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Figure 2: Our framework: In an N+-way K-shot episode, the task is to discriminate the joint label
space Yjoint = Yseen∪Ynovel. While Yseen contains (a large number of) seen classes, Ynovel consists of
N previously unseen classes with only K labeled support set examples per class. The goal of GFSL is to
perform well across a series of such N+-way K-shot episodes with varying Ynovel. GcGPN addresses
this challenge by explicitly modeling relationships between all classes in Yjoint as graphs, where edges
(yellow) represent inter-class relations: First, a feature extractor fψ maps all support set and query
examples to a feature space, where classes are represented by prototypes. While novel class proto-
types (solid circles) are initialized by averaging the corresponding support set feature representations
(triangles), initial seen class prototypes (shaded circles) are modeled as learnable parameters. Then,
GcGPN employs graph-convolutions to propagate information among classes according to the given
inter-class relations, resulting in jointly updated prototypes. At last, the queries (grey rectangles) are
classified according to their cosine similarity to all prototypes. The model is trained end-to-end in a
meta-learning setup.

c© 2020. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.



2 SHI ET AL.: RELATIONAL GENERALIZED FEW-SHOT LEARNING

A Implementation details

A.1 Reproducibility details

For the sake of reproducibility, we provide comprehensive implementation details of our
method in this section. Figure 2 depicts the detailed pipeline of our framework and Algo-
rithm 1 provides the step-by-step recipe how our model GcGPN is used to perform GFSL.

Algorithm 1 N+-way K-shot classification with GcGPN

1: Input: Nseen,N,A := {B1,B2,B3, . . .} . Number of classes, number of shots, semantic
operators

2: Initialize parameters: ψ,c1, . . . ,cNseen ,θB,sB,τ,∀B ∈ A
3: for episode = 1,2, . . . do
4: Ynovel, Yseen, Dnovel, Qjoint ← Algorithm 2 . Sample a N+-way K-shot episode

5: zn,i← fψ(Dnovel),n = Nseen +1, . . . ,Nseen +N, i = 1, . . . ,K . Apply feature
extractor fψ to all support sets

6: Z← fψ(Qjoint) . Apply feature extractor fψ to all query examples

7: cn← 1
K ∑

K
i=1 z̄n,i,n = Nseen +1, . . . ,Nseen +N . Average normalized support sets to

initial novel prototypes

8: C← (c1, . . . ,cNseen ,cNseen+1, . . . ,cNseen+N) . Concatenate seen and novel initial
prototypes

9: C′ = (c′1, . . . ,c
′
Nseen

,c′Nseen+1, . . . ,c
′
Nseen+N)← g̃(C,{θB,A,sB}B∈A) . Update all

prototypes with graph-conv.

10: p(y = n | x,c′1, . . . ,c′Nseen+N)←
exp(τ cos(z,c′n))

∑
Nseen+N
m=1 exp(τ cos(z,c′m))

,∀z ∈ Z . Predict class

probabilities for all queries

11: if training then
12: Compute loss L, take gradient δL w.r.t. parameters, perform SGD update

13: Adjust learning rate, check early stopping

14: end if
15: end for

Sampling of GFSL episodes: The sampling at training time is given in Algorithm 2.
At test time, instead of simulating novel and seen classes from Ytrain, the seen label space is
given by all training classes, e.g. Yseen = Ytrain, while Ynovel and Dnovel are sampled from a
larger test set of novel classes.

Application of the feature extractor: The feature extractor fψ maps from input space
into a d-dimensional feature space. For comparability, we adopt the same feature extractor
architecture as in [10] and [2] with 4 convolutional blocks and 128 output feature maps,
where each block consists of a 3× 3 convolution layer followed by batch normalization,
ReLU and 2×2 max-pooling.

