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1 Introduction
This document mainly contains the following:

The illustration of network architecture used in the main paper.

The setup for training.

e The definition of evaluation metrics.

Some qualitative results.

e Comparisons with the state-of-the-art knowledge distillation methods.

2 Illustration of Network Architecture

In the main paper, we evaluate the proposed method using five different networks-TS120G,
TS20G, TS500M, Resnet50 and Squeezenet. These networks can be divided into two cat-
egories. TS120G is the network of [4], TS20G and TS500M are modified from TS120G.
Thus, we record the three networks as TS-MAC network. The illustration of TS-MAC with
EKD is shown in Figure 1. Resnet50 and Squeezenet are general networks. The illustration
of them is shown in Figure 2. Note that the EKD is a framework. It can be easily adapted to
various networks and tasks, and we leave this for future work.
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Figure 1: The illustration of TS-MAC network with EKD. {(x;,y;,Z")}X , is the 2.5D co-
ordinates [4] of the keypoints, where K=21. The 2.5D coordinates can be translated to 3D
coordinates using intrinsic camera parameters and the depth of the root keypoint. The 3D
coordinates are used to calculate the angles that are defined in our main paper.
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Figure 2: The illustration of general network with EKD.

3 Setup for Training

All the training images are cropped into 128 x 128 before feeding into the network. Online
data augmentation is adopted to alleviate the overfitting problem. During the training, the
samples are rotated (—45°,45°), translated (420 pixels) and scaled (0.7,1.1) randomly. Adam
optimizer is used. The batch size is 32 and the regularization strength is 5 x 1074, The
learning rate is set to 10~ for TS120G and 1073 for other models and decreases to its %
every 30 epochs. The hyperparameter A, is set to 20 and A,, A3 is set to 1 in the experiments.
All the experiments are done on Geforce GTX 2080Ti GPU with CUDA 9.0.

4 Definition of Evaluation Metrics

In this paper, we use Area Under the Curve (AUC) and angle violation frequency to evaluate
the proposed algorithm. AUC is the area under the PCK curve and the PCK curve is shown in
Figure 4 of the main paper. The angle violation frequency is the proportion of physiologically
invalid samples in the test dataset. A sample that has at least one invalid angle prediction is
considered as a physiologically invalid sample. The invalid angle means that this angle is
outside the predefined angle range.
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Methods 2DAUC@30 3DAUC VE

Student 59.9% 61.6%  6.22%
KD 49.9% 53.1% 11.3%
NST 56.1% 61.4%  7.62%
VID 54.9% 583%  6.83%
RKD 56.0% 59.4%  6.67%
CC 55.7% 60.3%  7.46%

Sp 57.9% 60.1%  8.44%
EKD 61.2% 64.3% 4.74%

Table 1: Comparisons with state-of-the-art knowledge distillation methods on RHP dataset.
V.F. is the abbreviation of violation frequency. 2DAUC @30 means that the area under 2D
PCK curve between 0-30pixel. 3DAUC is the area under 3D PCK curve between 20-50mm.

5 Comparisons with State-of-the-art Knowledge
Distillation Methods

In this section, the proposed method is compared with state-of-the-art knowledge distillation
methods-KD [2], NST [3], VID [1], RKD [5], CC [6] and SP [7] to demonstrate the effective-
ness of the method. Note that existing KD methods are mainly designed for classification
task. Thus, it is necessary to explore the way to apply these methods to pose estimation
task. From our experimental results, the high-level features of the teacher network are not
always helpful for students to mimic. For example, when the loss of CC is added at the high-
level features, the network fails to converge. Therefore, we let the student network learn
the knowledge from low-level features of the teacher network. As existing knowledge dis-
tillation methods require a sophisticated teacher network, the TS120G model is adopted as
the teacher for the TS500M network in this task, and the low-level features are the features
obtained by downsampling operations in the first stack.

The results are shown in Table 1 and 2. The proposed method surpasses existing methods
by a large margin on RHP dataset and achieves best results on LM dataset when combining
with the loss of the CC method. On the RHP dataset, existing KD methods obtained a
lower performance than the baseline. However, this phenomenon is not surprising. RHP
is synthetic dataset with many difficult poses, thus it requires a complex reasoning process
during the inference, resulting in complicate relations between features. When transferring
knowledge from the features of such a teacher, the students is more likely to be impacted by
knowledge uncertainty and knowledge omission, which are introduced in the Introduction
section of the main paper. By contrast, the proposed EKD method works well in this situation
as it transfers human knowledge.

6 Qualitative Results

Figure 3 shows some visual results of proposed approach and corresponding baselines. As
the teacher network has limited guiding effect on the TS120G model and there is no obvious
improvement visually, we only show the results of the other four models. It can be seen that
the models trained with our teacher network tend to output results that conform to the angle
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Methods 2DAUC@30 3DAUC VE

Student 69.1% 793%  4.83%
KD 65.8% 78.9%  7.33%
NST 72.0% 83.7%  3.42%
VID 71.8% 85.1%  2.67%
RKD 70.0% 82.5%  4.43%
CcC 73.3% 849%  3.15%
Sp 71.7% 829%  2.92%
EKD 72.7% 85.1% 1.74%

EKD+CC 75.8% 86.8%  2.67%

Table 2: Comparisons with state-of-the-art knowledge distillation methods on LM dataset.

constraints.
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Figure 3: Visual results of different baselines and proposed method. The abnormal hand
poses are corrected after using the proposed EKD method.
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