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In this supplementary material, we provide additional details and results. It consists of Ap-
pendix A - Appendix D. Appendix A contains a detailed algorithm for our employed predic-
tion strategy. Further experimental details are provided in Appendix B for 1D regression, and
in Appendix C for object detection. Lastly, Appendix D contains details and further results
for the visual tracking experiments. Note that equations, tables, figures and algorithms in
this supplementary document are numbered with the prefix "S". Numbers without this prefix
refer to the main paper.

Appendix A Prediction Algorithm

Our prediction procedure (Section 2.2) is detailed in Algorithm S1, where λ denotes the
gradient ascent step-length, η is a decay of the step-length and T is the number of iterations.

Algorithm S1 Prediction via gradient-based refinement.
Input: x?, ŷ, T , λ , η .

1: y← ŷ.
2: for t = 1, . . . ,T do
3: PrevValue← fθ (x?,y).
4: ỹ← y+λ∇y fθ (x?,y).
5: NewValue← fθ (x?, ỹ).
6: if NewValue> PrevValue then
7: y← ỹ.
8: else
9: λ ← ηλ .

10: Return y.

c© 2020. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.
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Figure S1: Visualization of
the true p(y|x) for the first
1D regression dataset.

Figure S2: Training data
{(xi,yi)}2000

i=1 for the first 1D
regression dataset.

Figure S3: Training data
{(xi,yi)}2000

i=1 for the second
1D regression dataset.

Appendix B 1D Regression

Here, we provide details on the two synthetic datasets, the network architecture, the evalua-
tion procedure, and hyperparameters used for our 1D regression experiments (Section 4.1).
For all seven training methods, the DNN fθ (x,y) was trained (by minimizing the associated
loss J(θ)) for 75 epochs with a batch size of 32 using the ADAM [11] optimizer.

B.1 Datasets

The ground truth p(y|x) for the first dataset is visualized in Figure S1. It is defined by
a mixture of two Gaussian components (with weights 0.2 and 0.8) for x < 0, and a log-
normal distribution (with µ = 0.0, σ = 0.25) for x≥ 0. The training data D1 = {(xi,yi)}2000

i=1
was generated by uniform random sampling of x in the interval [−3,3], and is visualized in
Figure S2. The ground truth p(y|x) for the second dataset is defined according to,

p(y|x) =N
(
y; µ(x),σ2(x)

)
,

µ(x) = sin(x), σ(x) = 0.15(1+ e−x)−1.
(S1)

The training data D2 = {(xi,yi)}2000
i=1 was generated by uniform random sampling of x in the

interval [−3,3], and is visualized in Figure S3.

B.2 Network Architecture

The DNN fθ (x,y) is a feed-forward network taking x ∈ R and y ∈ R as inputs. It consists
of two fully-connected layers (dimensions: 1→ 10, 10→ 10) for x, one fully-connected
layer (1→ 10) for y, and four fully-connected layers (20→ 10, 10→ 10, 10→ 10, 10→ 1)
processing the concatenated (x,y) feature vector.

B.3 Evaluation

The training methods are evaluated in terms of the KL divergence DKL(p(y|x) ‖ p(y|x;θ))
between the learned EBM p(y|x;θ) = e fθ (x,y)/

∫
e fθ (x,ỹ)dỹ and the true conditional density

p(y|x). To approximate DKL(p(y|x) ‖ p(y|x;θ)), we compute e fθ (x,y) and p(y|x) for all (x,y)
pairs in a 2048× 2048 uniform grid in the region {(x,y) ∈ R2 : x ∈ [−3,3],y ∈ [−3,3]}.
We then normalize across all values associated with each x, employ the formula for KL
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Figure S4: Example of
p(y|x;θ) trained with NCE.

Figure S5: Example of
p(y|x;θ) trained with DSM.

Figure S6: Example of
p(y|x;θ) trained with SM.

divergence between two discrete distributions q1(y) and q2(y),

DKL(q1 ‖ q2) = ∑
y∈Y

q1(y) log
q1(y)
q2(y)

, (S2)

and finally average over all 2048 values of x. For each dataset and training method, we
independently train the DNN fθ (x,y) and compute DKL(p(y|x) ‖ p(y|x;θ)) 20 times. We
then take the mean of the 5 best runs, and finally average this value for the two datasets.

B.4 Hyperparameters

The number of samples M = 1024 for all applicable training methods. All other hyperpa-
rameters were selected to optimize the performance, evaluated according to Section B.3.

