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S1 Proof of (8)

With source and bridging domains, h∗= argminh∈H ε(h), h1= argminh∈H ε̂S(h), an empirical
minimizer of source error, and weight vector α =(0.5,0.5), for any δ ∈ (0,1), with probability
at least 1−δ , the target error can be bounded as follows:

εT (h1)≤ εT (h∗T )+
1
2 εB(h∗B)+2γ +2η

+dH∆H(Dα ,DT )+
1
2 dH∆H(DS,DB)

(S1)

where h ∈H is a hypothesis and

dH∆H = sup
h,h′∈H

|PDS(h(x) 6=h′(x))−PDT (h(x) 6=h′(x))| (S2)

γ = min
h∈H

εT (h)+ εS(h)+ εB(h) (S3)

η = 2

√√√√(2d log(2m+1)+ log( 4
δ
)

m

)
(S4)

Proof. For the presentation clarity, we use εα = 1
2 εS+

1
2 εB interchangeably. Let h1,h2,h3 ∈H,

which will be defined later. We begin by bounding the target error εT by the mixture error εα

and the divergence as follows:

εT (h1)≤ εT (h2)+ εα(h1,h2)+
1
2 dH∆H(Dα ,DT ) (S5)

The second term of RHS in (S5) is further bounded as follows:

εα(h1,h2) =
1
2 εS(h1,h2)+

1
2 εB(h1,h2) (S6)

≤ 1
2

[
εS(h1)+ εS(h2)

]
+ 1

2

[
εB(h1)+ εB(h2)

]
(S7)

and εB(h1) is bounded as follows:

εB(h1)≤ εB(h3)+ εS(h1,h3)+
1
2 dH∆H(DS,DB) (S8)

≤ εB(h3)+ εS(h1)+ εS(h3)+
1
2 dH∆H(DS,DB) (S9)
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Plugging (S7) and (S9) into (S5), we get the following:

εT (h1)≤ εT (h2)+
[

1
2

[
εS(h1)+ εS(h2)

]
+ 1

2

[
εB(h1)+ εB(h2)

]]
+ 1

2 dH∆H(Dα ,DT ) (S10)

=
[
εT (h2)+

1
2 εS(h2)+

1
2 εB(h2)

]
+ 1

2

[
εB(h3)+ εS(h3)

]
+ εS(h1)

+ 1
2 dH∆H(Dα ,DT )+

1
4 dH∆H(DS,DB) (S11)

Assuming h2 = argminh{εT (h)+ 1
2 εS(h)+ 1

2 εB(h)} and h3 = argminh{εB(h)+ εS(h)}, the
RHS of (S11) is written as follows:

εT (h1)≤ γ1 +
1
2 γ2 + εS(h1)+

1
2 dH∆H(Dα ,DT )+

1
4 dH∆H(DS,DB) (S12)

where γ1 = minh{εT (h) + 1
2 εS(h) + 1

2 εB(h)} and γ2 = minh{εB(h) + εS(h)}. We further
assume that h1 = argminε̂S(h), an empirical minimizer of source error.

Now we are left with bounding the source error εS(h1) by the empirical source error
ε̂S(h1), theoretical minimum errors of the target εT (h∗T ) and the bridging εB(h∗B) domains.
This is done by using Lemma 6 in [1] as follows:

εS(h1)≤ ε̂S(h1)+η (S13)

≤ 1
2 ε̂S(h∗T )+

1
2 ε̂S(h∗B)+η (S14)

≤ 1
2 εS(h∗T )+

1
2 εS(h∗B)+2η (S15)

≤ 1
2 εS(h∗T )+

1
2

[
εB(h∗B)+ εS(h3)+ εB(h3)︸ ︷︷ ︸

=γ2

+ 1
2 dH∆H(DS,DB)

]
+2η (S16)

≤ 1
2 εS(h∗T )+

1
2 εB(h∗B)+

1
2 γ2 +

1
4 dH∆H(DS,DB)+2η (S17)

≤ 1
2 εS(h∗T )+

1
2 εB(h∗T )︸ ︷︷ ︸

=εα (h∗T )

+ 1
2 εB(h∗B)+

1
2 γ2 +

1
4 dH∆H(DS,DB)+2η (S18)

