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1 Para-perspective Projection of a 3D Gaussian Mixture

To generate multi-view silhouettes of our 3D Gaussian mixture shape representation, we
use para-perspective projection[1] for each mixture component. We derive para-perspective
projection of a 3D Gaussian mixture from a different viewpoint.

Since we are only interested in object shape recovery, we can safely assume that the
camera pose with respect to the object is defined by rotation about its center. Suppose we
project a 3D Gaussian mixture defined in the world coordinate system to a camera of pose
R. A 3D Gaussian rotated by R is given by

fGM(xxx;R) =
K

∑
i=1

πiφ(xxx|Rµµµ i,RΣiR>) ,

=
K

∑
i=1

πiφ(xxx|µµµ ′i,Σ′i) ,
(1)

where R is the rotation matrix transforming from the world coordinate system to the camera
local coordinate system.

Figure 1 shows an overview of para-perspective projection. Para-perspective projection
first defines a 3D plane Πi located at the centroid of the object and parallel to the image
plane. Since we project each of Gaussian component independently, the centroid is identical
to the mean of each Gaussian µµµ ′i = Rµµµ i.

Suppose an oblique coordinate system centered at µµµ ′i = Rµµµ i and whose x and y axes are
identical to the original Euclidean system but its third w axis is the direction from the camera
center (i.e., the origin of the camera coordinate system) to the centroid. Transforming a 3D
point xxx in the camera coordinate system to a 3D point yyy = (u,v,w)> in this oblique system
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Figure 1: Para-perspective projection of a 3D Gaussian yields a 2D Gaussian on the image
plane.

can then be described by

xxx = (eee>x ,eee
>
y ,µµµ

′
i
>
)yyy = Miyyy (2)

yyy = M−1
i xxx , (3)

where eeex = (1,0,0)> and eeey = (0,1,0)>. Therefore, the Gaussian of Eq. (1) is transformed
to a Gaussian of parameters

µµµ
′′
i = µµµ

′
i , Σ′′i

−1
= M>i Σ−1

i Mi , (4)

and the parallel projection to the plane Πi is given by marginalizing this Gaussian φ(xxx|µµµ ′′i ,Σ′′i )
in the w direction

µµµ
′′′
i = (eee>x ,eee

>
y )µµµ

′′
i , Σ′′′i

−1
=

(
s00−

s2
02

s22
s01−

s12s02
s22

s10−
s12s02

s22
s11−

s2
12

s22

)
, (5)

where si j denotes the (i, j) element of Σ′′−1. By applying a 2D affine transform from the
plane Πi to the image plane, we obtain the 2D Gaussian on the image plane as

µµµ
′′′′
i =

µµµ ′′′i
zi

, Σ′′′′i
−1

=
1
z2

i
Σ′′′i
−1
, , (6)

where zi is the depth of the centroid, i.e., the z element of µµµ ′i.
As a result, the para-perspective projection of a 3D Gaussian of Eq. (1) is given by

d(xxx) =
K

∑
i=1

πiφ2D(xxx|µµµ ′′′′i ,Σ′′′′i ) , (7)

where φ2D(·) denotes a 2D Gaussian of the form

φ2D(xxx|µµµ ′′′′,Σ′′′′) =
1

2π|Σ′′′′| 12
exp
(
−1

2
g(xxx|µµµ ′′′′,Σ′′′′)

)
. (8)
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This para-perspective projection is differentiable and denoted as the projection module
in Figure 2 of the paper.

2 Details of 3D Pose Estimation
3D-GMNet recovers the shape in the local camera coordinate system of the input image.
Hence we can estimate relative pose of cameras by aligning the estimated 3D shapes. We
show this is done by aligning the covariance matrices of Gaussian mixtures analytically.

The covariance matrix of a Gaussian mixture is given by

ΣGM =
K

∑
i=1

πi

(
Σi +(µµµ i−µµµGM)(µµµ i−µµµGM)>

)
,

where µµµGM = ∑
K
i=1 πiµµµ i. We then estimate the rotation via diagonalization with its eigenvec-

tors sorted in descending order according to the magnitude of the corresponding eigenvalues.
The correspondence based on the order of eigenvalues has a sign ambiguity on each of the
eigenvectors. To find the correct signs, we evaluate the rotation that minimizes the L2 dis-
tance between two Gaussian mixtures:∫ (

f (1)GM(xxx)− f (2)GM(xxx)
)2

dxxx = ∑
i, j

Φ
(1,1)(i, j)

+∑
i, j

Φ
(2,2)(i, j)−2∑

i, j
Φ

(1,2)(i, j) ,
(9)

where

Φ
(a,b)(i, j) = π

(a)
i π

(b)
j

∫
φ
(a)
i (xxx)φ (b)

j (xxx)dxxx

= π
(a)
i π

(b)
j φ

(
xxx = µ

(a)|µ(b),Σ(a)+Σ(b)
)
.

(10)

References
[1] Richard Hartley and Andrew Zisserman. Multiple View Geometry in Computer Vision.

Cambridge University Press, New York, NY, USA, 2 edition, 2003. ISBN 0521540518.