Initial prototypes: Seen class initial prototypes cn ∈Rd , n = 1, . . . ,Nseen are parameters

Citation
Citation
{Snell, Swersky, and Zemel} 2017

Citation
Citation
{Gidaris and Komodakis} 2018



SHI ET AL.: RELATIONAL GENERALIZED FEW-SHOT LEARNING 3

of the model. Novel class initial prototypes are given by the per-class average cn =
1
K ∑

K
i=1 z̄n,i

of the normalized support set examples z̄n,k =
fψ (xn,k)

|| fψ (xn,k)||
, n = Nseen + 1, . . . ,Nseen +N with

xn,k denoting the k-th labeled support set examples of class n. The (Nseen +N)× d matrix
C = (c1, . . . ,cNseen ,cNseen+1, . . . ,cNseen+N) contains all initial prototypes with the upper block
corresponding to seen and the lower block to novel classes.

Obtaining operators: As discussed in sec. 4.1, a set A of operators can be extracted
from different kinds of inter-class relations. Here, we describe how the operators used in our
experiments are obtained. As mentioned in sec. 5, the semantic operator B is at the core of
all model variants we evaluated.

For miniImageNet, the i, j-th entry is obtained as WordNet path similarity between class
i and class j. More precisely, we use the path_similarity method from the NLTK
library [6] with default parameters. This measures class similarities based on the shortest
path distances between the class labels in the WordNet taxonomy. Fig. 4 visualizes such a
semantic operator on an example 5+-way episode.

For CUB, the i, j-th entry is obtained as pairwise cosine similarity between class-level
attributes, which are 312-dimensional vectors describing visual characteristics of the respec-
tive bird species. These attributes are annotations that come together with the dataset.

We normalize the rows of the semantic operators by a softmax with learnable tempera-
ture (initialized to 1.0). Fig. 5 visualizes such a semantic operator on an example 5+-way
episode. For the semantic-only model variant of GcGPN, A = {B}. For the -split variant,
we split B into four individual operator A = {Bss,Bsn,Bns,Bnn} with one activated block
each. This is to study the effect of learning specialized post-convolution transforms for each
block. For the -aux variant, we additionally include auxiliary operators B̂1 and B̂2 defined in
eq. (5), e.g. A= {B, B̂1, B̂2} or A= {Bss,Bsn,Bns,Bnn, B̂1, B̂2}. This is to study the effect of
the ability to trade-off between self-connection and neighboring prototypes.

Application of graph convolution: We apply graph convolution g̃ to the initial proto-
types C to obtain the updated prototypes C′ = g̃(C) = g̃L(. . . g̃1(C)), where gl , l = 1, . . . ,L is
defined in sec. 4.1. In our experiments we use one graph-convolution layer and study two
variants for the post-convolution transforms θB: either as diagonal matrix or as full matrix
(latter variant indicated by -fcθB) with learnable entries. In both cases, θB is initialized to be
the identity matrix.

Performing classification: For each query x ∈ Qjoint, we obtain conditional class prob-
abilities using the updated prototypes C′ according to eq. (3). At training time, we compute
the cross-entropy loss on these softmax probabilities and take the gradient to update all train-
able parameters of the model.

Training: The learnable parameters of GcGPN include the weights ψ of the feature
extractor, the seen class initial prototypes c1, . . . ,cNseen , the weights of the post-convolutional
transform θB and the corresponding scaling factor sB for each operator B ∈ A, temperatures
in any operator normalization (if applicable) and the cosine classifier. All parameters are
learned end-to-end and the model trained from scratch, unlike the two-phase training used
in [2] or approaches using pre-trained image features such as [9, 12, 16]. All models are
trained for 75 epochs on miniImageNet and 45 epochs on CUB using an SGD optimizer with
a momentum of 0.9, a weight decay parameter of 0.0005 and an initial learning rate of 0.1
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Algorithm 2 Sampling of an N+-way K-shot episode from a set of training dataDtrain, where
D(i) only contains elements of class i. N denotes the number of novel classes per episode,
K the number of instances in the support set, Q the number of query instances and finally B
the number of instances per seen class. RANDOMSAMPLE(S,N) describes uniform random
sampling of N elements without replacement from a set S

1: Input: Ntrain, N, K, Q, B

2: Ynovel← RANDOMSAMPLE({1, . . . ,Ntrain},N) . Sample “fake” classes for episode

3: Yseen←{1, . . . ,Ntrain}\Ynovel . Store remaining seen classes

4: for i in Ynovel do
5: D(i)

novel← RANDOMSAMPLE
(
D(i)

train,K
)

. Sample support instances

6: Q(i)
novel← RANDOMSAMPLE

(
D(i)

train \D(i)
novel,Q

)
. Sample novel query instances

7: end for
8: for j in Yseen do
9: Q( j)

seen← RANDOMSAMPLE(D( j)
train,B) . Sample seen query instances

10: end for
11: Qjoint←Qnovel∪Qseen

12: Output: Dnovel, Qjoint . Output support sets and query sets

that was reduced after 20, 40, 50 and 60 epochs. Performance is monitored on the validation
set for early stopping.