≤
[
εT (h∗T )+ εT (h2)+ εα (h2)︸ ︷︷ ︸

=γ1

+ 1
2 dH∆H(Dα ,DT )

]
+ 1

2 εB(h∗B)+
1
2 γ2 +

1
4 dH∆H(DS,DB)+2η

(S19)

= εT (h∗T )+
1
2 εB(h∗B)+ γ1 +

1
2 γ2 +

1
2 dH∆H(Dα ,DT )+

1
4 dH∆H(DS,DB)+2η (S20)

where the second inequality is due to the fact that h1 = argminh ε̂S and sixth is by adding 1
2 εB(h∗T ) to

RHS. η and 2η are introduced in the second and third inequalities using Lemma 6. Finally, plugging
in (S20) into (S12), we get the following:

εT (h1)≤ εT (h∗T )+
1
2 εB(h∗B)+2γ1 + γ2 +dH∆H(Dα ,DT )+

1
2 dH∆H(DS,DB)+2η (S21)

≤ εT (h∗T )+
1
2 εB(h∗B)+2γ +dH∆H(Dα ,DT )+

1
2 dH∆H(DS,DB)+2η (S22)

where the last inequality is given that minh f (h)+minh g(h)≤minh{ f (h)+g(h)} for any f and g.

S2 Additional Experiments
S2.1 Digit Classification
In Table S1, we describe the model architecture used in this experiment.
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Generator Discriminator Feature Extractor

Input feature f Input feature f Input X

3×3 conv. 32 ReLU, stride 1
3×3 conv. 32 ReLU, stride 1, 2×2 max pool 2

3×3 conv. 64 ReLU, stride 1
MLP output 10 MLP output 128, ReLU 3×3 conv. 64 ReLU, stride 1, 2×2 max pool 2

MLP output 2 3×3 conv. 128 ReLU, stride 1
3×3 conv. 128 ReLU, stride 1, 2×2 max pool 2

Reshape to 128×2×2
MLP output feature f with shape 128

Table S1: Architecture for Digit Classification Experiment

S2.2 Recognizing Cars in SV Domain at Night
Model architecture is listed in Table S2. Additional experiment results on Web→SVx:5, for
x = 1,2,3,4 are shown in Figure S1, e.g., SV3:5 denotes SV3→SV4→SV5.

Generator Discriminator Feature Extractor

Input feature f Input feature f Input X

7×7 conv. 64 ReLU, stride 2, 3×3 max pool 2
Resnet output 64
Resnet output 128

MLP output 431 MLP output 320, ReLU Resnet output 256
MLP output 2 Resnet output 512

Resnet output 512
output feature f with shape 512

Table S2: Architecture for Car Recognition Experiment

Figure S1: Validation accuracy over training epochs of our proposed domain adaptation
framework with bridging domains. SV5 is used for validation set.

S2.3 Unsupervised Discovery of Bridging Domains
While works on unsupervised discovery of latent domains exist [2, 3, 5], the choice of bridging
domains remains a hard, unsolved problem. In this section, we present several approaches
that we have exploited along this direction. Our initial approach is to quantify the closeness
to the source domain of each image in the target domain by using the discriminator score
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Figure S2: Performance on SV4–5 based on
supervised bridging domain discovery using
ground truth lighting conditions.

Web→2-way

Web→3-way

Web→4-way

Web→5-way

Figure S3: Performance on SV4–5 based on
unsupervised bridging domain discovery us-
ing discriminator score of pretrained DANN.

dpre( fpre(x)) of pretrained DANN model as an indicator. This approach [10] intuitively makes
sense as discriminator is trained to distinguish source and target domains, and those images
from the target domain predicted as source domain are likely to be more similar to those
images in the source domain, thus qualified as a bridging domain. Unfortunately, this is not
necessarily true since the DANN is trained in an adversarial way and the discriminator at
convergence should not be able to distinguish images from source and target domains [4].
Specifically, if we split the surveillance dataset into two domains based on the discriminator
scores at each training epoch, and compute the AUC using the ground truth of day (SV1–3)
and night (SV4–5) labels, we can see in Figure S7 that the AUC decreases as the number
of training epochs increases. Meanwhile, as shown in Figure S4, S5 and S6, we visualize
images from the surveillance domain based on the discriminator score from left-top the
highest to right-bottom the lowest. With early stopping at the epoch 10, the discriminator of
pretrained DANN model could be more discriminative in separating day and night images
than those early stopped at epoch 50 and 150, which are closer to the convergence, thus cannot
discriminate the images between the source and the target domains.