ML-IS Following [7], we set K = 2 in the proposal distribution q(y|yi) in (4). After ablation,
we set σ1 = 0.2, σ2 = 1.6.

KLD-IS We use the same proposal distribution q(y|yi) as for ML-IS. After ablation, we set
σ = 0.025 in p(y|yi) =N (y;yi,σ

2I).

ML-MCMC After ablation, we set the Langevin dynamics step-length α = 0.05.

NCE To match ML-IS, we set K = 2 in the noise distribution pN(y|yi) in (11). After
ablation, we set σ1 = 0.1, σ2 = 0.8.

DSM After ablation, we set σ = 0.2 in pσ (ỹ|yi) =N (ỹ;yi,σ
2I).

NCE+ We use the same noise distribution pN(y|yi) as for NCE. After ablation, we set
β = 0.025.

B.5 Qualitative Results

An example of p(y|x;θ) trained using NCE on the first dataset is visualized in Figure S4. As
can be observed, this is quite close to the true p(y|x) visualized in Figure S1. Similar results
are obtained with all four top-performing training methods. Examples of p(y|x;θ) instead
trained using DSM and SM are visualized in Figure S5 and Figure S6, respectively. These
do not approximate the true p(y|x) quite as well, matching the worse performance in terms
of DKL reported in Table 1.
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ML-IS ML-MCMC-1 ML-MCMC-4 ML-MCMC-8 KLD-IS NCE DSM NCE+

λpos 0.0004 0.000025 0.000025 0.000025 0.0004 0.0004 0.000025 0.0008
λsize 0.0016 0.0001 0.0001 0.0001 0.0016 0.0016 0.0001 0.0032

Table S1: Used step-lengths λpos and λsize for the object detection experiments.

σ 0.0075 0.015 0.0225 0.03 0.0375

AP (%) ↑ 38.32 39.19 39.38 39.33 39.23

Table S2: Ablation study for KLD-IS, on
the 2017 val split of COCO [13].

α 0.000001 0.00001 0.0001

AP (%) ↑ 36.14 36.19 36.04

Table S3: Ablation study for ML-MCMC-
1, on the 2017 val split of COCO [13].

Appendix C Object Detection
Here, we provide details on the prediction procedure and hyperparameters used for our ob-
ject detection experiments (Section 4.2). We employ an identical network architecture and
training procedure as described in [7], only modifying the loss when using a different method
than ML-IS to train fθ (x,y).

C.1 Prediction
Predictions y? are produced by performing guided NMS [9] followed by gradient-based re-
finement (Algorithm S1), taking the Faster-RCNN detections as initial estimates ŷ. As in [7],
we run T = 10 gradient ascent iterations. We fix the step-length decay to η = 0.5, which is
the value used in [7]. For each trained model, we select the gradient ascent step-length λ

to optimize performance in terms of AP on the 2017 val split of COCO [13]. Like [7], we
use different step-lengths for the bounding box position (λpos) and size (λsize). We start this
ablation with λpos = 0.0001, λsize = 0.0004. The used step-lengths for all training methods
are given in Table S1.

C.2 Hyperparameters
The number of samples M = 128 for all applicable training methods. All other hyperpa-
rameters were selected to optimize performance in terms of AP on the 2017 val split of
COCO [13].

ML-IS Following [7], we set K = 3 in the proposal distribution q(y|yi) in (4) with σ1 =
0.0375, σ2 = 0.075, σ3 = 0.15.

KLD-IS We use the same proposal distribution q(y|yi) as for ML-IS. Based on the ablation
study in Table S2, we set σ = 0.0225 in p(y|yi) =N (y;yi,σ

2I).

ML-MCMC Based on the ablation study in Table S3, we set the Langevin dynamics step-
length α = 0.00001.

NCE To match ML-IS, we set K = 3 in the noise distribution pN(y|yi) in (11). Based on
the ablation study in Table S4, we set σ1 = 0.075, σ2 = 0.15, σ3 = 0.3.

{σk}3
k=1 {0.0125, 0.025, 0.05} {0.025, 0.05, 0.1} {0.05, 0.1, 0.2} {0.075, 0.15, 0.3} {0.1, 0.2, 0.4}

AP (%) ↑ 38.58 38.95 39.12 39.17 39.05

Table S4: Ablation study for NCE, on the 2017 val split of COCO [13].
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σ 0.0375 0.075 0.15

AP (%) ↑ 36.11 36.12 36.05

Table S5: Ablation study for DSM, on the
2017 val split of COCO [13].

