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6 Supplementary Material
6.1 Multi-headed Attention
Scaled dot-product attention The notion of multi-headed attention is based on the idea
of scaled dot-product attention which is defined as follows

Attention(Q, K,V ) = Softmax
✓

QKT
p

d

◆
V, (13)

where
p

d is a scaling factor designed to keep the Softmax gradients in a sufficient range,
Q, K,V are sequences of queries, keys, and values, Softmax is applied row-wise.

Attention with Many Heads The concept of multiple heads was introduced in [45] to
allow a model to learn H distinct representation sub-spaces at each position while preserv-
ing the same computation efficiency. An attention head is usually presented as (13) with
parametrized inputs

headh(q,k,v) = Attention(qW q
h , kW k

h , vW v
h ), h 2 [1,H] (14)

where q 2 RTq⇥Dq , k 2 RTk⇥Dk , v 2 RTk⇥Dk and W ⇤
h 2 RD⇤⇥Din . Note that the inputs k and

v are expected to have the same dimension (Tk ⇥Dk) while q might have a different one.
The weights W ⇤

h are mapping the corresponding inputs into an internal space Din =
Dq
H such

that Dq is a multiple of H. The mapping into Din space allows the attention to be calculated
between the features which originally were of distinct dimensions (Dq 6= Dk). The multi-
headed attention is, then, defined as the concatenation of H attention heads mapped back to
sub-space of queries (Dq) with W out 2 RH·Din⇥Dq

MultiHeadAttention(q,k,v) =
⇥
head1(q,k,v), head2(q,k,v), . . . , headH(q,k,v)

⇤
W out. (15)

6.2 Feature Extraction
Both audio and visual features are pre-calculated before training. The audio features are
extracted with the VGGish network [15], which was pre-trained on AudioSet [12]. More
specifically, the VGGish model processes 0.96 seconds long segments. The audio segments,
in turn, are represented as log mel-scaled spectrograms of size 96⇥ 64 which are obtained
via Short-time Fourier Transform. The STFT utilizes a 25 ms Hann window with 15 ms
step applied to the 16 kHz mono audio track. The pre-classification layer of VGGish outputs
a 128-d embedding for each spectrogram. Therefore, the audio track of an ith video in the
dataset is represented with a sequence of 128-d features of length T i

a , each feature in the
stack represents 0.96 seconds of the original audio track.

To extract features from the visual stream, we employ the I3D network [4] pre-trained
on Kinetics dataset. Specifically, I3D inputs 64 RGB and 64 optical flow frames of size
2242 extracted at 25 fps. Similar to [17], we extract the flow frames using PWCNet [42].
Both sets of frames are, first, resized such that min(Height, Width) = 256, and, then, the
central region of size 2242 is cropped. After, both stacks of frames are passed through the
corresponding streams of I3D. It outputs a 1024-d representation for RGB and flow 64-
frame stacks from the second-to-the-last layer. Following the authors of I3D, we sum the
representations from both streams. It results in a single 1024-d representation for every
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stack of 64 frames. Therefore, the visual track of ith video is represented with a sequence
of 1024-d features of length T i

v where every features spans 2.56 seconds (64 frames) of the
original video.

The tokens (or, roughly, words) from captions are embedded with Global Vector (GloVe)
representations pre-trained on the Common Crawl dataset (2.2M vocabulary) [32]. The pre-
trained model is represented as a lookup table which maps a token to a 300-d embedding.
If a token is missing in the vocabulary, an average vector among all vocabulary words is
returned. Therefore, each previous token of a caption is represented with a 300-d vector.

Therefore, the bi-modal encoder’s in and out dimensions are da = 128 and dv = 1024 for
audio and visual streams while the decoder inputs and outputs dc = 300.

6.3 Implementation Details
The batch of size 32 and 16 were used during training of captioning and proposal generation
modules, respectively. To form a batch, in the captioning module, the features are padded up
to the longest sequence in the batch. For the proposal generator, the features are extracted
from entire videos and padded up to 300 for visual and 800 for audio to form a batch. These
number were selected to cover all possible lengths of the features in the training set. The
padding is masked out as it is done for the next caption tokens in the decoder (see Sec. 3.3).
Each head in the bi-modal multi-headed generator predicts Ya = 48 and Yv = 128 anchors
for audio and visual modalities. We used the following lists each of size Ka = Kv = 10
for kernel sizes (given in cell-coordinates): [5,13,23,35,51,69,91,121,161,211] for audio
and [1,5,9,13,19,25,35,45,61,79] for visual modalities which are determined by K-Means
algorithm. The size of both intermediate layers in proposal generation head is 512. Note that
128
48 = 800

