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1 Fairness Definition
Fairness in AI can be defined as the ability to make fair decisions regarding protected at-
tributes such as gender. In this section, we briefly describe the two of most widely used
fairness metrics, which are considered in our experiment (Fair classification).

Equality of Opportunity [2] and Equalized Odds [6] measure whether people who need to
qualify for an opportunity are likely to have the same opportunity regardless of demographic
group. Formally, Equality of Opportunity is defined so that different gender groups have the
same true positive rates for the target attribute as follows:

P(Ŷ = 1|p = 0,Y = 1) = P(Ŷ = 1|p = 1,Y = 1), (1)

where p, Y , Ŷ ∈ {0,1} denote the protected attribute (gender), the target attribute, and the
prediction respectively.

Unlike Equality of Opportunity, which only considers true positive rate parity, Equalized
Odds is defined by considering the true and false positive rates of different gender groups as
follows:

P(Ŷ = 1|p = 0,Y = 1) = P(Ŷ = 1|p = 1,Y = 1) and

P(Ŷ = 1|p = 0,Y = 0) = P(Ŷ = 1|p = 1,Y = 0).
(2)

2 Protected attributes related bias on CelebA dataset
We present how manually selected target attributes are biased in terms of demographic
groups. Table 2 shows the Pearson correlation between protected attributes (i.e., Male,
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Table 1: Pearson correlation between manually selected five attributes and protected at-
tributes (Male, Young) on CelebA dataset [4].

Attribute Male Young
Blond Hair -0.31 0.06
Bald 0.3 -0.24
Bags Under Eyes 0.18 -0.20
Big Nose 0.37 -0.29
Attractive -0.4 0.39

Young) and target attributes (i.e., Blond Hair, Bald, Bags Under eyes, Big Nose, Attrac-
tive) on CelebA dataset [4]. Blond Hair and Attractive have a negative correlation for male
and positive correlation for Young, and the others have the opposite correlation. On the other
hand, we do not consider a race-related label since there is no label on CelebA dataset.

3 FairFaceGAN

Network FairFaceGAN consists of an encoder-decoder generator, a discriminator, and two
protected attribute classifiers (PACs). The generator consists of two down-sampling convolu-
tional layers followed by five residual blocks, and two deconvolutional layers. We use Patch-
GAN discriminator [3], which consists of six down-sampling convolutional layers. Where,
we take outputs of the encoder to PACs, after flatten convolutional features. Two PACs are
consists of three fully connected layers.

Additional results We illustrate additional image translation results compared with Star-
GAN [1] and FixedPointGAN [5] in Figure 1, 2, 3, 4, 5, and 6. + denotes without a target
attribute into with the target attribute, where − indicates the opposite case.

Parameters We present the details of parameters to train our FairFaceGAN as shown in
Table 2.

Table 2: Parameter Details.
Parameters Value

Batch Size 16
Reconstruction Loss (Different Domain) 10
Reconstruction Loss (Same Domain) 11
Auxiliary Classifier Loss 1
Fair Representation Loss (FRL) 0.001
Protected Attribute Distance Loss (PADL) 2
Perceptual Loss (Style) 0.025
Perceptual Loss (Content) 0.01
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Figure 1: Image-to-Image translation results compared with StarGAN [1] and FixedPoint-
GAN [5].
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Figure 2: Results of inversion for the attribute Bags Under Eyes.

Figure 3: Results of inversion for the attribute Bald.
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Figure 4: Results of inversion for the attribute Big Nose.

Figure 5: Results of inversion for the attribute Blond.
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Figure 6: Results of inversion for the attribute Attractive.
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