A.2 Pseudo code for GFSL episodic sampling
We provide pseudo code for episodic sampling at training time under the GFSL setup in
Algorithm 2. For test time evaluation, instead of simulating novel and seen classes from
Ytrain, the seen label space is given by all training classes, e.g. Yseen = Ytrain, while Ynovel
and Dnovel are sampled from a larger test set of novel classes.

B Experimental details

B.1 Ablation study for GcGPN without side information
In Section 4.1, we discussed that our framework accommodates different kinds of opera-
tors to model inter-class relationships. As we mentioned, a simple choice can be any dis-
tance or similarity measure on the prototype space, i.e., the operator entry Bm,n is given by
dist(cm,cn). Here, we provide experimental results for GcGPN using such simple distance
operators, in particular L2 distance (GcGPN-l2) and cosine similarity (GcGPN-cos). Similar
to 5, we also consider variants with and without the auxiliary operators B̂1 and B̂2 defined in
eq. (5) (variant indicated by -aux).

Table 3 and 4 show the results on the miniImageNet and CUB datasets, respectively.
Generally, L2 distance seems to have slight advantage over cosine similarity and the use
of auxiliary operators increases performance overall. As discussed in 4.2, the competitor
model DFSLwoF [2] can be seen as a special case of our framework withA=

{
B̂1, B̂2, B̂key

}
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FSL GFSL

1-shot Seen-Seen Novel-Novel Joint-Joint Seen-Joint Novel-Joint H-Mean

GcGPN-cos 65.14±0.44% 55.08±0.75% 47.25±0.41% 54.65±0.46% 39.86±0.75% 45.24±0.52%
GcGPN-l2 53.22±0.46% 52.45±0.77% 40.14±0.41% 35.70±0.47% 44.59±0.75% 38.83±0.40%
GcGPN-cos-aux 69.86±0.41% 54.00±0.77% 47.94±0.40% 62.39±0.45% 33.50±0.67% 42.88±0.59%
GcGPN-l2-aux 70.08±0.41% 54.46±0.75% 48.21±0.40% 62.78±0.43% 33.65±0.68% 43.09±0.59%

5-shot Seen-Seen Novel-Novel Joint-Joint Seen-Joint Novel-Joint H-Mean

GcGPN-cos 55.44±0.46% 68.52±0.65% 50.62±0.41% 43.56±0.49% 57.68±0.72% 49.04±0.40%
GcGPN-l2 57.53±0.44% 69.25±0.66% 51.17±0.41% 47.98±0.46% 54.36±0.75% 50.29±0.40%
GcGPN-cos-aux 68.03±0.43% 71.22±0.65% 57.41±0.41% 60.26±0.48% 54.56±0.72% 56.66±0.45%
GcGPN-l2-aux 67.79±0.43% 72.37±0.62% 57.81±0.41% 59.30±0.46% 56.32±0.68% 57.29±0.43%

Table 3: Test set accuracies for 5+-way 1-shot and 5+-way 5-shot classification on mIN.

FSL GFSL

1-shot Seen-Seen Novel-Novel Joint-Joint Seen-Joint Novel-Joint H-Mean

GcGPN-cos 44.19±0.56% 60.86±0.93% 38.06±0.48% 39.15±0.56% 36.97±0.84% 36.85±0.51%
GcGPN-l2 44.10±0.55% 60.00±0.91% 38.84±0.49% 36.82±0.56% 40.86±0.88% 37.58±0.50%
GcGPN-cos-aux 51.79±0.55% 59.80±0.95% 44.06±0.52% 41.25±0.57% 46.87±0.88% 42.90±0.52%
GcGPN-l2-aux 45.99±0.56% 60.30±0.93% 41.88±0.52% 35.47±0.56% 48.28±0.87% 40.00±0.50%

