
ZIWEN ET AL.: VISUALIZING POINT CLOUD CLASSIFIERS 1

Visualizing Point Cloud Classifiers by
Curvature Smoothing
Supplementary Materials

Chen Ziwen1

chenziwe@grinnell.edu

Wenxuan Wu2

wuwen@oregonstate.edu

Zhongang Qi3

zhongangqi@gmail.com

Li Fuxin2

lif@oregonstate.edu

1 Grinnell College
IA, USA

2 Oregon State University
OR, USA

3 Applied Research Center
Tencent PCG
Shenzhen, China

Figure 1: Auxillary graph for proof in Appendix A. From left to right: point pi and its actual
neighbors (in blue), pi and its virtual neighbors (in red) and the fitted local plane H, enlarged
graph of pi and three of its neighbors, pi and its projection hi on the fitted plane H. Note that
hi is also the center of the ring formed by the virtual neighbors.

A Curvature approximation proof
Theorem 1. Let pi ∈R3 be a point in point cloud. Let H = {x : 〈x,nnn〉+D = 0,x ∈R3},nnn ∈
R3, ||nnn|| = 1 be the plane fitted to the neighbors of pi. Let hi be the projection of pi on H.
Assuming pi’s neighbors distribute evenly and densely on a ring surrounding hi, then the

curvature normal at pi can be approximated by the expression
1

2k2 (hi− pi), where k is the
distance from pi to any of its neighbor.

Proof. Our proof will refer to Fig. 1.
[1] has already showed that on a 3-D mesh, given a point pi and its neighbors, the local

“carvature normal" can be calculated using

1
4A ∑

j∈N (pi)

(cotα j + cotβ j)(p j− pi) (1)

c© 2020. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Desbrun, Meyer, Schr{ö}der, and Barr} 1999

2 ZIWEN ET AL.: VISUALIZING POINT CLOUD CLASSIFIERS

where A is the sum of the areas of the triangles having pi as common vertex and α j,β j are
the two angles opposite to the edge ei j (i.e. p j− pi). This arrangement is demonstrated Fig.
1.

Since point cloud data are usually sparse and noisy, we want to utilize some mechanism
to mitigate this sparsity and irregularity. Here, we first fit a local plane to pi’s neighborhood,
and then we define the notion of “virtual neighbors" as a means to fill in the gaps left by
the “actual neighbors". We assume the “virtual neighbors" distribute evenly and densely
on a ring surrounding hi on the fitted plane H, each having the same distance k to pi (k is
calculated using the average distance of the actual neighbors). Let a be the distance from pi
to each edge e j, j+1. Let b be half of the length of e j, j+1. Thus we can calculate A in Eq. 1 as

n ·ab. Since we assumed the points are distributed evenly, we have cotα = cotβ =
b
a

. Thus

we have the curvature normal to be
1

4A
∑ j(cotα j + cotβ j)(p j − pi) =

1
4nab

· 2b
a

∑ j(p j −

pi) =
1

2na2 ∑ j(p j− pi).

Note that the vector p j− pi is equal to (pi− hi)+ (hi− pi), and it can be easily shown

that ∑ j(pi−hi) =~0. Thus we can continue derive the curvature normal to be
1

2na2 ∑ j(p j−

pi) =
1

2na2 ∑ j(hi− pi) =
n

2na2 (hi− pi) =
1

2a2 (hi− pi). Since we assume the points are
distributed densely, thus we have as n→ ∞, a→ k. Hence, the curvature normal at pi can be
approximated by the expression

1
2k2 (hi− pi) (2)

where hi− pi is just the vector pointing from pi to the local plane H as in Eq. ?? and ??.
This equation makes sense in that when the distance from pi to H is fixed, the further away
the neighbors are, the “flatter" the surface at pi is.

In our actual experimentation however, we found that due to the extremely irregular dis-
tribution of the point cloud data, the neighborhood distance is misleading sometimes rather

than helpful. Thus, in our final algorithm, we abandon the distance information
1

2k2 and
directly use the vector pointing from pi to plane H as our approximation for the local curva-
ture.

B Implementation Details for Point cloud smoothing

(a) The “isolated neighborhood" (K = 2).
Red dots are closed under N (·) opera-
tion, losing contact with other points.

(b) The “false neighbor" (K = 3). The rightmost red dot
is a false neighbor for the red dot in the center, as indi-
cated by the line drawing on the right.

Figure 2: Two issues innate to point clouds (due to the missing edge information between
vertices).

ZIWEN ET AL.: VISUALIZING POINT CLOUD CLASSIFIERS 3

An important implementation detail for the point cloud smoothing algorithm is that the
size of the neighborhood we use increases as the smoothing goes further. In practice, after
every 4 rounds of erosion and dilation, we expand the neighborhood size by 20 points. The
reason for this is twofold. On one hand, there might exist isolated neighborhoods in a point
cloud (i.e. a set of points that is closed under the N (·) operation) as shown in Fig. 2a. If the
curvature information cannot be propagated to the entire point cloud, the algorithm will fail.
On the other hand, a larger neighborhood speeds up the smoothing process. As mentioned in
[2], the time step restriction (0 < λ < 1) results in the need of hundreds of updates to cause
a noticeable smoothing using the original implementation in [3]. Note that however, we also
cannot make the neighborhood size too large, especially at the beginning, due to the “false
neighbor" issue innate to the point cloud data structure (explained in Fig. 2b).

