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A Overview
This document contains supplementary material for the paper The Resistance to Label Noise
in K-NN and DNN Depends on its Concentration. It contains the following:

• An experiment demonstrating the similarity between the softmax output of a network,
and K-NN performed in the space of the outputs of its one-before-last layer.

• Derivation of algorithm for efficient calculation of the analytical expression for the
expected accuracy of K-NN in the presence of label noise.

• Simplified analysis of the anlytical expression for special cases.

• Additional implementation details.

• Diagrams demonstrating softmax. outputs for networks trained on various datasets with
different noise models.

B Comparison of Softmax Outputs to K-NN Histograms
In this work, we have presented the conjecture that the output of the softmax layer tends to
encapsulate the local distribution of the train examples in the vicinity of a given test example.
In the main paper we demonstrate this by injecting noise into the training set, without having
to explicitly define the space in which K-NN operates. Here, we demonstrate the similarity for
a specific space: the 256-dimensional output of the penultimate layer of a network trained on
clean data. We produce histograms of labels for K-Nearest Neighbors (with different values
of K), and calculate the chi-square distance from these histograms to the softmax layer output.
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Figure 1: For each test example its preferred K is the value of K which yields the lowest
chi-square distance to the softmax layer output. (a) shows a histogram of the prevalence of
different choices of K. (b) shows a histogram of the chi-square distances, when each example
is at its preferred K

The network used for the embedding space is trained on a clean version of the CIFAR10
dataset, and has the following structure: cnv@20 - cnv@20 - pool - cnv@50 - cnv@50 - pool
- fc@256 - fc@10 - softmax,
where cnv is a convolutional layer using a 5x5 filter and zero-padding, fc is a fully connected
layer, @c denotes the number of output channels, and pool is 2x2 max-pooling . Batch
Normalization is added after each convolutional and fully-connected layer, followed by a
ReLU non-linearity (except before the softmax layer). The features we use are the raw outputs
of the fully connected layer with 256 output channels, before they are passed into batch
normalization and ReLU. We try a range of K values, between 10 and 300, and for each
example select its preferred K value, which is the one with the lowest chi-square distance.
Fig. 1(a) shows the prevalence of different choices of K. Fig. 1(b) presents the histogram of
the calculated chi-square distances.

The median chi-square distance between softmax layer output and K-NN histogram is
0.143123, which shows that the distributions are very close to each other. To get a better sense
of the meaning of this number, we show a comparison of histograms for several examples in
Fig. 2, where the chi-square distance is around this value. In each pair, the softmax output
and the K-NN histogram for the example’s preferred K are presented. It can bee seen that
these histograms are very close to each other.

C Efficient Calculation of The Analytical Expression

We turn to present here an efficient strategy for computing the probability Q in Theorem 1
in the main paper. A naive computation of it, may iterate over all possible combinations of
n1,n2, . . ., but only sum those where the plurality label is the correct one. As we shall see
now, in addition to being inefficient, this is also unnecessary.

To make the calculation more efficient, we calculate the lower and upper boundaries of
each ni such that the summation only goes through the combinations that lead to a correct
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Figure 2: The median chi-square distance between softmax layer output and K-NN histogram
is 0.143123. To get a sense of the meaning of this number, we show a comparison of
histograms for several examples where the chi-square distance is around this value. In each
pair the left (green) histogram is the softmax layer output, and the right (blue) is the K-NN
histogram for the example’s preferred K.
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plurality label. Denoting the lower bounds by mi and the upper bounds by Mi, we have that

Q =
M1
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∑
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· · ·
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where mi is the smallest number of repeats of `i allowed, and Mi is the largest one. Their
possible values are calculated in Section C.1. Notice that the number of repeats allowed for
any label `i depends on the number of repeats already selected for all the previous labels,
` j ∀ j < i.

For further efficiency, we can now decompose the summed expression so that shared parts
of the calculation are only performed once. We decompose the multinomial coefficient into a
product of binomial coefficients as follows:(
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and get the following formula for calculating Q:
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C.1 Defining mi and Mi

We will assume, without loss of generality, that the correct label is `1. Clearly, we can repeat
the same analysis by simply renaming or shuffling the labels. mi and Mi need to be defined in
a way that ensures:

1. There are exactly K letters in the string.

2. `1 is the plurality label, i.e. n1 > ni ∀i 6= 1.

We can start with M1, which is simply K. Clearly, a string consisting of K repeats of `1 fulfills
both requirements. Once n1 is known, we can define the maximum allowed number of repeats
for any other letter as M∗ = n1−1. With the definition of M∗, we turn to calculate m1. Since
∑i ni = K and ni ≤M∗, we have that

K ≤ n1 +(L−1)M∗ = n1 +(L−1)(n1−1). (4)

By reordering the terms, we get that

n1 ≥
K +(L−1)

L
. (5)

Using the fact that m1 is the smallest integer satisfying (5), we have

m1 =

⌈
K +(L−1)

L

⌉
. (6)
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Having m1 and M1 set, we turn to calculate the values of Mi ∀i 6= 1. We start by defining
Ri which is the number of string positions that are still unassigned:

Ri = K−
i−1

∑
j=1

n j. (7)

Clearly, the value of ni should be no larger than Ri. Thus,

Mi = min{Ri,M∗}. (8)

Lastly, we define mi in a way that makes sure the string has no less than K letters:

mi = max{0,Ri− (L− i) ·M∗}. (9)

The intuition here is that if all the subsequent letters `i+1, . . . , `L have the maximal number of
repeats, M∗, then `i need to be repeated enough times to bring the total repeats of all the yet
unassigned letters to Ri.