Based on our intuition and the visual inspection, we propose to construct bridging domains
based on the discriminator score of the DANN model at epoch 10. By ranking the discriminator
score dpre( fpre(x)) for x∈DT , we evenly split the unlabeled target data into m sub-domains,
denoted as D1, · · · ,Dm for m = 2, · · · ,5; D1 has the highest discriminator score and Dm the
lowest. We then apply our proposed framework on D1, · · · ,Dm with Dm as the target and
the rest as the bridging domains. Results are shown in Figure S3 (also Table 5 from the
main paper). Note that we use the SV4–5 for validation and testing so that the results are
comparable with the reported ones in the main paper. The performance of our framework
using unsupervised bridging domain discovery is highly competitive to those using ground
truth lighting condition to construct bridging domains. Moreover, our proposed framework
with discovered bridging domains demonstrates much more stable training curve (Figure S3)
comparing to the baseline DANN model (Figure S2, Web→SV1–5).

In addition, we evaluate the performance of our proposed adaptation framework with
discovered bridging domains using DANN models at epoch 50 and 150. Using Web→2-way
(78.62%) as a reference, the results are 76.31% and 67.46% respectively. This confirms our
observation in Figure S7 that our framework is the most effective when the bridging domains
are retrieved by the discriminator of DANN stopped early.

While using discriminator scores demonstrates the effectiveness in unsupervised bridging
domain detection, additional model selection stage (i.e., early stopping) is required to find a
reliable discriminator dpre. To avoid this, we can directly use different measure of closeness
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Figure S4: Early stopped at
epoch 10.

Figure S5: Early stopped at
epoch 50.

Figure S6: Early stopped at
epoch 150.

Figure S7: AUC between predicted closeness to the source domain using discriminator score
and the ground-truth day/night labels at each training epoch.

in the feature space between the source and the target domains. Specifically, we propose two
measures, namely, the maximum mean discrepancy (MMD) [6] and the out-of-distribution
(OOD) sample detection score [7]. To evaluate these metrics, we first pretrain a classification
model on the source domain only, with feature extractor fpre and classifier Cpre. Then, the
pretrained extractor is applied to each of the target domain data fpre(x),x ∈ DT . We compute
the MMD between a target feature fpre(x(T )) and the entire source domain distribution
{ fpre(x(S))} as follows:

MMD( fpre(x(T )),{ fpre(x(S))}) = ‖φ( fpre(x(T )))−Ex(S)∼DS
[φ( fpre(x(S)))]‖H, (S23)

where φ : D →H is the kernel mapping, and H is the a reproducing kernel Hilbert space
(RKHS). By ranking the target domain based on the MMD values (the smaller the MMD, the
closer the target feature is to the source domain), we can split target domain into several sub
domains, where the ones that are close to the source domain can be considered as the bridging
domains.

Alternatively, we can use the out-of-distribution (OOD) sample detection methods [7].
Consider the output of the pretrained classifier for a target sample is ŷ(T ) =Cpre( fpre(x(T ))),
such that ŷ(T ) ∼ Y has N categories, denoted as ŷ(T ) = {ŷ(T )1 , · · · , ŷ(T )N }. Each ŷ(T )i is the
probability of x(T ) being in category i. The OOD sample detection algorithm basically
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calculates:
OOD(ŷ(T )) = max

i
σ(ŷ(T )i ), (S24)

where σ(·) is the softmax function. The lower the value of OOD(ŷ(T )) is, the more likely x(T )

would be an out-of-distribution sample, and the further it is from the source domain. Similar
to the MMD based approach, we can split the target domain based on the OOD score of every
target domain sample.

As shown in Table 5 from the main paper, the discriminator score based approach achieves
the highest AUC of 0.85. Without any requirement of early stopping, the MMD based
approach provides an AUC of 0.79, and competitive model performance to the one from the
discriminator score. The AUC from the OOD approach is relatively low at 0.69, and the
model performance is lower than the other two. Moreover, we observe that the classification
accuracy is well correlated with the AUC score, suggesting the importance of more advanced
algorithms [8, 9] for measuring the closeness sensibly of the target example to the source
domain.
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