5-shot Seen-Seen Novel-Novel Joint-Joint Seen-Joint Novel-Joint H-Mean

GcGPN-cos 43.10±0.53% 74.82±0.81% 45.79±0.49% 37.22±0.52% 54.36±0.86% 43.40±0.47%
GcGPN-l2 43.05±0.57% 74.47±0.80% 45.82±0.51% 37.23±0.56% 54.41±0.85% 43.42±0.49%
GcGPN-cos-aux 50.56±0.56% 74.70±0.77% 46.90±0.48% 46.82±0.57% 46.99±0.80% 46.06±0.50%
GcGPN-l2-aux 51.47±0.55% 74.65±0.75% 48.20±0.49% 47.52±0.56% 48.88±0.79% 47.44±0.50%

Table 4: Test set accuracies for 5+-way 1-shot and 5+-way 5-shot classification on CUB.

where B̂key is an operator based on a learned key space (see 4.1, graph-conv. operators (3)).
More precisely, the pairwise class similarities of the GcGPN variants here are computed on
the class prototypes cn, n = 1, ...,Nseen +Nnovel , whereas those of DFSLwoF are computed
between the class keys kn, n = 1, ...,Nseen +Nnovel , which are optimized model parameters in
addition to the prototypes. Thus, DFSLwoF has higher modeling capacity and flexibility for
the inter-class relations than our simple GcGPN variants. While it maintains an edge over
GcGPN-*-aux of around 2% on miniImageNet, the GcGPN-*-aux variants outperform it on
CUB in terms of both Joint-Joint and H-Mean accuracy with a margin of about 2 to 3% on
the 5-shot task and about 4 to 6% on the 1-shot task. This shows that with our framework,
we can potentially obtain the same performance with a much simpler inter-class relationship
model.

B.2 Comparison to FSL methods

In sec. 5 of the paper, we discussed the major requirements for GFSL models, which are (1)
handle dynamic novel label space on-the-fly, (2) store and represent all seen classes at test
time and (3) consistently embed novel classes into the existing label space. Although FSL
models can address (1), they cannot be easily extended to cover requirements (2) and (3).
Therefore, sec. 5 focuses on comparing our approach GcGPN with relevant GFSL methods
PN+ (naive extension of PN [10] to GFSL) and DFSLwoF [2]. Nevertheless, we can com-
pare the FSL performance of GFSL models, which is captured by the performance measure
Novel-Novel, to recent FSL models. Note that all FSL models are trained with the few-shot
objective in eq. (1), whereas the GFSL models (DFSLwoF and GcGPN) are trained with the
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5-way 1-shot 5-way 5-shot

Matching Network [13] 46.6% 60.0%
PN [10] 46.61±0.78% 65.77±0.70%
MAML [1] 48.07±1.75% 63.15±0.91%
Meta-LSTM [8] 43.44±0.77% 60.60±0.71%
Meta-SGD [4] 50.47±1.87% 64.03±0.94%
REPTILE [5] 49.97±0.32% 65.99±0.58%
VERSA [3] 53.40±1.82% 67.37±0.86%
CAVIA [17] 51.82±0.65% 65.85±0.50%
Relation Net [11] 50.44±0.82% 65.32±0.70%
Parameter prediction [7] 54.53±0.40% 67.87±0.20%

PN+ (sec. 5) 53.88±0.78% 70.84±0.66%
DFSLwoF [2] 55.80±0.78% 72.59±0.62%
GcGPN-cos-aux (ours) 54.00±0.77% 71.22±0.65%
GcGPN (ours) 55.67±0.73% 71.53±0.63%
GcGPN-aux (ours) 56.59±0.75% 71.81±0.64%
GcGPN-split (ours) 55.68±0.76% 71.83±0.62%
GcGPN-aux-split (ours) 60.40±0.71% 73.31±0.62%

Table 5: FSL performance (Novel-Novel) on 5-way 1-shot and 5-way 5-shot classification on
miniImageNet. The upper part of the table contains FSL methods and the lower part GFSL
methods. Numbers for the FSL models are as reported in [17] and [11] and numbers for the
GFSL models are obtained from our own experiments.

objective in eq. (2). Table 5 show the results for 5-way 1-shot and 5-way 5-shot classification
on miniImageNet. The numbers suggest that (a) GFSL methods outperform FSL methods
even on FSL tasks, and (b) additionally exploiting inter-class relations further improves per-
formance.

