VANDENHENDE ET AL.: BRANCHED MULTI-TASK NETWORKS 1

Supplementary Materials

Simon Vandenhende' ' PSI-ESAT
simon.vandenhende@kuleuven.be KU Leuven
Stamatios Georgoulis? Leuven, Belgium
stamatios.georgoulis@vision.ee.ethz.ch 2CVL/TRACE

Luc Van Gool'? ETH Zurich
vangool@vision.ee.ethz.ch Zurich, Switzerland

1 Cityscapes

The encoder is a ResNet-50 model with dilated convolutions [9], pre-trained on ImageNet.
We use a PSP module [2] for the task-specific decoders. Every input image is rescaled to 512
x 256 pixels. We upsample the output of the PSP decoders back to the input resolution during
training. The outputs are upsampled to 2048 x 1024 pixels during testing. The semantic
segmentation task is learned with a weighted pixel-wise cross-entropy loss. We reuse the
approach from [3] for the instance segmentation task, i.e. we consider the proxy task of
regressing each pixel to the center of the instance it belongs to. The depth estimation task
is learned using an L1 loss. The losses are normalized to avoid having the loss of one task
overwhelm the others during training. The hyperparameters were optimized with a grid
search procedure to ensure a fair comparison across all compared approaches.

Single-task models We tested batches of size 4, 6 and 8, poly learning rate decay vs step
learning rate decay with decay factor 10 and step size 30 epochs, and Adam (initial learning
rates 2e-4, le-4, Se-5, le-5) vs stochastic gradient descent with momentum 0.9 (initial learn-
ing rates Se-2, le-2, Se-3, le-3). This accounts for 48 hyperparameter settings in total. We
repeated this procedure for every single task (semantic segmentation, instance segmentation
and monocular depth estimation).

Baseline multi-task network We train with the same set of hyperparameters as before,
i.e. 48 settings in total. We calculate the multi-task performance in accordance with [6].
In particular, the multi-task performance of a model m is measured as the average per-task
performance increase/drop w.r.t. the single task models b:

(—1)f (Mpj—Mp;) /My, (1)

~| -
-

A=
1

where [; = 1 if a lower value means better for measure M; of task i, and O otherwise.

(© 2020. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Yu and Koltun} 2015

Citation
Citation
{He, Zhang, Ren, and Sun} 2015

Citation
Citation
{Kendall, Gal, and Cipolla} 2018

Citation
Citation
{Maninis, Radosavovic, and Kokkinos} 2019

2 VANDENHENDE ET AL.: BRANCHED MULTI-TASK NETWORKS

Branched multi-task network We reuse the hyperparameter setting with the best result
for the baseline multi-task network. The branched multi-task architectures that were used

for the quantitative evaluation on Cityscapes are shown in Fig. 4.

ResNet-50-Block 1 ResNet-50-Block 1
ResNet-50-Block 1
I ResNet-50-Block 2 ResNet-50-Block 2 ResNet-50-Block 2
ResNet-50-Block 3 ResNet-50-Block 3 ResNet-50-Block 3
ResNet-50-Block 4 ResNet-50-Block 4 ResNet-50-Block 4
Task Specific Decoder L Task Specific Decoder i Task Specific Decoder
o = b e e 2 e o =
- - . 5 o4
g z 2k 22
95} — = =
Figure 1: Ours - 1 Figure 2: Ours - 2 Figure 3: Ours - 3

Figure 4: Branched multi-task networks on Cityscapes that were generated by our method.

Cross-stitch networks / NDDR-CNN We insert a cross-stitch/NDDR unit after every
ResNet block. We also tried to leave out the cross-stitch/NDDR unit after the final ResNet
block, but this decreased performance. We tested two different initialization schemes for the
weights in the cross-stitch/NDDR units, i.e. & =0.8, =0.1 and « = 0.9, f = 0.05. The
model weights were initialized from the set of the best single-task models above. We found
that the Adam optimizer broke the initialization and refrained from using it. The best results
were obtained with stochastic gradient descent with initial learning rate le-3 and momentum
0.9. As also done in [1, 7], we set the weights of these units to have a learning rate that is
100 times higher than the base learning rate.

MTAN We re-implemented the MTAN model [4] using a ResNet-50 backbone based on
the code that was made publicly available by the authors. We obtained our best results when
using an Adam optimizer. Other hyperparameters where set in accordance with our other

experiments.

