural images. We observed a 0.0% detection rate on the transformed images, which
suggests that the detector must also be trained for an actual end-to-end system.

Next, we conducted an experiment to extend the trained system adversarial learning to
a detection and classification task. Here, The object detection system is the Faster R-CNN
convolutional network, trained on the MS-COCO object dataset. The primary machine learn-
ing task is localization and classification of 80 object classes (e.g. people, vehicles) and the
adversarial machine learning task is structural similarity (SSIM) to degrade the image to re-
duce human perceptibility. In our experiment, we considered eight total configurations. Each
configuration is listed in Figure 10 (left). Where denoted, “tiled gain” refers to the tiling of
pretrained optical transforms from the face detection task. “Joint gain” denotes learning of an
optical transform using the full scene image. Evaluation metrics are: AP=average precision,
AP for small or large objects only, Relative performance=AP ratio relative to baseline show-
ing performance loss between experimental configurations and baseline, SSIM=structural
similarity index. Examples of applied image transforms are illustrated in Figure 10 (right).
Results show that there is a strong trade-off in detection performance relative to the baseline.
Similar to the null-space experiments for face identification, as it was not possible to learn a
full-scene optical transform that did not exhibit considerable performance loss. These results
continue to suggest evidence that alternative training strategies are not sufficient for privacy
preservation and our key-net approach is required.

A.6.6 Summary

In this section, we performed experiments that justify the necessity of a keynet architec-
ture for a privacy preserving vision sensor (§4). These experiments demonstrate that tradi-
tional conv-net architectures cannot be refactored to be privacy preserving with indirect (e.g.,
nullspace learning) or direct (e.g., joint adversarial learning, geometric data permutations)
training of the ML algorithm. In each example there is a clear limit and tradeoff on the extent
of human perception loss and performance of the primary ML task. This is evidenced in Ta-
ble 1, which reports the achieved Rank-1 accuracy (primary task metric) and SSIM (human
perception loss metric) for the face identification task. In contrast, a key-net does not inherit
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Baseline

Joint tiled gain, non-centered (⍺=1E3) Joint tiled gain, aug (⍺=1E3)

Joint tiled gain, aug (⍺=1E2)

Experiment AP AP 
(small)

AP 
(large)

Relative 
AP (%) SSIM

Baseline 0.3653 0.2086 0.4773 100% 1.0

Joint gain (⍺=1E5) 0.2300 0.0883 0.3455 63.0% 0.14

Joint gain (⍺=1E6) 0.1413 0.0408 0.2490 38.7% 0.06

Joint tiled gain 0.1639 0.0396 0.2844 44.9% 0.06

Joint tiled gain, non-centered (⍺=1E3) 0.2178 0.0640 0.3515 59.6% 0.14

Joint tiled gain, non-centered (⍺=1E1) 0.3454 0.1885 0.4594 94.6% 0.42

Joint tiled gain, non-centered (⍺=1E2) 0.3015 0.1391 0.4243 82.5% 0.16

Joint tiled gain, aug (⍺=1E2) 0.2965 0.1352 0.4241 81.2% 0.21

Joint tiled gain, aug (⍺=1E3) 0.2120 0.0625 0.3451 58.0% 0.07

Figure 10: Object detection training study. Results with photometric optical transformation
under different tiling and hyperparameter assumptions. See Section A.6.5 for details.

this privacy-performance tradeoff as its design is fully homomorphic (§3.2).

A.7 Privacy Analysis
In this section, we discuss keynet privacy. First, we connect the problem of recovering source
conv-net weights to the problem of non-negative matrix factorization. Next, we show that the
form of encryption we pose is an example of the Hill cipher, a classic cryptosystem based on
linear algebra. Finally, we discuss the primary concern on semantic security, and introduce
a challenge problem for the community to analyze it.

A.7.1 Non-negative Matrix Factorization

Non-negative matrix factorization (NMF) [35] is defined as follows. Given a matrix V =
WH, factor V into terms (W,H) subject to the constraint (W,H) � 0, such that elements of
the factors are non-negative. Non-negative matrix factorization in general is NP-hard, with
special polynomial time factorizations where V is known low rank.

Let AWA�1 be grouped as A(WA�1). In general, for positive definite matrix A with non-
negative entries, the inverse A�1 will not be non-negative. Let B = (WA�1), then B can be
decomposed elementwise into the sum of non-negative terms as B = Bp �Bn where Bpi=0 if
Bi < 0 else Bi (Bni=0 if Bi > 0 else �Bi, resp.). Then,

Ŵ = A(Bp �Bn) (13)
Ŵ = ABp �ABn (14)

which transforms the matrix Ŵ into the sum of products of non-negative matrices. The
elements of A are non-negative by assumption, and the elements of Bn and Bp are non-
negative by construction, so then factorization of ABp or ABn reduces to non-negative matrix
factorization to recover the desired non-negative factor A, which can be used to recover A�1

and W . An efficient solution to this factorization requires a polynomial time solution to
non-negative matrix factorization, for which exact NMF is NP-hard for full rank matrices
[3][61]. Finally, in the case where exhaustive search is possible for “small” matrices V ,
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NMF in general is non-unique unless further constrained [28]. So, even if NMF is feasible,
the matrix decomposition to recover exactly A is still infeasible.