300 = 2.56
0.96 which preserves the balance between predictions from both modalities (see

Sec. 3.2).
Since the modality features might have a different size, we also need to map them into an

internal space inside of the bi-modal attention modules (Din), see Eq. (14) for more details.
We select the internal space to be of size Din = 1024. Both the encoder and decoder of
the bi-modal transformer have N = 2 layers and H = 4 heads in each of the multi-headed
attention modules. The caption vocabulary size and, hence, the generator’s output dimension
is 10 172. We use g = 0.7 in the label smoothing and the probability of dropout p = 0.1. The
localization and objectness loss coefficients are 1, and the noobjectness coefficient is 100.
Adam optimizer with default hyper-parameters [18] and learning rate 5 ·10�5 is used to train
both caption and proposal generator. The hyper-parameters are selected on the validation set.

We highlight that the whole process of training both parts of the model was designed
to keep a unified training procedure avoiding using different techniques such as reduce-on-
plateau, weight decay, different learning rate, optimizer when training the proposal gener-
ator, sometimes, favoring elegance at the cost of performance. We encourage others to try
different combinations when training both stages to achieve better results.

The captioning module was trained until METEOR on the validation set has not im-
proved for 30 epochs while the proposal generator is trained for 70 epochs at most. In our
experiments, the training of the final captioning module reaches the peak performance at 26th

epoch while the proposal generator achieves the highest F1-score on the validation set at 17th

epoch. We select the proposals on the epoch with the highest metric and caption them with
the best captioning model. The training of the captioning module until the best performance
takes 10 hours and 3.5 hours to train the proposal generator on one Nvidia GeForce RTX
2080Ti. We use PyTorch [30] as our primary library for the implementation.
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Validation B@3 B@4 M Recall Prec. F1

Wang et al. [49] Full 2.27 1.13 6.10 57.60 44.80 50.40
As ours 2.29 1.15 6.14 57.86 44.88 50.55

Zhou et al. [62] Full 2.91 1.44 6.91 86.33 38.57 53.31
As ours 2.92 1.45 6.92 86.33 38.55 53.30

Ours
Full 3.50 1.72 7.69 73.22 43.97 54.95

As ours 3.84 1.88 8.44 80.31 48.23 60.27

Table 4: The performance of other methods on the filtered ActivityNet Captions validation
set for videos which are no longer available (around 91 % (as ours)). The results are reported
in the learned proposal setting. As expected, the performance of other models remains at
the same level while ours gains the missing 9 %. Metrics are BLEU3–4, METEOR, recall,
precision, and F1-measure.

Caption Proposal
Module Generator B@3 B@4 M Recall Prec. F1
Wang et al. [49] [49] 2.29 1.15 6.14 57.86 44.88 50.55
Ours [49] 2.87 1.41 7.03 57.86 44.88 50.55
Ours Ours 3.84 1.88 8.44 80.31 48.23 60.27

Table 5: The comparison of the captioning performance between our model and [49] on
the learned proposals provided in [49]. The results are reported on the filtered ActivityNet
Caption validation datasets.

6.4 More Ablation Studies
6.4.1 Why Do You Exclude Videos from the Validation Set?

In our experimentation, we exclude videos which are no longer available on YouTube (9 %)
from the ground truth validation datasets as it would be unfair to compare our model to
the methods which could make a prediction based on the video content while our model gets
zero scores on a missing video. Therefore, we evaluate the predictions made by other models
[49, 62] on the same validation set as we have. We selected only these two methods as they
made either a code or evaluation results publicly available.

In other words, we hypothesise that the performance of other methods will not change
after excluding videos from both predictions and ground truth while the performance of our
method will be higher by around 9 % (a portion of the missing videos). The results of the
comparison are shown in Tab. 4 and, indeed, imply that the performance of other methods
remains on the same level (less than 2 % change). We remind a reader that the compared
methods were trained on the full training dataset while ours was trained on only 91 %.

6.4.2 Might Your Model Improve Results of Other Methods?

Since [49] have not made the results publicly available for captioning ground truth (see
Tab. 1), we cannot compare it with our model directly. To this end, we apply our final
captioning model on the generated proposals from [49] to eliminate the effect caused by
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Figure 4: The performance comparison between different modalities (Audio-only, Visual-
only, and Bi-modal) in two settings (ground truth and learned proposals) across different
YouTube video categories. The video categories are sorted according to the performance of
the Audio-Visual model in the learned proposal setup. The number of videos in a category
is shown in brackets. ActivityNet Captions validation subset is used for the comparison.

different proposal generator modules. The results of the comparison are reported on the
filtered ActivityNet Caption validation datasets (see Sec. 6.4.1) and shown in Tab. 5. The
results suggest that our model has a better captioning performance on this set of metrics.