β 0.05 0.1 0.15

AP (%) ↑ 39.27 39.36 39.32

Table S6: Ablation study for NCE+, on the
2017 val split of COCO [13].

ML-IS ML-MCMC-1 ML-MCMC-4 ML-MCMC-8 KLD-IS NCE DSM NCE+

AP (%) ↑ 39.11 36.19 36.24 36.25 39.38 39.17 36.12 39.36
AP50(%) ↑ 57.95 57.34 57.45 57.28 58.07 57.96 57.29 57.99
AP75(%) ↑ 41.97 38.77 38.81 38.88 42.47 42.07 38.84 42.63
Training Cost ↓ 1.03 2.47 7.05 13.3 1.02 1.04 3.84 1.09

Table S7: Comparison of training methods for the object detection experiments, on the 2017
val split of COCO [13]. NCE+ and KLD-IS achieve the best performance.

DSM Based on the ablation study in Table S5, we set σ = 0.075 in pσ (ỹ|yi) =N (ỹ;yi,σ
2I).

NCE+ We use the same noise distribution pN(y|yi) as for NCE. Based on the ablation study
in Table S6, we set β = 0.1.

C.3 Detailed Results

A comparison of the training methods on the 2017 val split of COCO [13] is provided in
Table S7.

Appendix D Visual Tracking

Here, we provide detailed results and hyperparameters for our visual tracking experiments
(Section 5). We employ an identical network architecture, training procedure and prediction
procedure for DiMP-KLD-IS, DiMP-NCE and DiMP-NCE+, only the loss is modified.

D.1 Training Parameters

DiMP-KLD-IS is obtained by combining the DiMP [3] method for center point regression
with the PrDiMP [5] bounding box regression approach, and modifying a few training pa-
rameters. Specifically, we change the batch size from 10 to 20, we change the LaSOT sam-
pling weight from 0.25 to 1.0, we change the number of samples per epoch from 26000 to
40000, and we add random horizontal flipping with probability 0.5. Since we increase the
batch size, we also freeze conv1, layer1 and layer2 of the ResNet backbone to save memory.

SiamFC MDNet UPDT DaSiamRPN ATOM SiamRPN++ DiMP SiamRCNN PrDiMP DiMP- DiMP- DiMP-
[1] [16] [2] [19] [4] [12] [3] [17] [5] KLD-IS NCE NCE+

Precision ↑ 53.3 56.5 55.7 59.1 64.8 69.4 68.7 80.0 70.4 73.3 69.8 73.7
Norm. Prec. ↑ 66.6 70.5 70.2 73.3 77.1 80.0 80.1 85.4 81.6 83.5 82.4 83.7
Success (AUC) ↑ 57.1 60.6 61.1 63.8 70.3 73.3 74.0 81.2 75.8 78.1 77.1 78.7

Table S8: Full results on the TrackingNet [15] test set, in terms of precision, normalized
precision, and success (AUC). Our proposed DiMP-NCE+ is here only outperformed by the
very recent SiamRCNN [17]. SiamRCNN is however slower than DiMP-NCE+ (5 FPS vs
30 FPS) and employs a larger backbone network (ResNet101 vs ResNet50).
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Figure S7: Success plot on LaSOT [6].
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Figure S8: Success plot on UAV123 [14].
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Figure S9: Success plot on NFS [10].
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Figure S10: Success plot on OTB-100 [18].

D.2 Hyperparameters

The number of samples M = 128 for all three training methods.

DiMP-KLD-IS Following PrDiMP, we set K = 2 in the proposal distribution q(y|yi) in (4)
with σ1 = 0.05, σ2 = 0.5, and we set σ = 0.05 in p(y|yi) =N (y;yi,σ

2I).

DiMP-NCE Matching DiMP-KLD-IS, we set K = 2 in the noise distribution pN(y|yi) in
(11) with σ1 = 0.05, σ2 = 0.5. A quick ablation study on the validation set of GOT-10k [8]
did not find values of σ1,σ2 resulting in improved performance.

DiMP-NCE+ We use the same noise distribution pN(y|yi) as for NCE. We set β = 0.1, as
this corresponded to the best performance on the object detection experiments (Table S6).

D.3 Detailed Results

Full results on the TrackingNet [15] test set, in terms of all three TrackingNet metrics, are
found in Table S8. Success plots for LaSOT, UAV123, NFS and OTB-100 are found in
Figure S7-S10, showing the overlap precision OPT as a function of the overlap threshold T .
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