A.7.2 Hill Cipher

The form of optical transformation described is known in the cryptographic literature as a
Hill cipher [27]. The Hill cipher is a classic cryptosystem based on a linear transformation
matrix as secret key. Transformed images (Ax) are robust to cryptanalysis and can be safely
made public, as long as the key A is kept secret. Furthermore, as described in section A.7.1,
the product AWA�1 is also secure to known ciphertext attacks, due to the hardness of non-
negative matrix factorization. This enables public disclosure of both optical transformed
images and key-nets, while ensuring security of raw images and source network weights.

However, the Hill cipher exhibits a two known weaknesses in the form of chosen plaintext
and chosen ciphertext attacks. In a chosen plaintext attack scenario, the unknown A can be
recovered through least squares regression with at least N tuples (x,Ax), for A with known
sparsity |A|0 = N. However, this requires that the attacker has physical access to the sensor,
and in this scenario, privacy has already been compromised. The sensor can be assumed to
be locked in a private space such as the home, with physical access restricted to authorized
users, so tuples (x,Ax) cannot be collected by policy.

The Hill cipher also exhibits a weakness to chosen ciphertext attack. In this attack sce-
nario, the adversary is provided decryptions A�1y of a chosen ciphertext y. Like the chosen
plaintext attack, the unknown A�1 can be estimated using least squares regression. How-
ever, the key-nets will not be used in this scenario by design, as the image does not require
decryption and the output inferences can be public. So, while the Hill cipher does have a
weakness as a general cryptosystem, we believe it is an appropriate and practical assumption
for a privacy preserving vision sensor.

Finally, the most challenging requirement is proving semantic security. Semantic secu-
rity is the problem of exposing information about the plaintext given only the ciphertext. For
example, in a key-net consider the case where the optical transformation function is the iden-
tity matrix. The resulting key-net is exactly the source network, and the encrypted images
are identical to the raw images. Clearly, this provides no security. A more subtle challenge
for semantic security is when the optical transformation is a diagonal matrix or a permutation
matrix. In section A.7.3, we discuss that these transformations exhibit a semantic security
weakness, which exposes the structure of Ŵ to attack. We discuss that using the generalized
stochastic matrix with privacy parameter a > 1 shows promise to defend against this attack.

A.7.3 Semantic Security

Semantic security is the problem of exposing information about the plaintext given only the
ciphertext. A subtle challenge with semantic security considers the case where the degrada-
tion is either a scaling or a permutation rather than a generalized stochastic matrix. In the case
of a scaling, the weakness leverages natural image statistics for recovery, such that gradients
are sparse for neighboring pixels (e.g. images are smooth almost everywhere). For exam-
ple, blind deconvolution techniques with Total Variation (TV) regularization can be used in
some cases to jointly recover the unknown degradation kernel and the original image. For
key-net attacks, the concept is to leverage the distribution of sparse gradients in natural im-
ages, which can be used to regularize this ill-posed problem to recover the unknown image
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Figure 11: Keynet challenge problem. These images contain a secret message. We will
release these images along with their paired keynet to challenge the research community to
discover a weakness in semantic security of our proposed approach.

mask and raw image. Future work will consider these different optimization strategies to
determine conditions for which image reconstruction using this strategy is feasible.

A second subtle challenge for semantic security is when the optical transformation is a
permutation matrix. In this case, the neighborhood structure of a convolution is present in
the non-zero structure of the Toeplitz matrices in the key-net. The keyed layers of the key-net
are public information, so the sparsity structure of the weights can be inspected and used by
an attacker. For example, there exists a greedy optimization based on graph embedding to
recover the structure of a permuted image with known neighbors simply by minimizing the
pairwise embedding distance of pixels. This is analogous to “puzzle solving”, with the sim-
plification that puzzle piece neighbors are observable in the sparsity pattern in the Toeplitz
matrices which implement keyed convolutions. This is not a risk if the key-net is kept private,
but if the key-net is public, then Ŵ exposes private information about Ax. Introducing the pri-
vacy parameter a can mitigate this attack by making the neighborhood structure ambiguous
by increasing the sparsity of W by a user specified privacy factor that is independent of the
true neighborhood structure. This introduces a tradeoff between inference runtime/memory
and privacy that mitigates this attack. Furthermore, combining the permutation with an ana-
log scaling and bias results in limiting the attack due to natural image statistics. Future work
will investigate the feasibility of this style of attack for key-net images as a function of a .

Finally, the conditions listed in Section 3.1 are sufficient, but not necessary. Future work
will explore alternative selections of the image key A0 that are positive semi-definite. In this
case, the sensor observation cannot be inverted to recover the image, even under a plaintext
attack, since the least squares optimization is under determined. In the key-net framework,
we would set A�1

0 = I and continue the key-net encoding as currently described. This would
further protect against semantic security attacks, but would likely introduce a utility/privacy
tradeoff which would degrade the trained ML task performance as A0 becomes increasingly
rank deficient.
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A.7.4 Challenge Problem

Finally, we plan on publicly releasing the challenge images in figure 11 and associated public
key-nets for a lenet and vgg-16 topology. These challenge images contain a secret message
that can only be discovered by exploting a weakness in semantic security. We would like
to encourage the community to collaborate to discover such weaknesses in our approach by
sponsoring a prize challenge. These images and public keynets are available for analysis at
https://visym.github.io/keynet.

https://visym.github.io/keynet