B.3 Definition of performance measures

For the experimental results in Table 1 and 2 from sec. 5, we report several different perfor-
mance measures according to the conventions in GFSL and GZSL. We provide the definitions
here: Novel-Novel measures the accuracy when classifying novel class queries in the novel
class label space. Seen-Seen measures the accuracy when classifying seen class queries in
the seen class label space. Joint-Joint measures the accuracy when classifying seen and
novel queries in the joint label space. Novel-Joint measures the accuracy when classifying
novel class queries in the joint label space. Seen-Joint measures the accuracy when classify-
ing seen class queries in the joint label space. Harmonic Mean (H-Mean) is the harmonic
mean of Novel-Joint and Seen-Joint, where H(x1,x2) =

2·x1·x2
x1+x2

denotes the harmonic mean
of two numbers x1 and x2.

The performance measures Novel-Novel, Seen-Seen and Joint-Joint accuracies are re-
ported in [2]. In addition to them, we also adopt the convention in GZSL (generalized
zero-shot learning) [15] and report Novel-Joint and Seen-Joint accuracies together with their
harmonic mean. As [15] points out, the Novel-Joint performance is of particular interest
because GZSL models often fail here drastically in spite of good Novel-Novel performance.
Further, the harmonic mean is often preferred over Joint-Joint accuracy which is easily dom-
inated by the seen class performance. This is because queries are much more likely to stem
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from the seen classes, thus the Joint-Joint accuracy correlates heavily with the Seen-Seen
accuracy.

B.4 Varying the number of shots
We study the model’s behavior under different few-shot settings with varying numbers K of
available labeled examples per novel class. Fig. 3 shows the Joint-Joint accuracy for 5+-way
K-shot classification on the CUB dataset. The GcGPN variants are explained in sec. 5 and A.
We train separate models for each K and evaluate their performance. The results show that
the GcGPN variants consistently outperform the baseline DFSLwoF [2].
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Figure 3: 5+-way K-shot classification accuracy (Joint-Joint) on the CUB dataset for differ-
ent K.

B.5 Semantic operators
In this section we show the semantic operators B for the miniImageNet [13] dataset (Fig-
ure 4) and for the Caltech-UCSD Birds-200-2011 (CUB) [14] dataset (Figure 5). For both
visualizations operator temperature is at 1 leaving the operators unmodified.

Each row and column represents one class. In both visualizations brighter color indicates
higher inter-class similarity and block structures arise when similar classes are listed next to
each other. Note that the colormap clips the largest values on the diagonal to visualize the
off-diagonal structure of the side information. Since graph-convolution operators usually
require normalization, we apply row-wise softmax with a learnable temperature such that
each row sums up to 1.

The blue lines divide the operator into four blocks corresponding to relations among
seen classes in the upper left (Seen-Seen), novel classes in the lower right (Novel-Novel)
and mixed relations in the other two blocks (Seen-Novel and Novel-Seen).

The figures indicate that relational structures are more prominent in CUB as compared to
miniImageNet. This reflects that in WordNet, the 100 miniImageNet classes are a small subset
from a much larger taxonomy and are almost equally related to each other. In contrast to that,
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the dedicated fine-grained attributes in CUB provides more structural and discriminative
information, which proves to be particularly beneficial.

Figure 4: Softmax normalized semantic operators for the miniImageNet [13] dataset for a
typical GFSL 5+-way K-shot task. Two large blocks are visible, which indicate the similar-
ities of animate (classes house_finch to three-toed_sloth) and inanimate things
(remaining classes). (Best viewed in color)
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Figure 5: Softmax normalized semantic operators for the Caltech-UCSD Birds-200-
2011 (CUB) [14] dataset for a typical GFSL 5+-way K-shot task. The largest
continuous block are several different sparrow species (classes Baird_Sparrow to
Vesper_Sparrow). (Best viewed in color)
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