6.4.3 What is the Impact of Audio and Visual Cues across Different Video Types?

Following [17], we inspect if the final model’s performance consistently improves across
different types of videos. To form a list of video types, we retrieve a YouTube video category
for each video in the validation dataset. The YouTube category is annotated by the author
when they upload a video to the service. YouTubeAPI [57] was used to retrieve the categories
automatically. Since there was a time gap between downloading videos and their categories,
67 were no longer available. Such videos were removed from the comparison. Also, we
removed one video category with less than 20 videos.

Fig. 4 shows the performance comparison between bi-modal (final), audio-only, and
visual-only models across different video categories in two settings: captioning ground truth
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2nd Encoder’s Sub-layer B3 B4 M
Self-Attention 3.60 1.74 8.14

Bi-modal Attention 3.84 1.88 8.44

Table 6: The effect of replacing the bi-modal
attention with a self-attention module in en-
coder layers. The comparison in shown on
validation subsets of ActivityNet Captions
in the learned proposal setting. The metrics
are BLEU3–4 and METEOR.

and learned proposals. The results suggest the consistent gain in performance when both
modalities are used compared to the uni-modal models. This pattern holds across both set-
tings and all categories. In addition, it appears that the visual modality provides more cues
to the model than the audio modality in nearly all cases. Moreover, the dataset seems to be
biased to “Sports” and “People & Blogs” videos, which hold almost half of the dataset. Yet,
the results show no evidence of over-fitting to these categories. Among all categories, “Mu-
sic” appears to be the “easiest” one, which might be explained by a small variety of ways
to describe the content of this kind. Meanwhile, the models perform the worst on “Gam-
ing” and “Nonprofits & Activism” categories, which might occur because of the lack of such
videos in the dataset.

6.4.4 What Happens if the Bi-Modal Attention Block is Replaced by Uni-modal
Self-Attention?

In this ablation study, we would like to estimate the influence of the bi-modal attention blocks
on the model performance (see middle blocks of Encoder and Decoder layers in Fig. 2). Yet,
we can ablate only the encoder as the bi-modal attention is essential for the decoder since it
inputs two streams. One solution would be to fuse the outputs of the encoder. This would,
in turn, allow us to replace two bi-modal attention blocks in the decoder with one. However,
it is not possible since the temporal spans of the encoder’s output streams, in general, are
distinct (Av 2 RTa⇥da and V a 2 RTv⇥dv ). Therefore, in this setting, each encoder layer has
two pairs of self-attention blocks which preserves the final model’s number of parameters.

The results are presented in Tab. 6. We observed a substantial decline in performance
among all metrics when the bi-modal attention block is replaced by self-attention. This
further suggests the importance of the proposed approach. Besides, the results of the model
with self-attention in encoder layers are still much stronger than any V- and A-only models
(see Tab 3), which proves the importance of an audio-visual approach to the task.

6.5 Qualitative Analysis
Fig. 5 provides the qualitative analysis of the final captioning model compared to ground
truth captions. Additionally, we provide captions produced by uni-modal captioning models
(audio- and visual-only). The results show that the caption, produced by a bi-modal caption-
ing module as well as the audio-only model managed to grasp the concept of talking when
captioning the largest segment (the top one) while video-only model neglects it. The video,
by itself, consists of an explanation of how to do a martial art movement and highly verbose.
Therefore, even though the ground truth does not mention that the person talks during the
video, the predictions of our final model are not entirely erroneous. However, the colour of
the man’s shirt is incorrectly guessed, which might be explained by the presence of the black
punching bag on the screen. Finally, the caption produced by the visual-only model also
makes sense.
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Figure 5: The results of the qualitative analysis for a video from ActivityNet Caption vali-
dation dataset. The predictions of our bi-modal model are compared to the uni-modal model
predictions and ground truth (GT) annotations. The video shows a man who explains how to
do a martial art movement—the YouTube video id EIibo7aTpys.

Moreover, if we consider the results of the audio-only model, we may notice that it
mostly gets the signal of “talking” and exploits it in a prediction. Indeed, it might be chal-
lenging even for a non-English human to understand what the video is about given only the
audio track. We also notice that captions provided by an annotator are significantly more
detailed compared to the predictions of the captioning model, which are somewhat more
general. This is the issue which needs more attention in future research as it seems to be a
problem for any dense video captioning system.