2 Taskonomy

We reuse the setup from [10]. All input images were rescaled to 256 x 256 pixels. We
use a ResNet-50 encoder and replace the last stride 2 convolution by a stride 1 convolution.
A 15-layer fully-convolutional decoder is used for the pixel-to-pixel prediction tasks. The
decoder is composed of five convolutional layers followed by alternating convolutional and
transposed convolutional layers. We use ReLU as non-linearity. Batch normalization is
included in every layer except for the output layer. We use Kaiming He’s initialization for
both encoder and decoder. We use an L1 loss for the depth (D), edge detection (E) and
keypoint detection (K) tasks. The scene categorization task is learned with a KL-divergence
loss. We report performance on the scene categorization task by measuring the overlap in
top-5 classes between the predictions and ground truth.

Citation
Citation
{Gao, Ma, Zhao, Liu, and Yuille} 2019

Citation
Citation
{Misra, Shrivastava, Gupta, and Hebert} 2016

Citation
Citation
{Liu, Johns, and Davison} 2019

Citation
Citation
{Zamir, Sax, Shen, Guibas, Malik, and Savarese} 2018

VANDENHENDE ET AL.: BRANCHED MULTI-TASK NETWORKS 3

ResNet-50-Block 1 ResNet-50-Block 1
ResNet-50-Block 1

ResNet-50-Block 2 ResNet-50-Block 2

ResNet-50-Block 2

ResNet-50-Block 3 ResNet-50-Block 3
ResNet-50-Block 3
ResNet-50-Block 4 ResNet-50-Block 4 ResNet-50-Block 4
Task Specific Decoder Task Specific Decoder Task Specific Decoder
=S SRV m oA U xmE m QO XA
Figure 5: Ours - 1 Figure 6: Ours - 2 Figure 7: Ours - 3

Figure 8: Task groupings generated by our method on the Taskonomy dataset.

The multi-task models were optimized with task weights wy = 1,w; = 1,w;, = 10,w, =
10 and w, = 1. Notice that the heatmaps were linearly rescaled to lie between O and 1.
During training we normalize the depth map by the standard deviation.

Single-task models We use an Adam optimizer with initial learning rate 1e-4. The learning
rate is decayed by a factor of10 after 80000 iterations. We train the model for 120000
iterations. The batch size is set to 32. No additional data augmentation is applied. The
weight decay term is set to le-4.

Baseline multi-task model We use the same optimization procedure as for the single-task
models. The multi-task performance is calculated using Eq. 1.

Branched multi-task models We use the same optimization procedure as for the single-
task models. The architectures that were generated by our method are shown in Fig. 8.
Fig. 12 shows the architectures that are found when using the task grouping method from [5].
We show some of the predictions made by our third branched multi-task network in Fig. 16
for the purpose of qualitative evaluation.

1sNet-50-Block 1
ResNet-50-Block 1 ResNet-50-Bloc

ResNet-50-Block 1 .
T ResNet-50-Block 2 ResNet-50-Block 2
ResNet-50-Block 2
ResNet-50-Block 3 ResNet-50-Block 3
ResNet-50-Block 3
ResNet-50-Block 4 ResNet-50-Block 4 ResNet-50-Block 4
Task Specific Decoder Task Specific Decoder Task Specific Decoder
m o A ®w O A ®m M®noO [V N &)
Figure 9: FAFS - 1 Figure 10: FAFS -2 Figure 11: FAFS - 3

Figure 12: Task groupings generated on the Taskonomy dataset using the FAFS method
from [5].

Cross-stitch networks / NDDR-CNN We reuse the hyperparameter settings that were
found optimal on Cityscapes. Note that, these are in agreement with what the authors re-
ported in their original papers. The weights of the cross-stitch/NDDR units were initialized
with oo = 0.8 and 8 = 0.05.

Citation
Citation
{Lu, Kumar, Zhai, Cheng, Javidi, and Feris} 2017

Citation
Citation
{Lu, Kumar, Zhai, Cheng, Javidi, and Feris} 2017

4 VANDENHENDE ET AL.: BRANCHED MULTI-TASK NETWORKS

MTAN Similar to the other models, we reused the hyperparameter settings that were found

optimal on Cityscapes.
E K S

Figure 13: Example - 1
E

K S
Figure 14: Example - 2
K S

Figure 15: Example - 3

Figure 16: Predictions made by our branched multi-task network on images from the Taskon-
omy test set.