C Smoothing Algorithm Evaluation Metrics

Figure 3: Left: A 2-D ellipse shape with 202 unevenly distributed points. Middle: Taubin smoothing.
Right: Our smoothing. In the case of Taubin smoothing, highly concentrated areas are pushing points
outward, resulting in an undesired shape (i.e., more frequent change in curvature), while our algorithm
is not influenced by point density (and thus, the constant curvature is achieved as desired).

Figure 4: Upper row: meshing a point
cloud and then applying Laplacian smooth-
ing. Lower row: our smoothing algorithm.

Figure 5: Upper row: mean-curvature-
flow algorithm utilizing curvature from fit-
ted quadratic surfaces to local neighbor-
hoods. Lower row: our smoothing algo-
rithm.

In the experiment section of our paper, we use the following three metrics to compare our
smoothing method against the baselines (Fig. 3, 4 and 5 show some example comparisons
in pictures):

CSD. Curvature standard deviation. We regard large curvature on a shape as “features",
and we want to eliminate those “features" through the smoothing algorithms. As we remove
the most distinct curvatures on the surface like edges and corners, the standard deviation
of the curvatures will decrease, due to the elimination of the large outliers. In our exper-
iment, we measure the distance from each point to its locally fitted plane (K = 60) as an
approximation of the local mean curvature.

MR. Min-max ratio. Assuming that the underlying manifold is closed, our smoothing
should eventually morph the point cloud into a sphere. Hence, we propose to evaluate the
ratio between the length on the short side and the long side of the point cloud. This is com-
puted by first applying principal component analysis (PCA) to the point cloud and finding

Citation
Citation
{Kobbelt, Campagna, Vorsatz, and Seidel} 1998

Citation
Citation
{Taubin} 1995

4 ZIWEN ET AL.: VISUALIZING POINT CLOUD CLASSIFIERS

the top two principal components, say ~u and ~v. Then we compute the ratio between ranges
of the values on these two principal directions. The closer this ratio is to 1, the better.

DDS. Density distribution similarity. We want the morphing process to be smooth in
that the density distribution of each point cloud to remain the same throughout the mor-
phing process. We conduct the kernel density estimation at each point (using a Gaussian
kernel with σ = 0.1) to obtain the density distribution of the entire point cloud, and then
compare the similarity between the distributions of two consecutive blurred levels using the
Kolmogorov-Smirnov test (p-values are recorded as results).

ZIWEN ET AL.: VISUALIZING POINT CLOUD CLASSIFIERS 5

D Curve figures

(a) Airplane. (b) Bathtub. (c) Bed. (d) Bench.

(e) Bookshelf. (f) Bottle. (g) Bowl. (h) Car.

(i) Chair. (j) Cone. (k) Cup. (l) Curtain.

(m) Desk. (n) Door. (o) Dresser. (p) Flower pot.

(q) Glass box. (r) Guitar. (s) Keyboard. (t) Lamp.

Figure 6: Deletion and insertion curves for all 40 classes in ModelNet40 for PointConv. Hor-
izontal axis is the deletion percentage (top 5%, 10%, etc.), and vertical axis is the predicted
class score. The red line is the deletion curve which blurs points from highest mask values,
and the blue line is the insertion curve (if read from right to left) which blurs points from
lowest mask values.

6 ZIWEN ET AL.: VISUALIZING POINT CLOUD CLASSIFIERS

(u) Laptop. (v) Mantel. (w) Monitor. (x) Night stand.

(y) Person. (z) Piano. (aa) Plant. (ab) Radio.

(ac) Range hood. (ad) Sink. (ae) Sofa. (af) Stairs.

(ag) Stool. (ah) Table. (ai) Tent. (aj) Toilet.

(ak) TV stand. (al) Vases. (am) Wardrobe. (an) Xbox.

Figure 6: Deletion and insertion curves for all 40 classes in ModelNet40 for PointConv. Hor-
izontal axis is the deletion percentage (top 5%, 10%, etc.), and vertical axis is the predicted
class score. The red line is the deletion curve which blurs points from highest mask values,
and the blue line is the insertion curve (if read from right to left) which blurs points from
lowest mask values. (cont.)

ZIWEN ET AL.: VISUALIZING POINT CLOUD CLASSIFIERS 7

References
[1] Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H Barr. Implicit fairing of

irregular meshes using diffusion and curvature flow. In Proceedings of the 26th annual
conference on Computer graphics and interactive techniques, pages 317–324. Citeseer,
1999.

[2] Leif Kobbelt, Swen Campagna, Jens Vorsatz, and Hans-Peter Seidel. Interactive multi-
resolution modeling on arbitrary meshes. In Siggraph, volume 98, pages 105–114, 1998.

[3] Gabriel Taubin. A signal processing approach to fair surface design. In Proceedings of
the 22Nd Annual Conference on Computer Graphics and Interactive Techniques, SIG-
GRAPH ’95, pages 351–358, New York, NY, USA, 1995. ACM. ISBN 0-89791-701-4.

