
PEIKE LI, ET AL: WHEN HUMANS MEET MACHINES 1

Supplementary Materials of
When Humans Meet Machines:

Towards Efficient Segmentation Networks

Peike Li
peike.li@student.uts.edu.au

Xuanyi Dong
xuanyi.dong@student.uts.edu.au

Xin Yu
xin.yu@uts.edu.au

Yi Yang
yi.yang@uts.edu.au

ReLER Lab
Australian Artificial Intelligence Institute
University of Technology Sydney
Sydney, AUSTRALIA

1 Architecture Analysis

We visualize the detailed network configuration of HMSeg and TinyHMSeg in Figure 1.
Since our searching space is based on the inverted residual blocks, we list the searched
architecture structure layer-wisely. IR-kxk-e denotes the inverted residual block with kernel
size k and expansion ratio e.
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Figure 1: Network structure of MobileNetV2, HMSeg and TinyHMSeg. IR-kxk-e denotes the
inverted residual block with kernel size k and expansion ratio e. Stage 1-5 are successively
separated by the gray lines.
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2 Preliminary Computational Cost Analysis.

In most CNN-based semantic segmentation prior works [3, 10], convolutional layers are
widely employed. Thus we first analyze the computational complexity of this basic convo-
lutional operator. Given an input feature map U ∈ Rci×h×w as an input tensor, a convolu-
tion operator φ with a k× k filter is applied to obtain an output feature map V ∈ Rco× h

s×
h
s ,

where c,h,w,s denote the number of channels, height, width and stride, respectively. For the
conventional convolution operator, the total computational cost is O(φ) ≈ cicok2hw/s2 and
model parameters are calculated as S(φ)≈ cicok2. In most layers of Resnet-like CNNs, the
input channel numbers are the same as the output ones. Thus, the computational cost of the
layer grows quadratically as feature resolution or channel numbers increase.

3 Comparison with state-of-the-art methods.

0 25 50 75 100 125 150 175
Frame per second

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

m
Io
U
(%

)

Real-time

DeepLab

SegNet

ICNet

ERFNet

SwiftNet

BiSeNet

DFANet-A

DFANet-B
CAS

SegNAS (Human)

TinySegNAS (Human)

SegNAS

TinySegNAS

20MB

10MB

5MB

1MB

Ours

Others

Figure 2: Comprehensive network comparisons on the Cityscapes dataset, including inference speed
(frame per second), network performance (mIoU) and model size (number of parameters). State-of-
the-art methods, ICNet [11], ERFNet [7], SwiftNet [6], BiSeNet [8], DFANet [4], and CAS [9], are
compared. Two classical networks SegNet [1], DeepLab [3] are also included. Our human-machine
collaboration designed model HMSeg achieves a better trade-off between speed and accuracy.

4 More implementation details about optimizing the
architecture.

Without using a proxy task, we search the architecture directly on the Cityscapes training
set. The training set is divided into two parts, i.e., the train and val sets. The original
validation set is not used in the searching procedure to avoid over-fitting. We search the
model for 320 epochs. We optimize the weights via SGD with a cosine decayed learning rate
from 0.01 and optimize the architecture parameters via Adam with a learning rate of 0.001.
For HMSeg model, we set the target latency time as 12ms. To achieve more efficiency in
TinyHMSeg, we reduce all the channel numbers by a factor of 2 and set the target value to
6ms.
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5 More details about experiments on CamVid
CamVid [2] is a relative small-scale dataset for urban scene understanding. The dataset is
extracted from five video sequences from a driving vehicle. It contains 701 images, which
are split into 367, 101 and 233 images as the training, validation and testing sets respectively.
As the size of this dataset is faraway enough to training from scratch, we adopt the model
trained on Cityscapes as a pre-train model and further fine-tune for 120 epochs. The input
resolution of images is 540x720 pixels and SGD is used with a base learning rate of 0.01 and
weight-decay of 5e-4. We show some visualization results in Figure 3.
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Figure 3: Visualization results of our HMSeg and TinyHMSeg on CamVid validation set.
Better zoom in to see details.
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6 More details about experiments on LIP
LIP [5] is one of the largest datasets for the single person human parsing task. The dataset
contains 50462 images in total, split into 30462, 10000, and 10000 images as the training,
validation and testing sets. We train the network for 150 epochs. Here, we show some
visualization results in Figure 4.
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Figure 4: Visualization results of our HMSeg and TinyHMSeg on LIP validation set. Better
zoom in to see details.
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