3 CelebA

We reuse the thin-@ model from [5]. The CNN architecture is based on the VGG-16
model [8]. The number of convolutional features is set to the minimum between @ and the
width of the corresponding layer in the VGG-16 model. The fully connected layers contain
2 - @ features. We train the branched multi-task network using stochastic gradient descent
with momentum 0.9 and initial learning rate 0.05. We use batches of size 32 and weight
decay 0.0001. The model is trained for 120000 iterations and the learning rate divided by
10 every 40000 iterations. The loss function is a sigmoid cross-entropy loss with uniform
weighing scheme.

Citation
Citation
{Lu, Kumar, Zhai, Cheng, Javidi, and Feris} 2017

Citation
Citation
{Simonyan and Zisserman} 2015

VANDENHENDE ET AL.: BRANCHED MULTI-TASK NETWORKS 5

Layer 6

Layer 11

Layer 12

Layer 13 \

oatee

Bald

Blurry

Pale Skin
Big Lips

No Beard

Straight Hais

Brown Hair
Narrow Eye:

Bush;

7]
= = 2

n =

Figure 17: Grouping of 40 person atffibute classification tasks on CelebA in a thin VGG-16
architecture.

4 Computational Analysis

We provide an analysis to identify the computational costs related to the different steps when
calculating the task affinity scores. We adopt the notation from the main paper. The following
three steps can be identified:

e Train N single task networks. It is possible to use a subset of the available training
data to reduce the training time. We verified that using a random subset of 500 train
images on Cityscapes resulted in the same task groupings.

e Compute the RDM matrix for all N networks at D pre-determined layers. This re-
quires to compute the features for a set of K images at the D pre-determined layers
in all N networks. The K images are usually taken as held-out images from the train
set. We used K = 500 in our experiments. In practice this means that computing the
image features comes down to evaluating every model on K images. The computed
features are stored on disk afterwards. The RDM matrices are calculated from the
stored features. This requires to calculate N x D x K x K correlations between two
feature vectors (can be performed in parallel). We conclude that the computation time
is negligible in comparison to training the single task networks.

e Compute the RSA matrix at D locations for all N tasks. This requires to calculate
D x N x N correlations between the lower triangle part of the K x K RDM matrices.
The computation time is negligible in comparison to training the single task networks.

We conclude that the computational cost of our method boils down to training N sin-
gle task networks plus some overhead. Notice that cross-stitch networks [7] and NDDR-
CNNs [1] also pre-train a set of single-task networks first, before combining them together
using a soft parameter sharing mechanism. We conclude that our method only suffers from
minor computational overhead compared to these methods.

References

[1] Yuan Gao, Jiayi Ma, Mingbo Zhao, Wei Liu, and Alan L Yuille. Nddr-cnn: Layerwise
feature fusing in multi-task cnns by neural discriminative dimensionality reduction. In
CVPR, pages 3205-3214, 2019.

Citation
Citation
{Misra, Shrivastava, Gupta, and Hebert} 2016

Citation
Citation
{Gao, Ma, Zhao, Liu, and Yuille} 2019

6 VANDENHENDE ET AL.: BRANCHED MULTI-TASK NETWORKS

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling
in deep convolutional networks for visual recognition. IEEFE transactions on pattern
analysis and machine intelligence, 37(9):1904-1916, 2015.

[3] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to
weigh losses for scene geometry and semantics. In CVPR, 2018.

[4] Shikun Liu, Edward Johns, and Andrew J Davison. End-to-end multi-task learning
with attention. In CVPR, 2019.

[5] Yongxi Lu, Abhishek Kumar, Shuangfei Zhai, Yu Cheng, Tara Javidi, and Rogerio
Feris. Fully-adaptive feature sharing in multi-task networks with applications in person
attribute classification. In CVPR, 2017.

[6] Kevis-Kokitsi Maninis, Ilija Radosavovic, and Iasonas Kokkinos. Attentive single-
tasking of multiple tasks. In CVPR, pages 1851-1860, 2019.

[7] Ishan Misra, Abhinav Shrivastava, Abhinav Gupta, and Martial Hebert. Cross-stitch
networks for multi-task learning. In CVPR, 2016.

[8] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. In /CLR, 2015.

[9] Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions.
arXiv preprint arXiv:1511.07122, 2015.

[10] Amir R Zamir, Alexander Sax, William Shen, Leonidas J Guibas, Jitendra Malik, and
Silvio Savarese. Taskonomy: Disentangling task transfer learning. In CVPR, 2018.

