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A Example forgetting in object detection
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Figure 7: Detections on a PASCAL VOC train set image missing annotations throughout
training: only the sofa in the lower left has a label. Each column shows detections directly
before (top) and after (bottom) the model is trained on the image shown, for each epoch.
While the sofa is consistently detected (purple box) after being learned, the unlabeled objects
(2 monitors, a chair) are repeatedly found and then suppressed after being trained upon.

In a recent study of training dynamics of neural network classifiers, Toneva et al. [47] de-
fined a “forgetting event” as a training example switching from being classified correctly by
the model to being classified incorrectly during training. It was found that certain examples
were forgotten more frequently than others while others were never forgotten (termed “un-
forgettable”), with the degree of forgetting for individual examples being consistent across
neural network architectures and random seeds. When visualized, the forgotten examples
tend to have atypical or uncommon characteristics (e.g., pose, lighting, angle), relative to
“unforgettable” examples. Interestingly, a significant number of “unforgettable” examples
could be removed from the training set with only a marginal reduction in test accuracy, if the
“hard” examples were kept. This implies that the “hard” examples play a role akin to support
vectors in max-margin learning, while easier “unforgettable” examples have little effect on
the final decision boundary.

Within the context of object detection datasets, we hypothesize that unlabeled object
instances form a similar group of hard examples that are also learned and then forgotten
throughout training. Unlike the inter-batch catastrophic forgetting in [47], however, where
hard examples are learned while part of the current minibatch and then forgotten while learn-
ing other examples, unlabeled samples in object detection are learned from other examples
and then suppressed after incurring misclassification losses during training (see Figure 7).

Unlabeled instances strongly resemble positive examples throughout the rest of the dataset,
but their lack of labels mean that the typical PN classification objective incentivizes learning
them as negatives. Given that hard examples have a strong influence on classifier boundaries,
having unlabeled examples trained as negatives may prove especially detrimental to training.

We perform a similar study as [47] and investigate forgetting events on PASCAL VOC [12]
by tracking detection rates of labeled and unlabeled instances in the training set throughout
learning. In particular, an object is considered detected if the detector produces a bounding
box with intersection over union (IoU) of at least 0.5 and the classifier is at least 80% con-
fident in the correct class. We track whether or not an object was detected directly before
the image it belongs to is trained upon, and then again after the gradients have been applied.
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Figure 8: Detection rates of objects before and after training on their corresponding images
for (a) labeled instances and (b) instances with labels withheld during training.

These indicator variables are then combined across objects for each epoch and reported as a
percentage. While PASCAL VOC does naturally have unlabeled instances, we do not have
access to these without a re-labeling effort. As such, we remove 10% of object annotations
randomly across all object classes during training, and use them to calculate detection rates
for this experiment.

Detection rates for labeled and unlabeled objects over time are shown in Figure 8. As
expected, the model learns to detect a higher percentage of labeled instances over time, and
objects are overall more likely to be detected immediately after the detector trains on them.
Despite not having an explicit learning signal, unlabeled objects are still learned throughout
training, but at a lower rate than labeled ones. In contrast with labeled objects, unlabeled
object detections are discouraged with each PN gradient, leading to a dip in overall de-
tection rates immediately after training. Despite this, overall detection rates of unlabeled
objects grows through the first 5 epochs of training, implying a repeated cycle of learning
unlabeled objects from other intra-class examples, forgetting them when explicitly trained
against them, and then learning them again. Given the undesirability of this forced suppres-
sion of detected objects, we seek a method to remedy this behavior.

B Recall of Region Proposals
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To investigate the effect of the PU risk estimator on
the quality of the proposals from RPN stage, we ex-
amine the recall of the top 500 proposals, compared
with the complete annotations. Higher recall means
there are more proposals that match with the full-
labeled annotations. In Figure 9, the recalls using
the PU risk estimator are higher than those using the
PN risk estimator. This illustrates the inclusion of
more object proposals that are not included by the Figure 9: Recall of top 500 proposals
PN risk estimator because the corresponding ground from RPN after training on PASCAL
truth annotations are missing. VOC2007 when p =0.5.
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C Openlmages

Openlmages [23, 26] is a large object dataset consisting of 15.4 million bounding boxes
from 600 classes across 1.9 million images. In order to achieve its scale, the labeling effort
was crowd-sourced to a large number of human annotators. As pointed out in [12], even
increasing from 10 classes of objects in PASCAL VOC2006 to the 20 in VOC2007 resulted
in a substantially larger number of labeling errors, as it became more difficult for human
annotators to remember all of the object classes. With 500 classes, this problem is worse
by an order of magnitude for Openlmages. While the creators of Openlmages designed
an annotator training process to insure quality, there still are many examples of missing
labels. As such, PU learning as proposed is especially appropriate, even when considering
full labels.

As in Section 4.2, we train a ResNet101 Faster R-CNN object detector with both PN and
PU classification losses. Given the large size of the dataset, we restrict our analysis to 50 of
the most prevalent classes, and subsample 140K images from the dataset containing at least
one of the selected classes. Of these 140K images, we train on 100K with full annotations,
and hold out 10K for validation and 30K as our test split. We observe that, all other things
equal, switching to our proposed PU approach results in an increase of +3.0, +3.0, and +5.0
for mAPs with IoU thresholds {0.25,0.50,0.75} (see Table 2).

Table 2: Detector performance on a subset of Openlmages at various IoU thresholds.

Method || APs  APsy  APss
PN 377 336 207

PU 40.7 36.6 25.7
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