D Simplified analysis of special cases
The process of calculating Q can be accelerated by several orders of magnitude if the following
requirements are met:

1. The dataset is almost perfectly learnable, meaning that a CNN is able to reach approxi-
mately 100% test accuracy when trained with clean labels.

2. The conditional probabilities P(ỹ|y) are the same for all y, up to renaming of the labels.

3. The distribution of labels in the test set is balanced, meaning there is the same number
of test examples for each label.

In these cases, the perfect learnability allows us to simplify C by assuming that for all
train examples x, all clean labels in N (x̂) are the correct label:

C(`) =

{
1 `= ŷ
0 else

(10)

Also, the probability Q is the same for all test examples, from which follows AK−NN = Q. For
the uniform noise setting, q j is simplified to

q j =

{
(1−γ)+ γ

L ` j = ŷ
γ

L else,
(11)

and for the flip noise setting, Q is simplified to

Q = Pr
(
Y (x̂) = ŷ

)
=

K

∑
n=dK+1

2 e

(
K
n

)
· (1−γ)n · γK−n, (12)

where n is the number of examples in N (x̂) that have not been corrupted, and K−n is the
number of those that have been corrupted, i.e. flipped to the alternative label.
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(a) Clean (b) 30% uniform noise (c) 60% uniform noise (d) 20% flip noise

(e) 40% flip noise (f) Corruption matrix
based noise, with two
alternative labels

(g) Locally Concentrated
Noise, example in a clean
region

(h) Locally Concentrated
Noise, example in a noisy
region

Figure 3: Softmax outputs of networks trained on noisy versions of the CIFAR-10 dataset. The ground
truth label is marked by a black margin. Note that the network output tends to encapsulate the local
distribution of labels in the vicinity of the input x.

E Additional Implementation Details

For all MNIST experiments, we use a DNN inspired by LENET-5 [5] and AlexNet [4], which
reaches ∼100% accuracy. Its structure is: cnv@20 - cnv@20 - pool - cnv@50 - cnv@50 -
pool - fc@FS - fc@10 - softmax, where cnv is a convolutional layer using a 5×5 filter and
zero-padding, fc is a fully connected layer, @c denotes the number of output channels, and
pool is 2×2 max-pooling. FS is 500 for Uniform Noise experiments and 256 for Flip Noise
experiments. Batch Normalization [3] is added after each convolutional and fully-connected
layer, followed by a ReLU non-linearity (except before the softmax layer).

Our data pre-processing in ImageNet training is inspired by ResNet [1]. Each image
is resized so that its shorter side is changed to 256 (and the rest maintain the same aspect
ratio). For training, we randomly sample a 224×224 crop from an image. For the test set
we simply take the crop from the center of each image. As the network architecture, we use
Densenet-121 [2] with Adam Optimization and mini-batch of size 256. The learning rate is
initiated to 0.001 and then divided by 10 after 15 epochs. The models are trained up-to 30
epochs with early stopping.
For running-time considerations, The K-NN experiments on ImageNet were done using not
the entire train set but instead a randomly selected subset of 2000 test examples (out of 50000
total).
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Figure 4: Detailed Aggregate Softmax outputs for a network trained on CIFAR-10 with 30% uniform
noise. In each diagram, we show an aggregate of softmax vectors taken from all test examples that share
the same ground truth label. In the top left diagram the GT label is 0, in the next diagram it is 1, etc.
The height of the bars show the median, and the confidence interval shows the central 50% of examples.
The ground truth label is marked by a black margin.
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Figure 5: Detailed Aggregate Softmax outputs for a network trained on MNIST with 60% uniform
noise. In each diagram, we show an aggregate of softmax vectors taken from all test examples that share
the same ground truth label. In the top left diagram the GT label is 0, in the next diagram it is 1, etc.
The height of the bars show the median, and the confidence interval shows the central 50% of examples.
The ground truth label is marked by a black margin.
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Figure 6: Detailed Aggregate Softmax outputs for a network trained on MNIST with 20% flip noise.
In each diagram, we show an aggregate of softmax vectors taken from all test examples that share the
same ground truth label. In the top left diagram the GT label is 0, in the next diagram it is 1, etc. The
height of the bars show the median, and the confidence interval shows the central 50% of examples. The
ground truth label is marked by a black margin.
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Figure 7: Detailed Aggregate Softmax outputs for a network trained on CIFAR with 40% flip noise.
In each diagram, we show an aggregate of softmax vectors taken from all test examples that share the
same ground truth label. In the top left diagram the GT label is 0, in the next diagram it is 1, etc. The
height of the bars show the median, and the confidence interval shows the central 50% of examples. The
ground truth label is marked by a black margin.
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Figure 8: Detailed Aggregate Softmax outputs for a network trained on MNIST with 25% locally
concentrated noise, with an example in the clean region. In each diagram, we show an aggregate of
softmax vectors taken from all test examples that share the same ground truth label. In the top left
diagram the GT label is 0, in the next diagram it is 1, etc. The height of the bars show the median, and
the confidence interval shows the central 50% of examples. The ground truth label is marked by a black
margin.
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Figure 9: Detailed Aggregate Softmax outputs for a network trained on MNIST with 25% locally
concentrated noise, with an example in the noisy region. In each diagram, we show an aggregate of
softmax vectors taken from all test examples that share the same ground truth label. In the top left
diagram the GT label is 0, in the next diagram it is 1, etc. The height of the bars show the median, and
the confidence interval shows the central 50% of examples. The ground truth label is marked by a black
margin.
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